Insulin Response in Relation to Insulin Sensitivity An appropriate beta-cell response in black South African women

Citation for published version:

Digital Object Identifier (DOI):
10.2337/dc08-2048

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Diabetes Care

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Insulin Response in Relation to Insulin Sensitivity

An appropriate β-cell response in black South African women

OBJECTIVE — The purpose of this study was to characterize differences in the acute insulin response to glucose (AIRg) relative to insulin sensitivity (S) in black and white premenopausal normoglycemic South African women matched for body fatness.

RESEARCH DESIGN AND METHODS — Cross-sectional analysis including 57 black and white South African women matched for BMI, S, AIRg, and the disposition index (AIRg × S) were performed using a frequently sampled intravenous glucose tolerance test with minimal model analysis, and similar measures were analyzed using an oral glucose tolerance test (OGTT). Body composition was assessed by dual-energy X-ray absorptiometry and computed tomography.

RESULTS — S was significantly lower (4.4 ± 0.8 vs. 9.4 ± 0.8 and 2.9 ± 0.8 vs. 6.0 ± 0.8 × 10⁻³ min⁻¹/[pmol/l], P < 0.001) and AIRg was significantly higher (1.028 ± 0.255 vs. 352 ± 246 and 1.968 ± 229 vs. 469 ± 246 pmol/l, P < 0.001), despite similar body fatness (30.9 ± 1.4 vs. 29.7 ± 1.3 and 46.8 ± 1.2 vs. 44.4 ± 1.3%) in the normal-weight and obese black women compared with their white counterparts, respectively. Disposition index, a marker of β-cell function, was not different between ethnic groups (3,811 ± 538 vs. 2,966 ± 518 and 3,646 ± 483 vs. 2,353 ± 518 × 10⁻³ min, P = 0.10). Similar results were obtained for the OGTT-derived measures.

CONCLUSIONS — Black South African women are more insulin resistant than their white counterparts but compensate by increasing their insulin response to maintain normal glucose levels, suggesting an appropriate β-cell response for the level of insulin sensitivity.

Diabetes Care 32:860–865, 2009

Type 2 diabetes is a significant contributor to morbidity and mortality worldwide and was ranked as the seventh leading cause of death among individuals of all ages in South Africa in 2000 (1). The relatively high prevalence of diabetes has been accompanied by a high prevalence of obesity in South-African women (2), as 87% of all type 2 diabetes in South Africa has been attributed to excess body weight (3).

For reasons that have not yet been explained, both black South African and African American women are more insulin resistant than their adiposity-matched Caucasian counterparts (4–8). Insulin resistance in African Americans has been associated with hyperinsulinemia (6–8), due in part to reduced hepatic insulin extraction (7,8). In contrast, insulin resistance in black South African women has been associated with insulinopenia (5,9,10). However, the women in the previous studies were either not matched for glucose tolerance (5,10) or glucose tolerance and insulin sensitivity were not measured (9), making interpretation of β-cell function difficult. Thus, it is an open question whether β-cell function, assessed using state-of-the-art methods, differs in normoglycemic South African women of different ethnicities who are otherwise well matched.

It has become clear that insulin sensitivity is an important modulator of the β-cell response (11). The relationship between insulin sensitivity and insulin response is hyperbolic in nature, such that as insulin sensitivity decreases, normal β-cells will increase their insulin response to maintain normoglycemia. This hyperbolic relationship allows for the product of insulin sensitivity and insulin response to be calculated, with the resultant parameter being termed the disposition index. The disposition index is highly heritable and correlates strongly with glucose tolerance such that individuals with the lowest disposition index are at increased risk for or already have type 2 diabetes (12).

By estimating the disposition index, we aimed to better define β-cell function in black and white South African women matched for body fatness. Further, we aimed to compare these measures with estimates of glucose metabolism obtained using an oral glucose tolerance test (OGTT).

