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ABSTRACT
Phosphorus is an essential mineral that maintains cellular energy and mineralizes the skeleton. Because
complex actions of ion transporters and regulatory hormones regulate serum phosphorus concentrations,
genetic variation may determine interindividual variation in phosphorus metabolism. Here, we report a
comprehensive genome-wide association study of serum phosphorus concentration. We evaluated 16,264
participants of European ancestry from the Cardiovascular Heath Study, Atherosclerosis Risk in Communities
Study, Framingham Offspring Study, and the Rotterdam Study. We excluded participants with an estimated
GFR �45 ml/min per 1.73 m2 to focus on phosphorus metabolism under normal conditions. We imputed
genotypes to approximately 2.5 million single-nucleotide polymorphisms in the HapMap and combined
study-specific findings using meta-analysis. We tested top polymorphisms from discovery cohorts in a
5444-person replication sample. Polymorphisms in seven loci with minor allele frequencies 0.08 to 0.49
associate with serum phosphorus concentration (P � 3.5 � 10�16 to 3.6 � 10�7). Three loci were near genes
encoding the kidney-specific type IIa sodium phosphate co-transporter (SLC34A1), the calcium-sensing
receptor (CASR), and fibroblast growth factor 23 (FGF23), proteins that contribute to phosphorus metabo-
lism. We also identified genes encoding phosphatases, kinases, and phosphodiesterases that have yet-
undetermined roles in phosphorus homeostasis. In the replication sample, five of seven top polymorphisms
associate with serum phosphorous concentrations (P � 0.05 for each). In conclusion, common genetic
variants associate with serum phosphorus in the general population. Further study of the loci identified in this
study may help elucidate mechanisms of phosphorus regulation.
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Phosphorus is an essential mineral that is responsible for main-
taining cellular energy, mineralizing the skeleton, and protect-
ing nonosseus tissue from calcification.1 In humans, the ma-
jority of phosphorus resides within bone and teeth as
hydroxyapatite and within cells as a component of nucleic ac-
ids and phospholipid membranes. A small proportion of phos-
phorus (approximately 1%) circulates in the serum under tight
regulation by the complex actions of specialized ion transport-
ers and regulatory hormones, which balance gastrointestinal
phosphorus absorption, bone uptake, cellular flux, and excre-
tion through the kidneys.2

Dysregulated phosphorus metabolism may lead to adverse
clinical consequences. In the setting of chronic kidney disease,
higher serum phosphorus concentrations are associated with
vascular calcification and mortality.3,4 Higher serum phospho-
rus concentrations within the normal laboratory range are also
associated with incident cardiovascular events among individ-
uals without known kidney disease.5,6 In cell culture models,
phosphorus directly transforms vascular smooth muscle tissue
into osteoblast-like cells that calcify the medial vessel wall.7,8

Several lines of evidence suggest that interindividual differ-
ences in the steady-state serum phosphorus concentration may
be partly heritable. Rare phosphorus wasting disorders, such as
hypophosphatemic rickets, are caused by specific mutations in
genes within phosphorus metabolic pathways.9,10 Genetic dis-
ruption of hormones that regulate phosphorus alters circulat-
ing phosphorus concentrations in animal models.11,12 More-
over, dietary phosphorus intake is only weakly associated with
the serum phosphorus concentration in humans.13

We conducted the first large-scale genome-wide association
study (GWAS) to investigate common genetic variants associ-
ated with serum phosphorus concentrations in the general
population. We conducted a meta-analysis of results from
16,264 individuals of European ancestry participating in the
Cardiovascular Heath Study, the Atherosclerosis Risk in Com-
munities Study, the Framingham Heart Study, and the Rotter-
dam Study.

