

Edinburgh Research Explorer

On the Computational Complexity of Head Movement and Affix
Hopping

Citation for published version:
Stanojevic, M 2019, On the Computational Complexity of Head Movement and Affix Hopping. in Formal
Grammar 2019: 24th International Conference, FG 2019, Riga, Latvia, August 10-11, 2019, Proceedings.
Lecture Notes in Computer Science (LNCS), Springer-Verlag Berlin Heidelberg, pp. 101-116, 24th
Conference on Formal Grammar, Riga, Latvia, 10/08/19. https://doi.org/10.1007/978-3-662-59648-7_7

Digital Object Identifier (DOI):
10.1007/978-3-662-59648-7_7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Formal Grammar 2019

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1007/978-3-662-59648-7_7
https://doi.org/10.1007/978-3-662-59648-7_7
https://www.research.ed.ac.uk/en/publications/8e97979e-d10e-4502-a38d-1ddbd63a2e66

On the Computational Complexity of
Head Movement and Affix Hopping

Miloš Stanojević

School of Informatics
University of Edinburgh

11 Crichton Street, Edinburgh, UK
m.stanojevic@ed.ac.uk

Abstract. Head movement is a syntactic operation used in most gen-
erative syntactic analyses. However, its computational properties have
not been extensively studied. Stabler (2001) formalises head movement
in the framework of Minimalist Grammars by extending the item repre-
sentation to allow for easy extraction of the head. This work shows that
Stabler’s representation is in fact suboptimal because it causes higher
polynomial parsing complexity. A new algorithm is derived for parsing
head movement and affix hopping by changing the kinds of representa-
tions that the parser deals with. This algorithm has much better asymp-
totic worst-case runtime of O(n2k+5). This result makes parsing head
movement and affix hopping computationally as efficient as parsing a
single phrase movement.

Keywords: Minimalist Grammars · Parsing · Head Movement · Affix
Hopping.

1 Introduction

Minimalist Grammars (MG) [26] are a formalisation of Chomsky’s Minimalist
Program [4]. MGs rely on only two basic operations merge and move. merge is
a binary function that combines two constituents into a single constituent, while
move is a unary operation that takes one sub-constituent and reattaches it to
the specifier position at the root of the partially constructed tree. An example
MG derivation with merge and move is shown in Figure 1a for the declarative
sentence “[d] she will meet him” where [d] is a null declarative complementiser.
Figure 1b shows the X-bar structure that is a byproduct of the MG derivation
and can be computed deterministically. Here merge combines constituents that
are not necessarily adjacent to each other, while move raises the subject DP
from spec-VP to spec-TP so that it can check the nominative case feature.

merge is a single function but it is often easier to view it as different sub-
functions over non-overlapping domains. For instance, merge1 is applied in the
case of complement attachment, while merge2 attaches a specifier. The same
holds for move: move1 moves a phrase to its final landing site, while move2
moves a constituent that is going to move again later. The type of movement

2 M. Stanojević

done by move1 and move2 is often called phrase movement because it is applied
to a maximal projection (XP). However, phrasal movement is not the only type
of movement used in Minimalist syntax. In addition to phrasal movement, all
minimalist textbooks [1, 2, 22, 25] also discuss head movement. Head movement
can be triggered when a selecting lexical head merges with its complement. This
operation extracts the head of the complement and adjoins it to the selecting
head. It can adjoin the complement’s head to the left or right of the selecting
head depending on the type of feature that triggers the head movement.

=t c
[d]

d –nom
she

=d +nom t
will

=d =d v
see

d
him

merge1

merge1

merge3

move1

merge1

(a) derivation tree

CP

C’

C
[d]

TP

T’

T
will

VP

DP

D’

D
she

V’

V
see

DP

D’

D
him

(b) X-bar tree

Fig. 1: Example without head movement

The most typical example of head movement in English is Subject-Auxiliary
inversion in yes-no questions. Figure 2 shows the previous example sentence
turned into a question by using a different null complementiser [q] for forming
yes-no questions. What is different between [d] and [q] is the type of the feature
that each uses to select the tense phrase: [d] uses a simple selector =t while [q]
uses =>t which, in addition to selecting the tense phrase, also extracts the tense
head “will” and adjoins it to the left of the complementiser head.

The original version of MG published in [26] had both phrase and head
movement. There have since been many variations on MG proposed, some of
which are reviewed in [29] including a simpler version that does not include head
movement. This simple version of MG is very convenient for formal analysis and
parsing. We will call this version succinct MG or MGS , and the original version
of MG with head movement MGH .

On the Computational Complexity of Head Movement and Affix Hopping 3

=>t c
[q]

d –nom
she

=d +nom t
will

=d =d v
see

d
him

merge1

merge1HeadAdjLeft

merge3

move1

merge1

(a) derivation tree

CP

C’

C

C
[q]

TP

T’

T
will

VP

DP

D’

D
she

V’

V
see

DP

D’

D
him

(b) X-bar tree

Fig. 2: Example with head movement

Many phenomena that appear to require head movement can in fact be ex-
pressed with other means like remnant or rightward movement [18, 28]. Also,
MG with and MG without head movement are weakly equivalent [21, 27]. Still,
if we are interested in the structures that explain the derived word order using
head movement we will need a parser specifically tailored to parsing with head
movement. The practical need for that kind of parser is even more evident with
the recent construction of MGbank [34] and the first wide-coverage MG parser
[36], which both use head movement in almost all of their derivations.