RESEARCH DESIGN AND METHODS — The study sample consisted of 13 normal-weight (BMI 18–25 kg/m²) black, 14 normal-weight white, 16 obese (BMI >30 kg/m²) black, and 14 obese white South African women, who were recruited by advertisement in local news articles and from local church groups, community centers, and univer-
sities. Additional inclusion criteria were
1) age 18–45 years, 2) no known diseases and not taking medication for diabetes, hypertension, HIV infection/AIDS, or any other metabolic disease, 3) not currently pregnant, lactating, or postmenopausal, and 4) of South African ancestry. The study was undertaken in accordance with the guidelines of the Declaration of Hel-
sinki and was approved by the Research Ethics Committee of the Faculty of Health Sciences of the University of Cape Town. Before participating in the study, pro-
duclcedures and risks were explained to the sub-
jects, all of whom gave written informed
consent to participate in the study.

Testing procedures
Body composition assessment. Basic anthropometric measurements, including weight, height, and waist (at the level of the
umbilicus) and hip (largest gluteal area) circumferences were taken. Body fat was measured using dual-energy X-ray
absorptiometry (Discovery-W, software
version 4.40; Hologic, Bedford, MA). Body composition of subjects that ex-
ceeded the scanning region (n = 15
[26%]) was calculated using the arm-
replaced method (13). The coefficients of
variation for measurements of fat-free tis-
sue mass and fat mass were 0.7 and 1.7%,
respectively. Abdominal visceral and sub-
cutaneous adipose tissue areas were mea-
sured using computed tomography (Xpress helical scanner; Toshiba, Tokyo,
Japan) at the level of L4–L5 lumbar
vertebrae.

Blood sampling and measurement of
glucose tolerance, insulin sensitivity,
and insulin release. Subjects completed
an insulin-modified frequently sampled
intravenous glucose tolerance test (FSIGT). After an overnight fast, cannulae
were inserted into the antecubital vein of
each arm. One arm was used for intrave-
nous glucose and insulin infusions and
the contralateral arm was used for blood
sampling. The arm used for blood sam-
pling was heated to arterialize venous
blood. Baseline samples were taken at
−15, −5, and −1 min before a bolus of
glucose (50% dextrose; 11.4 g/m² body
surface area) was infused intravenously
over 60 s beginning at time 0 min. At 20
min, human insulin (0.02 unit/kg, Ac-
trapid; Novo Nordisk) was infused over 5
min at a constant rate. Samples for dete-
mination of plasma glucose and serum in-
sulin concentrations were drawn at 2, 3,
4, 5, 6, 8, 10, 12, 14, 16, 19, 22, 23, 24,
25, 27, 30, 35, 40, 50, 60, 70, 80, 90,
100, 120, 140, 160, 180, 200, 220, and
240 min. This sampling schedule allows for the identification of parameters using
the minimal model of glucose kinetics
(14) and the acute insulin response to glu-
cose (AIRg). The samples were centrifuged
at 3,000 rpm for 10 min at 4°C, the plasma
was stored at −20°C for subsequent analy-
sis of glucose concentrations, and the serum
was stored at −80°C for the subsequent
analysis of insulin concentrations.

On a separate day, a fasting venous
blood sample was drawn for the determi-
nation of plasma glucose and serum insu-
lin levels. Subjects then underwent a 75-g
OGTT, during which blood was drawn at
30-min intervals for 2 h for the measure-
ment of plasma glucose and serum insulin
concentrations.

Biochemical analysis
Plasma glucose concentrations were
determined using the glucose oxidase
method (YSI 2300 STAT Plus; YSI, Yellow
Springs, OH). Serum insulin concentra-
tions were determined by immunochemi-
luminometric assays using the ADVIA
Centaur (Bayer Diagnostics). The intra-
assay and interassay coefficients of varia-
tion for plasma glucose and serum insulin
concentrations were 0.6 and 2.5 and 4.5
and 12.2%, respectively.