RESULTS

Genome-wide Associations for the Serum Phosphorus
Concentration
A total of 16,264 study participants from four cohorts were
available for meta-analysis (Table 1). Seven genetic loci located
on chromosomes 1, 3, 5, 6, and 12 met the prespecified meta-
analysis statistical significance threshold for the association
with serum phosphorus (Figure 1). The strongest statistical
association was observed for locus 1p36.13 (P � 3.5 � 10�16).
The top single-nucleotide polymorphism (SNP) within this
locus (rs1697421) does not reside within any known gene, but
lies within 10 kb of genes encoding for tissue-nonspecific alka-
line phosphatase (ALPL) and neuroblastoma breakpoint fam-
ily member 3 (NBPF3; Table 2, Figure 2A).

On chromosome 3, the top SNP within locus 3q21.1
(rs17265703) was in strong linkage disequilibrium (R2 � 0.93)

with a second SNP (rs1801725), which represents a known
alanine (A) to serine (S) polymorphism of amino acid 986 in
the calcium-sensing receptor (CASR) gene (Figure 2B).14

On chromosome 5, locus 5q35.3 contained several signifi-
cant SNPs that were associated with serum phosphorus (Figure
2C). The top SNP was located within an intron of RGS14, a
regulator of G-protein signaling that lies directly adjacent to
SLC34A1, which encodes for the kidney-specific type IIa so-
dium phosphate co-transporter (Npt2a).

Three distinct loci on chromosome 6 (6p21.31, 6q23.2, and
6q23.1) were each associated with differences in the circulating
serum phosphorus concentration (Figure 2, D through F). Loci
on 6q23.1 and 6q23.2 are presumed independent because they
are �4000 kb apart and are not correlated (R2 � 0.001), and
simultaneous adjustment for both SNPs did not alter the re-
sults for either. Locus 6p21.31 contains two intronic SNPs
(rs6942022 and rs9469578) in strong linkage disequilibrium
within the inositol hexakisphosphate kinase 3 (IHPK3) gene.
The top significant SNP at locus 6q23.2 is located near the gene
encoding for phosphodiesterase 7B (PDE7B). The top signifi-
cant SNP at locus 6q23.1 is located within an intron of the
ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3)
gene, which lies adjacent to the ENPP1 gene.

On chromosome 12, locus 12p13.32 lies within an open
reading frame that is adjacent to RAD51-associated protein
(RAD51AP1) and fibroblast growth factor 6 (FGF6). The gene
encoding for the phosphaturic factor fibroblast growth factor
23 (FGF23 ) is located 133 kb upstream from this top SNP;
however, there is a recombination point between them (Figure
2G). Several SNPs within the FGF23 gene were close to meeting
genome-wide statistical significance for the association with
serum phosphorus concentration.

Replication
There were 5444 individuals available for the replication meta-
analysis (Table 3). For all seven SNPs measured in replication,
regression coefficients were in the same direction as those from
the discovery sample. On the basis of � coefficients adjusted for
bias in the discovery cohort and minor allele frequencies for
the top seven SNPs, statistical power for replication was limited
in some cases. For five of the top SNPs, replication associations
were significant at the P � 0.05 level, and three were associated
at the Bonferroni-corrected P � 0.007 level (Table 3).

Interactions by Sex and Estimated Kidney Function
Associations of the seven top SNPs with the serum phosphorus
concentration were similar in magnitude comparing men with
women, and no significant interactions were found (all P for
interaction �0.1). Results also remained similar after restrict-
ing the analysis to individuals who had an estimated GFR
(eGFR) �60 ml/min per 1.73 m2.

Gene Score Model
A gene score model that encompassed the sum of risk alleles
from the top seven SNPs was significantly associated with the
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serum phosphorus concentration in the discovery sample (P �
2.6�10�57; unadjusted for regression to the mean). The majority
of individuals had gene scores between 3 and 12 (Figure 3). In
aggregate, the top seven SNPs identified in this study explained
approximately 1.5% of the variation in serum phosphorus
concentrations (model R2 � 0.0147). Serum phosphorus con-
centrations ranged from 3.24 to 3.58 mg/dl across the spec-
trum of risk allele dosage.