The published work on Minimalist Parsing can be divided into two cate-
gories. The first is transition based parsing which is usually of higher relevance
to psycho-linguists as a more likely model of human sentence processing [8, 9, 12,
13, 17, 30–33]. However, these models use no dynamic programming and therefore
have exponential runtime complexity. This makes them impractical for actual
parsing and inappropriate for studying the theoretical computational complexity
properties of MGs.

The second type of MG parsers are those that use dynamic programming
and are usually expressed as deductive systems. These parsers run in polynomial
time and are guaranteed to find a parse if it exists. The first work of that sort
is Harkema’s CKY parser [10, 11] for MG without head movement. Stabler [27]
showed a simple extension of Harkema’s parser that enabled it to account for
head movement. Harkema’s parser for MGS had computational time complexity
of O(n4k+4) where k is a number of distinct phrase movement types. Stabler’s
extension for head movement raises complexity to O(n4k+12) because of the

4 M. Stanojević

additional spans that are required to keep the head of a constituent available for
extraction by head movement. If we interpretO(n4) as the price of a single phrase
mover, this would mean that the price of having head movement is equivalent
to having two phrase movement types.

A more modern parser for MGS is presented in [7] which lowers the time com-
plexity from Harkema’s O(n4k+4) to O(n2k+3). This result is in fact the same
algorithm as Harkema’s (done through conversion to IRTG) but with more ac-
curate computational analysis. If we apply this revised analysis to Stabler’s head
movement algorithm we get worst-case parsing complexity of O(n2k+9). Here,
the price of each phrase movement is quadratic meaning that head movement
now costs the same as having three distinct phrase mover types.

An interesting special type of MGH is MGH
0 which is an MG that has only

head movement without any phrase movement. This MG is more expressive
than CFG but less expressive than TAG [21]. Parsing this MG using Stabler’s
algorithm with new analysis would take O(n9) in the worst case. Intuitively,
there should be a better algorithm than this because the worst case complexity
of TAG, which is more expressive, is just O(n6).

This paper presents a new and more efficient algorithm for parsing the full
formulation of MG that contains head movement. This greater efficiency is ac-
complished with a more compact representation of the parse items and inference
rules adapted for that compact representation. The parser’s worst-case compu-
tational complexity is O(n2k+5). In computational terms, this makes parsing
head movement as easy as parsing a single phrase movement. In the special case
of MGH

0 we get a O(n5) parser which is lower than TAG parsing complexity,
exactly as we would expect.

2 MG without Head Movement

A Succinct Minimalist Grammar MGS [29] is formally defined with a tuple
G = 〈Σ,B,Lex, c, {merge,move}〉, where Σ is the vocabulary, B is a set of
basic features, Lex is a finite lexicon (as defined just below), c ∈ B is the
start category, and merge and move are the generating functions. The basic
features of the set B are concatenated with prefix operators to specify their roles,
as follows:

categories, selectees = B
selectors = {=f | f ∈ B}
licensees = {-f | f ∈ B}
licensors = {+f | f ∈ B}

Let F be the set of role-marked features, that is, the union of the categories, se-
lectors, licensors and licensees. Let T = {::, :} be two types, indicating “lexical”
and “derived” structures, respectively. Let C = Σ∗×T×F ∗ be the set of chains.
Let E = C+ be the set of expressions; intuitively, an expression is a chain to-
gether with its “moving” sub-chains, if any. All expressions have to respect Short-
est Movement Constraint (SMC) which states that no two chains in an expression
can have the same initial feature. The functions merge and move are defined in

On the Computational Complexity of Head Movement and Affix Hopping 5

Fig. 3. The lexicon Lex ⊂ Σ∗×{::}×F ∗ is a finite set. The set of all structures
that can be derived from the lexicon is S(G) = closure(Lex, {merge,move}).
The set of sentences L(G) = {s | s · c ∈ S(G) for some type · ∈ {:, ::}}, where
c is the “start” category.

The functions merge1, merge2 merge3 are special cases of merge corre-
sponding respectively to complement merge, specifier merge and merge of an
element that is going to move in the future and therefore needs to be kept as
a separate chain. Functions move1 and move2 are special cases of move cor-
responding respectively to the movement of an element that is landing and to
the movement of an element that will move again in the future. All functions in
Fig. 3 have pairwise disjoint domains.

s :: = fγ t · f, α1, . . . , αk

st : γ, α1, . . . , αk

merge1

s : = fγ, ι1, . . . , ιl t · f, α1, . . . , αk

ts : γ, ι1, . . . , ιl, α1, . . . , αk

merge2

s · = fγ, ι1, . . . , ιl t · fδ, α1, . . . , αk

s : γ, ι1, . . . , ιl, t : δ, α1, . . . , αk

merge3

s : +fγ, ι1, . . . , ιl, t : −f, α1, . . . , αk

ts : γ, ι1, . . . , ιl, α1, . . . , αk

move1

s : +fγ, ι1, . . . , ιl, t : −fγ, α1, . . . , αk

s : γ, ι1, . . . , ιl, t : γ, α1, . . . , αk

move2

Fig. 3: Succinct MG. All rules are subject to SMC.