Calculations
Glucose and insulin data from the FSIGT
were used to calculate indexes of insulin
sensitivity (Si) and glucose effectiveness
(Si') (the ability of glucose to promote
its own uptake at basal insulin levels) using
Bergman’s minimal model of glucose ki-
netics (14). AIRg was calculated as the
mean incremental insulin response above
basal between 2 and 10 min after the
intravenous glucose bolus was started.
β-Cell function was determined as the
disposition index, which was calculated
as the product of Si and AIRg (11). The
glucose disappearance constant (Kg), a
measure of intravenous glucose tolerance,
was calculated as the slope of the natural
log of glucose from 10 to 19 min, ex-
pressed as percent change per minute.

The early insulin response during the
OGTT, also known as the insulinoenic
index, was calculated as the ratio of the
change in insulin to the change in glucose
from 0 to 30 min (Δinsulin0–30/Δglucose0–30).
The oral disposition index (DIo), a measure of β-cell function de-
duced from the OGTT, was calculated as
Δinsulin0–30/Δglucose0–30 × 1/ fasting
insulin (15). Three subjects (one normal-
weight and two obese black women) had a
negative Δinsulin0–30/Δglucose0–30
measurement and were excluded from
analyses including this parameter.

Statistics
Results are presented as means ± SEM.
Two-way ANCOVA, adjusting for age,
was used to compare anthropometric and
metabolic measures between normal-
weight and obese women of different eth-
nicity, with Bonferroni post hoc analyses.
Repeated-measures ANOVA with Tukey
post hoc analyses was used to explore dif-
f erences in the glucose and insulin re-
sponses during the OGTT over time. Data
were normalized by log transformation
for statistical analyses when required.
Data were analyzed using STATISTICA
(version 7; StatSoft, Tulsa, OK). P < 0.05
was considered significant.

RESULTS
Subject characteristics
On average, the obese women were sig-
ificantly older than the normal-weight
women (P = 0.002) (Table 1). Conse-
quently, all subsequent analyses were co-
vated for age. By design, all measures of
body composition and regional fat depo-
sition were significantly greater in the
obese than in the normal-weight women
(Table 1). There was a difference in stat-
ture between the black and white women
(Table 1), with the black women being on
average 10 cm shorter than the white
women (P < 0.001) and weighing signifi-
cantly less (P = 0.039). However, the
black and white groups were well
matched for BMI and body fat. Although
there were no ethnic differences in waist
circumference and waist-to-hip ratio,
obese black women had less visceral adi-
pose tissue (P = 0.006) but more subcu-
taneous adipose tissue (P = 0.013) than
obese white women.

Glucose tolerance, insulin
sensitivity, and insulin response
to glucose
The glucose profile during the FSIGT was
similar in black and white women, whereas
the insulin profile after glucose
injection was greater in black women
(Fig. 1). Si was significantly lower and
AIRg was significantly higher in black
women than in white women (Table 2)
and in obese women than in normal-
weight women in both ethnic groups
(P < 0.001). Ethnic differences in Si and AIRg
persisted after adjustment for differences
in visceral adipose tissue and subcutaneous adipose tissue areas. Disposition index (S/H11003 AIRg) was not significantly different between ethnic and BMI groups, as was also the case for Sg. However, obese black women had better Kg than obese white women (P/H11005 0.044).

Glucose and insulin levels in response to the oral glucose challenge are presented in Table 2 and Fig. 2. All subjects had normal glucose tolerance by American Diabetes Association criteria. Two-hour plasma glucose levels were significantly higher in normal-weight black than in normal-weight white women (5.0 ± 0.3 vs. 3.8 ± 0.3 mmol/l, P = 0.016), with no differences between the obese black and white women (5.7 ± 0.2 vs. 4.8 ± 2.3 mmol/l, P = 0.132).

Fasting serum insulin levels were greater in black women than in white women (P/H11021 0.001) and in obese women than in normal-weight women (P < 0.001). The insulinogenic index [Δinsulin_{o-30}/ Δglucose_{o-30}] was significantly higher in both normal-weight and obese black women than in their white counterparts (Table 2). With adjustment for the effect of insulin sensitivity to modulate the insulin response, DIo [Δinsulin_{o-30}/ Δglucose_{o-30} × 1/fasting insulin] was not different between the BMI and ethnic groups.