DISCUSSION

In this first genome-wide association study of the serum phos-
phorus concentration, we identified seven genetic loci, located
on chromosomes 1, 3, 5, 6, and 12, that were associated with
the circulating serum phosphorus concentration. In replica-

tion meta-analysis, five of these loci were associated with se-
rum phosphorus at the P � 0.05 level and three were associated
at the P � 0.007 level. Three loci identified in the discovery
analysis were near genes that encode for proteins known to be
involved in phosphorus metabolism: the sodium phosphate
co-transporter type IIa, the calcium-sensing receptor, and
FGF23. Other candidate genes identified in this study include a
phosphatase, a kinase, and two phosphodiesterases that have a
yet-undetermined role in the regulation of phosphorus bal-
ance.

Some of the genes identified in this study support previ-
ously understood biology of phosphorus metabolism. The so-
dium phosphate co-transporter type IIa (Npt2a) is expressed
in the proximal tubule of the kidney and plays a major role in
determining urinary phosphorus excretion.2 Serum phospho-
rus excess leads to the removal of Npt2a transporters from the
cell-surface, resulting in diminished phosphorus re-absorp-
tion and subsequent elimination of phosphorus in the urine.15

Conversely, a low serum phosphorus concentration stimulates
upregulation of Npt2a, which enhances phosphorus re-ab-
sorption in the kidney. Deletion of the Npt2a gene in animal
models leads to marked urinary phosphorus wasting and im-
paired skeletal development.11 Heterozygous mutations in
Npt2a have been described in humans with nephrolithiasis and
urinary phosphorus leak.16

The calcium-sensing receptor can influence phosphorus
metabolism through connections with key hormones that reg-
ulate both calcium and phosphorus.17 For example, a low se-
rum calcium level detected by the calcium-sensing receptor
stimulates release of parathyroid hormone, which increases
urinary phosphorus excretion via downregulation of Npt2a.18

A low serum calcium level also stimulates the production of
calcitriol, which enhances absorption of both calcium and
phosphorus through the gastrointestinal tract via actions on
their selective ion channels.19,20

The SNP rs2970818 is located within 50 kb of FGF6 and
within 133 kb of FGF23. FGF6 is a paracrine factor that plays a

Figure 1. Single nucleotide polymorphisms on chromosomes 1,
3, 5, 6, and 12 associate with the serum phosphorus concentra-
tion. Log (P values) for individual SNPs plotted for each chromo-
some in the discovery sample. Horizontal line represents genome-
wide significance level of 4 � 10�7.

Table 1. Characteristics of the discovery and replication cohorts

Discovery Cohorts Replication Cohorts

CHS
(n � 1761)

FHS
(n � 2865)

ARIC
(n � 8048)

RS
(n � 3516)

KORA-F3
(n � 1599)

KORA-F4
(n � 1779)

Health ABC
(n � 1507)

Vis
(n � 659)

Age, years 71.0 43.6 54.3 69.4 62.5 60.9 73.7 56.8
(4.6) (9.8) (5.7) (9.1) (10.1) (8.9) (2.8) (15.3)

Women 69.6% 52.1% 52.9% 59.4% 50.5% 51.3% 46.9% 60.1%
eGFR, ml/min 82.3 103.4 89.7 80.7 80.1 81.9 72.4 95.7

(21.4) (35.9) (17.7) (14.9) (18.1) (18.0) (13.4) (34.7)
eGFR 45 to 60 ml/min 14.3% 3.2% 2.7% 4.8% 11.5% 7.6% 21.5% 10.2%
Serum phosphorus

Mean, mg/dl 3.60 3.15 3.41 3.68 3.30 3.39 3.51 3.50
(SD) (0.49) (0.44) (0.48) (0.60) (0.55) (0.50) (0.48) (0.54)
Median, mg/dl 3.6 3.2 3.4 3.7 3.3 3.4 3.5 3.5
(IQR) (3.3, 3.9) (2.9, 3.4) (3.1, 3.7) (3.3, 4.1) (2.9, 3.7) (3.1, 3.7) (3.2,3.8) (3.1, 3.9)