2.1 Parsing with Succinct MG

Most MG parsers are based on the parsing as deduction paradigm [24]. In parsing
as deduction the parser maintains two data structures: a chart and an agenda.
These data structures contain items that represent a set of derivation trees
that share their topmost expression. The chart contains items that are already
proved by the parser. The agenda contains items that could in the future combine
with items from the chart to prove new items. Parsing starts with the agenda
containing all the axioms (items that are true without the need for a proof) and
an empty chart. When an item is popped out of the agenda, the parser tries to
combine it with all the elements in the chart in an attempt to prove new items.
For each new item, the parser first checks if it is present in the chart. If it is in
the chart, the parser just discards it1 because that item is already proved. If it is

1 Or adds one more backpointer if we want all possible derivation trees instead of a
single tree.

6 M. Stanojević

not present in the chart, the parser adds it both to the chart and to the agenda.
Parsing stops when either the newly created item is the goal item, in which case
parsing is successful, or when the agenda becomes empty, in which case parsing
has failed because the sentence is not part of the language.

This description is enough to use this method for recognition. To turn it into
a parser, it is sufficient to modify the chart data structure in such a way that
each item in it contains a list of backpointers to the items that were used to
derive it. When the goal item is constructed, it is enough to follow backpointers
to find the full derivation tree.

The first parser for the succinct version of MG was presented by Harkema
[10, 11]. The items of this parser are equivalent to the MGS expressions except
that instead of strings they contain spans of the strings in the sentence that is
being parsed. The axioms of the parser are lexical entries for each word in the
sentence with the string replaced by its span in the sentence. Inference rules are
exactly the same as in the definition of merge and move from Fig. 3.

Harkema’s analysis of that algorithm is as follows. The maximal number of
items in the chart (its space complexity) is n2k+2 because each item contains
maximally k+1 spans (due to SMC) and each span has 2 indices in range [0, n]. In
the worst case we will need to pop out n2k+2 items from the agenda. The parser
needs to check for each of those popped items whether there is a proved item in
the chart that could combine with it. In the worst case the number of items in
the chart is n2k+2. Therefore the worst-case complexity is O(n2k+2 · n2k+2) =
O(n4k+4).

As shown by Fowlie and Koller [7], this analysis was too pessimistic. Through
conversion of MGS to Interpreted Regular Tree Grammars (IRTG) they demon-
strated that MGS can be parsed in O(n2k+3). The same result can be obtained
by converting MGS to MCFG using Michaelis’ algorithm [20] and then parsing
with some well optimised MCFG parser.

However, conversion to any of these formalisms is not necessary to get efficient
MG parsing. It is enough just to implement an efficient lookup in the chart.
Optimising for feature lookup is not enough because it will improve only the
constants that depend on the grammar. To get asymptotic improvement the
lookup needs to be optimised on the item indices instead. For instance, if we
have an item that as its main span has (2, 3) and as its initial feature a selector,
we know that merge1 inference rule can combine it only with items whose main
span start with 3. If we organise the items in the chart in a way that we can
efficiently lookup all items that have particular properties, for instance “all items
whose main span starts with 3”, then the parsing complexity will be lower. If
the popped item has m movers then we know that the item that combines with
it certainly does not have more than k−m movers due to SMC constraint. In
the case of merge1 and merge2 we also know one of the indices of the main
span, a fact that reduces the number of possible items that could merge even
further. We can calculate complexity by summing over the computations for each
possible value of m as follows O(

∑k
m=0 n

2m+2 ·n2(k−m)+1)=O(n2k+3). This is a
result for merge1 and merge2, which turn out to be more expensive than merge3,

On the Computational Complexity of Head Movement and Affix Hopping 7

that does not need to apply concatenation of strings and for that reason can be
done in O(n2k+2). Move rules do not need to consult the chart since they are
unary rules, but we could still calculate the total number of times they would
be applied as O(n2k+1) for merge1 and O(n2k+2) for merge2.

Parsing as deduction systems are essentially logic programs which are eval-
uated bottom-up (forward chaining) with tabling [6, 15]. For those kinds of pro-
grams there is a much simpler way of calculating complexity that is based only
on counting unique indices in the antecedents of the most complex inference
rule [5, 19]. Clearly in total there cannot be more than k phrasal movers on the
antecedent side because the consequent needs to respect SMC. Furthermore, for
concatenation rules, i.e. merge1 and merge2, we know that the main spans share
at least one index, which leaves us with 3 unique indices for main spans and
makes the complexity of those rules O(n2k+3). These rules are also the most
complex inference rules and therefore the worst-case complexity of the whole al-
gorithm is O(n2k+3). We will use this method of complexity analysis for parsing
algorithms in the rest of the paper.

3 MG with Head Movement

The first description of how to parse MG with head movement was presented by
Stabler [27]. It is based on modifying the MG expressions/items in such a way
as to split the main string into three sub-parts: the head string sh, the specifier
string ss and the complement string sc. The reason for this splitting is to make
the head string available for extraction by head movement. MG rules also needed
modification to work with this representation. Modifications for merge2, move1
and move2 are trivial because they cannot trigger head movement. Rules for
merge1 and merge3 got two additional versions that can trigger head movement
and adjoin the complement’s head to the selecting head to the left, in case of
feature =>f, or to the right, in case of feature <=f.