CONCLUSIONS — In the present study, we assessed for the first time in a sample of normoglycemic black and white South African women matched for BMI the relationship between insulin sensitivity and insulin response, which describes the ability of the β-cells to compensate for insulin resistance (11). We found that insulin resistance in the black women was associated with an appropriately greater insulin response to maintain normoglycemia compared with that in their white counterparts. Thus, the disposition index, which measures β-cell function, did not differ in black and white South African women.

The findings of this study, therefore, do not support the concept that insulin

Table 1—Subject characteristics

<table>
<thead>
<tr>
<th></th>
<th>Normal-weight black</th>
<th>Normal-weight white</th>
<th>Obese black</th>
<th>Obese white</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Age (years)</td>
<td>24 ± 2</td>
<td>26 ± 2</td>
<td>28 ± 1</td>
<td>31 ± 2</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>158.8 ± 1.8*</td>
<td>169.6 ± 1.8*</td>
<td>157.1 ± 1.6†</td>
<td>167.2 ± 1.8†</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>59.2 ± 3.1*</td>
<td>64.8 ± 3.0†</td>
<td>94.1 ± 2.9*</td>
<td>98.8 ± 2.8*</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.4 ± 1.0*</td>
<td>22.6 ± 0.9†</td>
<td>38.0 ± 0.9*</td>
<td>35.2 ± 0.9*</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>30.9 ± 1.4*</td>
<td>29.7 ± 1.3†</td>
<td>46.8 ± 1.2*</td>
<td>44.4 ± 1.3†</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>76.7 ± 2.8*</td>
<td>80.1 ± 2.8†</td>
<td>113.6 ± 2.6*</td>
<td>105.7 ± 2.8†</td>
</tr>
<tr>
<td>WHR</td>
<td>0.77 ± 0.02*</td>
<td>0.78 ± 0.02†</td>
<td>0.90 ± 0.02*</td>
<td>0.85 ± 0.02†</td>
</tr>
<tr>
<td>VAT (cm²)</td>
<td>60.4 ± 11.5*</td>
<td>59.9 ± 10.7†</td>
<td>101.5 ± 11.1‡</td>
<td>143.8 ± 11.1‡</td>
</tr>
<tr>
<td>Total SAT (cm²)</td>
<td>176.7 ± 22.3*</td>
<td>175.5 ± 20.7†</td>
<td>591.3 ± 21.4‡</td>
<td>492.2 ± 21.4‡</td>
</tr>
</tbody>
</table>

Values are unadjusted means ± SEM. All P values were adjusted for age. * † ‡ Matching superscript symbols represent groups that are significantly different from each other, P < 0.01. SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue; WHR, waist-to-hip ratio.

Figure 1—Plasma glucose and serum insulin responses during an FSIGT in normal-weight (A) and obese (B) black (●) and white (○) women.
resistance in nondiabetic black South African women is associated with insulinopenia, previously attributed to a reduction in β-cell mass (16). Rather, the results of this study correspond to those reported in African Americans, in whom insulin resistance is associated with hyperinsulinemia (6–8). The higher AIR_g in black women (5,10) has been attributed to both greater insulin secretion and reduced hepatic insulin extraction (8). In fact, the greater peak insulin level in the black women after insulin injection at 20 min during the FSIGT, occurring despite the fact that they weighed less and therefore received less insulin than the white women (Fig. 1), is also in keeping with black South African women having reduced insulin clearance.

The previous studies in which insulin resistance in black South African women was associated with insulinopenia measured insulin and C-peptide levels in the fasted state and in response to an OGTT and found them to be lower in black than in white women (4,5,10). However, the women in these studies were not matched for glucose tolerance. For example, in two separately published studies, 2-h post-OGTT glucose levels were ~4.5 mmol/l in white women but as high as ~7.5 mmol/l in the age- and BMI-matched black women (5,10). Thus, the relative degree of insulinopenia in the black women may be related to reduced glucose tolerance, which is known to be associated with impaired β-cell function (17). Other reports supporting the premise of insulinopenia in the black South African population either did not measure glucose tolerance or insulin sensitivity (9), made no direct comparisons with white subjects (16,18), or compared individuals with frank diabetes (19). More recent studies have shown no differences in the insulin response to an oral glucose load between well-matched black and white women (20,21). In fact, a greater 30-min insulin response to a mixed meal (22) and higher fasting C-peptide levels (23) have recently been reported in South African black compared with white women matched for BMI and glucose tolerance. The findings of our study showing a greater insulinogenic index in black compared with white women are thus compatible with these more recent reports.