Stabler’s inference rules for MG with head movement2 are shown in Fig. 4
together with a new complexity analysis for each of the rules calculated by the
method of counting indices for each rule. The most complex rule is merge2 which
makes the whole algorithm run in O(n2k+9).

4 Improved Parsing of MG with Head Movement

Stabler’s formulation is very compact, but it misses some generalisations that
would make the number of indices smaller. For instance, if we take rule merge2
we can see that spans ts and th always share one index because they are con-
catenated. The same holds for th and tc. This means that the selector needs to

2 Stabler’s inference rules had a small mistake for merge3left and merge3right for
allowing the possibility of a head constituent being non-lexical. The correct version
of inference rules is presented in this paper but it can also be found in [21]. The
correction is crucial for the more efficient parsing algorithm.

8 M. Stanojević

ε, s, ε :: = fγ ts, th, tc · f, α1, . . . , αk

ε, s, tsthtc : γ, α1, . . . , αk

merge1 O(n2k+6)

ε, s, ε :: <= fγ ts, th, tc · f, α1, . . . , αk

ε, sth, tstc : γ, α1, . . . , αk

merge1right O(n2k+6)

ε, s, ε :: => fγ ts, th, tc · f, α1, . . . , αk

ε, ths, tstc : γ, α1, . . . , αk

merge1left O(n2k+6)

ss, sh, sc : = fγ, ι1, . . . , ιl ts, th, tc · f, α1, . . . , αk

tsthtcss, sh, sc : γ, ι1, . . . , ιl, α1, . . . , αk

merge2 O(n2k+9)

ss, sh, sc · = fγ, ι1, . . . , ιl ts, th, tc · fδ, α1, . . . , αk

ss, sh, sc : γ, ι1, . . . , ιl, tsthtc : δ, α1, . . . , αk

merge3 O(n2k+8)

ε, s, ε :: <= fγ ts, th, tc · fδ, α1, . . . , αk

ε, sth, ε : γ, tstc : δ, α1, . . . , αk

merge3right O(n2k+4)

ε, s, ε :: => fγ ts, th, tc · fδ, α1, . . . , αk

ε, ths, ε : γ, tstc : δ, α1, . . . , αk

merge3left O(n2k+4)

ss, sh, sc : +fγ, t : −f, α1, . . . , αk

tss, sh, sc : γ, α1, . . . , αk

move1 O(n2k+5)

ss, sh, sc : +fγ, ι1, . . . , ιl, t : −fγ, α1, . . . , αk

ss, sh, sc : γ, ι1, . . . , ιl, t : γ, α1, . . . , αk

move2 O(n2k+6)

Fig. 4: Stabler’s inference rules for MG with head movement together with their
computational complexity.

visit n2 constituents in the chart that would produce absolutely the same result
because the two indices that are shared between the components ts, th and tc are
disappearing in the consequent. One could try to reduce this problem by having
a unary inference rule that packs all the main components of t before they are
combined with merge2 akin to the fold transformation of logic programs [6, 14,
23]. If we push this operation to its limits we would get O(n2k+7).

To obtain an even lower complexity we need to change the representation
of items. Do we need all the three components ts, th and tc from Stabler’s
formulation? If we look at the rules in Fig. 4 we can see that when an item is
selected by a merge operation, its components are concatenated either as tsthtc
if the head is not extracted or as th and tstc if the head is extracted. This
highlights a simple, tautological, fact: every head will either be extracted with
head movement or it won’t. In case it does not participate in head movement,
like in the succinct version of MG, there is no need to keep 3 spans to represent
projections of that head. It can all be done with a single span and by that reduce
the number of indices.

If, on the other hand, the head does participate in head movement then
we need only two spans: one for the head sh and one for the concatenation of
specifier and complement ssc because we know with certainty that they will be
concatenated after the head is extracted.

If we knew whether the head will move or not the parsing algorithm could be
improved significantly, but how can we know if the head will move? The good
aspect of chart based parsers is that we do not need to know that ahead of time.

On the Computational Complexity of Head Movement and Affix Hopping 9

s
A
:: = fγ t

A· f, α1, . . . , αk

st
A
: γ, α1, . . . , αk

merge1A O(n2k+3)

s, ε
B
:: = fγ t

A· f, α1, . . . , αk

s, t
B
: γ, α1, . . . , αk

merge1B O(n2k+4)

s
A
:: <= fγ th, tsc

B· f, α1, . . . , αk

sthtsc
A
: γ, α1, . . . , αk

merge1rightA O(n2k+4)

s, ε
B
:: <= fγ th, tsc

B· f, α1, . . . , αk

sth, tsc
B
: γ, α1, . . . , αk

merge1rightB O(n2k+5)

s
A
:: => fγ th, tsc

B· f, α1, . . . , αk

thstsc
A
: γ, α1, . . . , αk

merge1leftA O(n2k+4)

s, ε
B
:: => fγ th, tsc

B· f, α1, . . . , αk

ths, tsc
B
: γ, α1, . . . , αk

merge1leftB O(n2k+5)

s
A
: = fγ, ι1, . . . , ιl t

A· f, α1, . . . , αk

ts
A
: γ, ι1, . . . , ιl, α1, . . . , αk

merge2A O(n2k+3)

sh, ssc
B
: = fγ, ι1, . . . , ιl t

A· f, α1, . . . , αk

sh, tssc
B
: γ, ι1, . . . , ιl, α1, . . . , αk

merge2B O(n2k+5)

s
A· = fγ, ι1, . . . , ιl t

A· fδ, α1, . . . , αk

s
A
: γ, ι1, . . . , ιl, t : δ, α1, . . . , αk

merge3A O(n2k+2)

sh, ssc
B· = fγ, ι1, . . . , ιl t

A· fδ, α1, . . . , αk

sh, ssc
B
: γ, ι1, . . . , ιl, t : δ, α1, . . . , αk

merge3B O(n2k+4)

s
A
:: <= fγ th, tsc

B· fδ, α1, . . . , αk

sth
A
: γ, tsc : δ, α1, . . . , αk

merge3rightA O(n2k+3)

s, ε
B
:: <= fγ th, tsc

B· fδ, α1, . . . , αk

sth, ε
B
: γ, tsc : δ, α1, . . . , αk

merge3rightB O(n2k+3)

s
A
:: => fγ th, tsc

B· fδ, α1, . . . , αk

ths
A
: γ, tsc : δ, α1, . . . , αk

merge3leftA O(n2k+3)

s, ε
B
:: => fγ th, tsc

B· fδ, α1, . . . , αk

ths, ε
B
: γ, tsc : δ, α1, . . . , αk

merge3leftB O(n2k+3)

s
A
: +fγ, ι1, . . . , ιl, t : −f, α1, . . . , αk

ts
A
: γ, ι1, . . . , ιl, α1, . . . , αk

move1A O(n2k+1)

sh, ssc
B
: +fγ, ι1, . . . , ιl, t : −f, α1, . . . , αk

sh, tssc
B
: γ, ι1, . . . , ιl, α1, . . . , αk

move1B O(n2k+3)

s
A
: +fγ, ι1, . . . , ιl, t : −fγ, α1, . . . , αk

s
A
: γ, ι1, . . . , ιl, t : γ, α1, . . . , αk

move2A O(n2k+2)

sh, ssc
B
: +fγ, ι1, . . . , ιl, t : −fγ, α1, . . . , αk

sh, ssc
B
: γ, ι1, . . . , ιl, t : γ, α1, . . . , αk

move2B O(n2k+4)

Fig. 5: New inference rules for MG with head movement

10 M. Stanojević

We can just encode both variations of the items as axioms and let the parser
combine them accordingly. Let us refer to the items whose head must not be
extracted as items of type A, and items whose head must be extracted as items of
type B. Type A items will have a single span, just like in succinct MG, while type
B items will have two spans: sh for the head and ssc for specifier-complement.
This reduces the space complexity from Stabler’s O(n2k+6) to O(n2k+4).

The axioms of the new parser will for each word wi contain an entry of type

A: wi
A
:: γ and of type B: wi, ε

B
:: γ. These two cover both possible cases of wi

eventually being extracted and not being extracted by the head movement. All
MG rules need to be modified accordingly, but the modification is very simple.
We have exactly two rules for each rule of Stabler’s parser. This is because every
rule can have items of type A or type B as its main antecedent item (the item
that has selector or licensor as initial feature).

The type of the non-main (selected) item depends on the MG operation: in
case we use the head movement we know that the selected item is of type B,
otherwise it is of type A. The type of the consequent item is determined by the
main antecedent item: the head of the main antecedent item and the head of the
consequent is the same and therefore the same constraint on the head movement
(whether the head must or must not be extracted) has to stay unchanged.

This gives us the rules of inference shown in Fig. 5. The maximal complex-
ity comes from merge1rightB, merge1leftB and merge2B which make the whole
parsing in the worst-case O(n2k+5). This makes the computational price of pars-
ing head movement O(n2) which is the same as phrase movement. The number
of rules is double the rules of Stabler, but they all have disjoint domains and
can still be treated as a two operations merge and move. Derivation trees that
result from this parsing approach are isomorphic to the derivation trees of Sta-
bler’s parser with the only difference in labels of operations containing additional
letter A or B.

In case the grammar does not have features for the head movement, we can
exclude axioms of type B. This automatically makes parsing MG without head
movement O(n2k+3) without doing any transformation to IRTG or MCFG.

5 ATB Head Movement

One interesting variation of head movement is Across-the-Board (ATB) head
movement. This variation is not part of Stabler’s original formalisation, but is
of both theoretical and practical importance. If we accept that in interrogative
sentences tense undergoes head movement to adjoin to the complementiser head,
then in the case of the coordination of two tense phrases the same tense head has
to be simultaneously extracted from both. An example sentence is “Who [does]T
John like and Mary hate” (which also features ATB phrase movement of
who).