Disposition index has been shown to decrease with increasing fasting glucose levels, even in subjects considered to be normoglycemic (17), and can be used to identify individuals at increased risk for type 2 diabetes (12). However, intravenous glucose tolerance testing is expensive and time consuming, reducing its use in resource-limited countries such as South Africa. Alternatively, the DI_0 can be calculated from the hyperbolic relationship between the early insulin response and insulin sensitivity during a standard OGTT (15). Although less precise than FSIGT-derived measures, DI_0 has been

Table 2—Glucose tolerance, insulin sensitivity, and release

<table>
<thead>
<tr>
<th>n</th>
<th>Normal-weight black</th>
<th>Normal-weight white</th>
<th>Obese black</th>
<th>Obese white</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSIGT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_g (× 10^{-5} min^{-1}[pmol/l])</td>
<td>4.4 ± 0.8*</td>
<td>9.4 ± 0.8*</td>
<td>2.9 ± 0.8§</td>
<td>6.0 ± 0.8§</td>
</tr>
<tr>
<td>AIR_g (pmol/l)</td>
<td>171.3 ± 42.5**</td>
<td>58.6 ± 41.0**</td>
<td>328.0 ± 38.2§</td>
<td>78.2 ± 41.0§</td>
</tr>
<tr>
<td>Disposition index (× 10^{-5} min^{-1})</td>
<td>3.811 ± 538</td>
<td>2.966 ± 518</td>
<td>3.646 ± 485</td>
<td>2.333 ± 518</td>
</tr>
<tr>
<td>S_g (× 10^{-1} min)</td>
<td>0.25 ± 0.03</td>
<td>0.24 ± 0.02</td>
<td>0.28 ± 0.02</td>
<td>0.24 ± 0.02</td>
</tr>
<tr>
<td>K_g (%/min)</td>
<td>2.81 ± 0.35</td>
<td>2.44 ± 0.34</td>
<td>3.46 ± 0.31*</td>
<td>2.22 ± 0.34*</td>
</tr>
<tr>
<td>OGTG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fasting glucose (mmol/l)</td>
<td>4.5 ± 0.1</td>
<td>4.4 ± 0.1</td>
<td>4.6 ± 0.1</td>
<td>4.7 ± 0.1</td>
</tr>
<tr>
<td>Fasting insulin (pmol/l)</td>
<td>59.0 ± 8.0*</td>
<td>28.5 ± 7.7§</td>
<td>90.6 ± 7.2‡</td>
<td>52.5 ± 7.7§</td>
</tr>
<tr>
<td>Δinsulin_{0–30}/Δglucose_{0–30}</td>
<td>437 ± 70*</td>
<td>184 ± 65*</td>
<td>507 ± 65‡</td>
<td>248 ± 65‡</td>
</tr>
<tr>
<td>DI_0 (mmol/l)</td>
<td>7.7 ± 1.3</td>
<td>7.6 ± 1.2</td>
<td>5.1 ± 1.2</td>
<td>5.0 ± 1.2</td>
</tr>
</tbody>
</table>

Values are unadjusted means ± SEM. All P values were adjusted for age. *,+,+,# Matching superscript symbols represent groups that are significantly different from each other. P < 0.05, **P < 0.01.
Insulin sensitivity, insulin response, and ethnicity

shown to be predictive of the development of diabetes over 10 years, even beyond that of fasting or 2-h post-OGTT glucose levels (15). The data from the current study, in which the insulinogenic index was higher and insulin sensitivity was lower in black than in white women, suggest that the degree of β-cell compensation in our sample of black women was appropriate, as DIβ was not different based on ethnicity.