A formalisation of ATB head movement, as it is used in MGbank, is given
in [35]. The inference rules for ATB head movement are similar to ATB Phrase
Movement rules from [16]. The formalism of MGbank has special features for

On the Computational Complexity of Head Movement and Affix Hopping 11

coordination that are located on coordinating conjunction and are marked with
ˆ=f. There are two inference rules of relevance here. The first one combines
coordinating conjunction with the right conjunct. In the new representation of
items the coordinating conjunction will be of type A since its head is not going
to undergo head movement, but both the left and the right conjunct will be
of type B. The first inference rule has the following form in the more compact
representation:

s
A
:: ˆ=f ˆ=f γ th, tsc

B· f, α1, . . . , αk

th, stsc
B
:̄ ˆ=f γ, α1, . . . , αk

The second inference rule combines the result of the first rule with the left
conjunct. Because this is ATB head movement we know that heads and all the
moving chains have to unify between two antecedents. That gives us the following
inference rule.

th, ssc
B
: f, α1, . . . , αk th, tsc

B
:̄ ˆ=f γ, α1, . . . , αk

th, ssctsc
B
: γ, α1, . . . , αk

Even though the last rule uses two items of type B, the complexity is still
low O(n2k+5) because the two antecedents share the same head.

6 Affix Hopping

Affix hopping [3] is a morphosyntactic operation similar to head movement and
in some sense its opposite. Affix hopping can be interpreted as a downward head
movement where the head of the selector is moving to adjoin to the complement’s
head. The main motivation for this rule, as is apparent from its name, is to move
the tense affix to the verb in languages like English where V-to-T head movement
cannot occur. For instance, in “John really like [-s]T Mary” the tense affix “-s”
is often assumed to have undergone the affix hopping to adjoin to the main verb
stem “like”.

ε, s, ε :: ≈> fγ ts, th, tc · f, α1, . . . , αk

ε, ε, tsthstc : γ, α1, . . . , αk

merge1HopRight O(n2k+5)

ε, s, ε :: <≈ fγ ts, th, tc · f, α1, . . . , αk

ε, ε, tssthtc : γ, α1, . . . , αk

merge1HopLeft O(n2k+5)

ε, s, ε :: ≈> fγ ts, th, tc · fδ, α1, . . . , αk

ε, ε, ε : γ, tsthstc : δ, α1, . . . , αk

merge3HopRight O(n2k+3)

ε, s, ε :: <≈ fγ ts, th, tc · fδ, α1, . . . , αk

ε, ε, ε : γ, tssthtc : δ, α1, . . . , αk

merge3HopLeft O(n2k+3)

Fig. 6: Stabler’s inference rules for MG with affix hopping.

12 M. Stanojević

Affix hopping was formalised in Stabler’s paper on head movement [27] with
the inference rules shown in Fig. 6 where a special selector feature ≈> f or
<≈ f is used to trigger affix hopping. Owing to our adoption of a different item
representation to get a faster head movement parser, these affix hopping rules
cannot be directly supported. For head movement we have exploited the fact
that the main strings of every item are concatenated either as th, tsc or tshc.
However, affix hopping has additional string combinations like thc and tsh.

To account for those additional options we create two more types of items.
Items of type C are items that must adjoin some head via affix hopping to the
right of the head and that is why they have two main strings: a specifier-head
string tsh and a complement string tc. Items of type D are similar except that
they account for affix hopping to the right of the head. Items of type C and D
do not trigger affix hopping but only accept (host) affix that has hopped. The
new inference rules for affix hopping are shown in Fig. 7.

s
A
:: ≈> fγ tsh, tc

C· f, α1, . . . , αk

tshstc
A
: γ, α1, . . . , αk

merge1HopRight O(n2k+4)

s
A
:: <≈ fγ ts, thc

D· f, α1, . . . , αk

tssthc
A
: γ, α1, . . . , αk

merge1HopLeft O(n2k+4)

s
A
:: ≈> fγ tsh, tc

C· fδ, α1, . . . , αk

ε
A
: γ, tshstc : δ, α1, . . . , αk

merge3HopRight O(n2k+2)

s
A
:: <≈ fγ ts, thc

D· fδ, α1, . . . , αk

ε
A
: γ, tssthc : δ, α1, . . . , αk

merge3HopLeft O(n2k+2)

Fig. 7: Improved inference rules for MG with affix hopping.

We allow the selector constituent to be only of type A because its head will
not be able to undergo head movement later. This is a stricter definition than
Stabler’s because the latter allows the empty string (which is not a head of the
new constituent but only a replacement for the real head) to participate in head
movement. This modification does influence the set of the derivations that could
be built by the parser but in a good way: it does not make sense for an affix
to undergo affix hopping downwards and then head movement upwards (or fake
head movement of an empty string).

Similarly, we do not allow the selecting item to be of type C or D because
after the affix has hopped, its slot will be empty, so it does not make sense for
another affix to hop to its original place. Affixes move to attach to some overt
word and there is none at this slot.

The rules in Fig. 7 show how items of type C and D are used for affix hopping.
But it still remains to show how items of type C and D are built. To build items

On the Computational Complexity of Head Movement and Affix Hopping 13

s, ε
C
:: = fγ t

A· f, α1, . . . , αk

s, t
C
: γ, α1, . . . , αk

merge1C O(n2k+4)

s, ε
C
:: <= fγ th, tsc

B· f, α1, . . . , αk

sth, tsc
C
: γ, α1, . . . , αk

merge1rightC O(n2k+5)

s, ε
C
:: => fγ th, tsc

B· f, α1, . . . , αk

ths, tsc
C
: γ, α1, . . . , αk

merge1leftC O(n2k+5)

ssh, sc
C
: = fγ, ι1, . . . , ιl t

A· f, α1, . . . , αk

tssh, sc
C
: γ, ι1, . . . , ιl, α1, . . . , αk

merge2C O(n2k+5)

ssh, sc
C· = fγ, ι1, . . . , ιl t

A· fδ, α1, . . . , αk

ssh, sc
C
: γ, ι1, . . . , ιl, t : δ, α1, . . . , αk

merge3C O(n2k+4)

s, ε
C
:: <= fγ th, tsc

B· fδ, α1, . . . , αk

sth, ε
C
: γ, tsc : δ, α1, . . . , αk

merge3rightC O(n2k+3)

s, ε
C
:: => fγ th, tsc

B· fδ, α1, . . . , αk

ths, ε
C
: γ, tsc : δ, α1, . . . , αk

merge3leftC O(n2k+3)

ssh, sc
C
: +fγ, ι1, . . . , ιl, t : −f, α1, . . . , αk

tssh, sc
C
: γ, ι1, . . . , ιl, α1, . . . , αk

move1C O(n2k+3)

ssh, sc
C
: +fγ, ι1, . . . , ιl, t : −fγ, α1, . . . , αk

ssh, sc
C
: γ, ι1, . . . , ιl, t : γ, α1, . . . , αk

move2C O(n2k+4)

Fig. 8: Additional inference rules for building items of type C that must host
affix hopping in the later part of the derivation.

of type C and D, we need to add them to the agenda as axioms for all lexical
items (just as was done for items of type B) and to use additional inference rules
that are variations of rules for items of type A and B from Fig. 5. The additional
rules for items of type C are shown in Fig. 8. Similar rules are trivial to make
for items of type D.

The rules merge1leftC and merge3leftC may at first appear somewhat sur-
prising. They move the head of the complement to the left of the specifier-head
string making a complex head-specifier-head. This may appear to break the rules
of head movement which state that the head adjoins to another head and there
cannot be any phrase in between them. However, this is not a problem in this
case. Since we know that head movement can be triggered only by a lexical item
we can be certain that there is no specifier in its specifier-head string, so the
final result of the concatenation is a head-head complex.

14 M. Stanojević

7 Conclusion

The main motivation for this parser is lowering the worst-case complexity of
parsing MG that contains head movement, ATB head movement and affix hop-
ping. Given the recent appearance of the new dataset with MG derivation trees
[34] which contains head movement in every derivation, this algorithm is likely
to be not only of theoretical but also of practical significance.

MGbank has lead to the first wide coverage Minimalist parser [36]. This is a
neural network based parser that uses A* search with Harkema’s inference rules
and Stabler’s approach to head movement. A* improves the best and average-
case scenario but the worst-case stays the sameO(n4k+12) which isO(n28) for the
MGbank grammar. With the algorithm proposed in this paper the overall worst-
case complexity will be reduced to O(n13). More importantly, it will potentially
also improve average-case complexity because of the more optimal lookup.

The complexity of the parser presented here is O(n2k+5) which is just O(n)
bigger than its space complexity. Further asymptotic improvements would proba-
bly require either finding some more compact item representation or abandoning
the parsing as deduction approach and using some alternative approach akin to
Valiant style parsing.

Acknowledgement

I am grateful to John Torr and the three anonymous reviewers for comments
that have greatly improved this paper. This work was supported by ERC H2020
Advanced Fellowship GA 742137 SEMANTAX grant.

References

1. Adger, D.: Core syntax: A minimalist approach, vol. 33. Oxford University Press
Oxford (2003)

2. Carnie, A.: Syntax: A generative introduction, 3rd edition. John Wiley & Sons
(2013)

3. Chomsky, N.: Syntactic structures. Mouton, The Hague (1957)

4. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge, Massachusetts
(1995)

5. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional horn formulae. The Journal of Logic Programming 1(3), 267 – 284
(1984)

6. Eisner, J., Blatz, J.: Program transformations for optimization of parsing algo-
rithms and other weighted logic programs. In: Wintner, S. (ed.) Proceedings of
FG 2006: The 11th Conference on Formal Grammar. pp. 45–85. CSLI Publications
(2007)

7. Fowlie, M., Koller, A.: Parsing minimalist languages with interpreted regular tree
grammars. In: Proceedings of the 13th International Workshop on Tree Adjoining
Grammars and Related Formalisms. pp. 11–20 (2017)

On the Computational Complexity of Head Movement and Affix Hopping 15

8. Gerth, S.: Memory Limitations in Sentence Comprehension: A Structural-based
Complexity Metric of Processing Difficulty, vol. 6. Universitätsverlag Potsdam
(2015)

9. Graf, T., Monette, J., Zhang, C.: Relative clauses as a benchmark for minimalist
parsing. Journal of Language Modelling 5(1), 57–106 (2017)

10. Harkema, H.: A Recognizer for Minimalist Grammars. In: In Proceedings of the
Sixth International Workshop on Parsing Technologies (IWPT 2000). pp. 111–122.
Springer Verlag (2000)

11. Harkema, H.: A Recognizer for Minimalist Languages. In: Bunt, H., Carroll, J.,
Satta, G. (eds.) New Developments in Parsing Technology (Volume 23 of the se-
ries Text, Speech and Language Technology). pp. 251–268. Springer Netherlands,
Dordrecht (2005)