Based on the finding of similar disposition index values in the black and white women in this study, one would assume a similar risk for type 2 diabetes in these two population groups. However, the prevalence of type 2 diabetes in South Africa is higher in the black population than in the white population (24). A similar scenario is presented in African Americans, who have a higher prevalence of type 2 diabetes but display a similar or higher disposition index than their Caucasian counterparts (6,7). The mechanisms underlying the increased risk of type 2 diabetes in black populations from South Africa and the U.S. is not known. Joffe et al. (16) proposed a scheme for the pathogenesis of type 2 diabetes in the black population of Southern Africa, in which a reduction of β-cell mass (due to childhood malnutrition and/or genetic factors), followed by an accelerated phase of β-cell decompensation induced by a variable period of peripheral insulin resistance, would ultimately lead to insulinopenic type 2 diabetes. However, to our knowledge, there is no evidence of a reduction in β-cell mass in the general black population. In fact, exaggerated glucose-stimulated insulin secretion appears to be a characteristic of individuals with normal glucose tolerance who are at risk for type 2 diabetes (Pima Indians and African Americans) (25).

A limitation of our study is that the subjects were not randomly drawn from the population but comprised volunteers who had responded to a recruitment advertisement. Thus, there is the possibility that they may not be representative of the population at large. However, our finding of insulin resistance in black women is in keeping with previous observations reported from South Africa (4,5). The reasons for the differences in insulin sensitivity and insulin responses and whether they apply to the general population are unclear. Aside from genetic differences, environmental and lifestyle differences exist between the black and white South African populations, and it is quite possible that these may have an impact on measures associated with glucose metabolism. For example, we found that black South African women had lower socioeconomic status, consumed more dietary fat, and had more subcutaneous and less visceral fat than their white counterparts and that these factors explained in part some of the differences in insulin sensitivity (J. H. Goedecke, unpublished observations). However, even after adjustment for differences in fat distribution, the ethnic differences in Sβ and AIRg were not obviated. Identification of other factors and the mechanisms by which they may be operating to affect glucose metabolism is clearly needed. In addition, longitudinal studies are required to determine whether the β-cell will continue to compensate in the black women with increasing age or whether it will fail over time, leading to disturbances in glucose tolerance.

In summary, we have demonstrated that black South African women are more insulin resistant than their white counterparts but compensate by increasing their insulin response to maintain normal glucose levels. These findings refute previous suggestions that insulin resistance in black South African women is associated with relative insulinopenia but rather suggest an appropriate β-cell response for the level of insulin sensitivity. Future studies are required to explore the mechanisms underlying the high degree of insulin resistance in apparently healthy black populations and to establish whether their hyperinsulinaemic response to insulin resistance is in fact associated with increased or decreased risk of diabetes with increasing age.

Acknowledgments — This study was funded by the Medical Research Council of South Africa (Career Development Award for J.H.G.), the International Atomic Energy Agency, the National Research Foundation of South Africa and Royal Society SA-U.K. Science Networks Programme, the University of Cape Town, the British Heart Foundation, the Wellcome Trust, and the U.S. Department of Veterans Affairs.

No potential conflicts of interest relevant to this article were reported.

We thank the research volunteers for their participation in this study and fieldworker Nandipha Simyana for subject recruitment and translation. We are extremely grateful to Hendriena Victor for coordinating the study, and together with Judy Belonje, for technical expertise. Jack Bergman and Naomi Fenton of Symington Radiology are thanked for performing the computed tomography scans and Linda Bewerunge is thanked for performing the dual-energy X-ray absorptiometry scans.

References
5. van der Merwe MT, Crowther NJ, Schlaphoff GP, Boyd HH, Gray IP, Joffe BI, Lonroth PN. Lactate and glycerol release from the subcutaneous adipose tissue of obese urban women from South Africa; important metabolic implications. J Clin Endocrinol Metab 1998;83:4084–4091