12. Hunter, T.: Left-corner parsing of minimalist grammars. Tech. rep., UCLA (2017),
forthcoming

13. Hunter, T., Stanojević, M., Stabler, E.: The active-filler strategy in a move-eager
left-corner Minimalist Grammar parser. In: Proceedings of the 9th Workshop on
Cognitive Modeling and Computational Linguistics (CMCL 2019). Association for
Computational Linguistics (2019)

14. Johnson, M.: Transforming projective bilexical dependency grammars into
efficiently-parsable cfgs with unfold-fold. In: Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics. pp. 168–175. Association for
Computational Linguistics (2007)

15. Kanazawa, M.: Parsing and generation as datalog queries. In: Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics. pp. 176–183.
Association for Computational Linguistics, Prague, Czech Republic (Jun 2007)

16. Kobele, G.M.: Across-the-board extraction in minimalist grammars. In: Proceed-
ings of the Ninth International Workshop on Tree Adjoining Grammar and Related
Frameworks (TAG+9). pp. 113–120. Association for Computational Linguistics
(2008)

17. Kobele, G.M., Gerth, S., Hale, J.: Memory resource allocation in top-down mini-
malist parsing. In: Morrill, G., Nederhof, M.J. (eds.) Formal Grammar. pp. 32–51.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

18. Koopman, H., Szabolcsi, A.: Verbal complexes. MIT Press, Cambridge, MA (2000)
19. McAllester, D.: On the complexity analysis of static analyses. J. ACM 49(4), 512–

537 (Jul 2002)
20. Michaelis, J.: Derivational minimalism is mildly context–sensitive. In: International

Conference on Logical Aspects of Computational Linguistics. pp. 179–198. Springer
(1998)

21. Michaelis, J.: Notes on the complexity of complex heads in a minimalist grammar.
In: Proceedings of the Sixth International Workshop on Tree Adjoining Grammar
and Related Frameworks (TAG+ 6). pp. 57–65 (2002)

22. Radford, A.: Minimalist Syntax: Exploring the Structure of English. Cambridge
University Press (2004)

23. Shepherdson, J.C.: Unfold/fold transformations of logic programs. Mathematical
Structures in Computer Science 2(2), 143157 (1992)

24. Shieber, S.M., Schabes, Y., Pereira, F.C.: Principles and implementation of deduc-
tive parsing. The Journal of Logic Programming 24 (1995)

25. Sportiche, D., Koopman, H., Stabler, E.: An introduction to syntactic analysis and
theory. John Wiley & Sons (2013)

26. Stabler, E.: Derivational minimalism. In: Retoré, C. (ed.) Logical Aspects of Com-
putational Linguistics, pp. 68–95. LNCS 1328, Springer-Verlag, NY (1997)

16 M. Stanojević

27. Stabler, E.: Recognizing head movement. In: de Groote, P., Morrill, G., Retoré,
C. (eds.) Logical Aspects of Computational Linguistics (Volume 2099 of the series
Lecture Notes in Computer Science), LACL 2001 Le Croisic, France, June 27–
29, 2001 Proceedings. pp. 245–260. Springer Berlin Heidelberg, Berlin, Heidelberg
(2001)

28. Stabler, E.: Comparing 3 perspectives on head movement. In: From Head Move-
ment and Syntactic Theory, UCLA/Potsdam Working Papers in Linguistics. pp.
178–198 (2003)

29. Stabler, E.: Computational perspectives on minimalism. In: Boeckx, C. (ed.) Ox-
ford Handbook of Linguistic Minimalism, pp. 617–641. Oxford University Press,
Oxford (2011)

30. Stabler, E.: Top-Down Recognizers for MCFGs and MGs. In: Proceedings of the
2nd Workshop on Cognitive Modeling and Computational Linguistics. pp. 39–48.
Association for Computational Linguistics, Portland, Oregon, USA (June 2011)

31. Stabler, E.: Two models of minimalist, incremental syntactic analysis. Topics in
Cognitive Science 5(3), 611–633 (2013)

32. Stanojević, M., Stabler, E.: A Sound and Complete Left-Corner Parsing for Min-
imalist Grammars. In: Proceedings of the Eight Workshop on Cognitive Aspects
of Computational Language Learning and Processing. pp. 65–74. Association for
Computational Linguistics (2018)

33. Stanojević, M.: Minimalist grammar transition-based parsing. In: International
Conference on Logical Aspects of Computational Linguistics, LACL. pp. 273–290.
LNCS 10054, Springer (2016)

34. Torr, J.: Constraining mgbank: Agreement, l-selection and supertagging in mini-
malist grammars. In: Proceedings of the 56th Annual Meeting on Association for
Computational Linguistics. Association for Computational Linguistics, Melbourne,
Australia (2018)

35. Torr, J., Stabler, E.: Coordination in minimalist grammars. In: Proceedings of the
12th Annual Workshop on Tree-Adjoining Grammars and Related Formalisms,
TAG+ (2016)

36. Torr, J., Stanojević, M., Steedman, M., Cohen, S.: Wide-Coverage Neural A* Pars-
ing for Minimalist Grammars. In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Florence, Italy (2019)