CHS, Cardiovascular Health Study; FHS, Framingham Health Study; ARIC, Atherosclerosis Risk in Communities Study; RS, Rotterdam Study; eGFR, estimated
glomerular filtration rate; IQR, interquartile range.
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role in myoblast proliferation and muscle differentiation;21 as-
sociations of FGF6 with phosphorus metabolism have not
been reported. Another fibroblast growth factor, FGF23, is an
endocrine factor that is considered to be central to the regula-
tion of phosphorus balance.22 Originally identified as the cause
of tumor-induced phosphorus wasting,23 FGF23 binds to its
receptor within the kidney to potently increase the urinary
fractional excretion of phosphorus.24 The hormone klotho is a
key co-factor for FGF23; deletion of FGF23 or klotho in animal
models yields a similar phenotype characterized by hyperphos-
phatemia, short-life span, vascular calcification, and osteopo-
rosis.25,26 Mutations in FGF23 are the cause of autosomal dom-
inant hypophosphatemic rickets,9 and elevated FGF23 levels
are recently identified as the cause of phosphorus wasting in
kidney transplant recipients.27

The most robust association in this study was for SNP
RS1697421, which is located adjacent to the tissue-nonspecific
alkaline phosphatase gene. Alkaline phosphatase is a mem-
brane-bound enzyme that plays a key role in mineralizing the
skeleton. In osteoblasts, alkaline phosphatase hydrolyzes pyro-
phosphate into two phosphate molecules, which are used to
synthesize hydroxyapatite. Although this process will raise
phosphorus levels within cells, the effect on the serum phos-
phorus concentration is unknown. Mutations in the alkaline
phosphatase gene are linked with hypophosphatasia, a rare in-
herited condition characterized by failure to mineralize the
teeth and bone, and excess circulating levels of pyrophosphate,
a natural calcification inhibitor.28 However, to our knowledge

differences in the serum phosphorus concentration among in-
dividuals with hypophosphatasia have not been reported. Mu-
tations in the ENPP1 gene are linked with generalized arterial
calcification of infancy, and polymorphisms in this gene are
associated with insulin resistance and obesity.29,30 Inositol
hexakisphosphate kinase-3 is suspected to convert inositol
hexakisphosphate to diphosphoinositol pentakisphosphate.31

Associations of individual genetic loci with the serum phos-
phorus concentration were modest. In aggregate, the seven top
genetic loci identified in this study contributed to an approxi-
mate 0.4 mg/dl difference in the serum phosphorus concentra-
tion among the discovery sample. This variation is similar to
that naturally observed between men and women and may be
relevant for cardiovascular health. For example, each 0.5 mg/dl
higher serum phosphorus concentration was linearly associ-
ated with an approximate 15% greater risk of cardiovascular
events in the Framingham Heart Study and the Cholesterol
And Recurrent Events study.5,6

Known intraindividual variation in serum phosphorus con-
centrations may have precluded identification of additional
loci. Serum phosphorus concentrations vary throughout the
day and from day to day, although they do not appear to be
associated with fasting status.32 In one study of 1878 partici-
pants in the National Health and Nutrition Examination Sur-
vey (NHANES) who underwent serum phosphorus measure-
ments approximately 2 weeks apart, the correlation between
serum phosphorus concentrations was 0.63.13 In future stud-
ies, multiple measurements of serum phosphorus within an

Table 2. Genetic loci associated with the serum phosphorus concentration in the discovery sample

Locus Top SNP ID Position Major/Minor Allele (MAF)
Meta

In Gene Closest Genesb

�a P

1p36.13 rs1697421 21695879 G/A (0.49) �0.044 3.47 � 10�16 — ALPL
NBPF3

3q21.1 rs17265703 123531334 A/G (0.15) �0.040 6.24 � 10�08 CSTA CASR
CCDC58

5q35.3 rs4074995 176729949 G/A (0.28) �0.032 6.25 � 10�08 RGS14 SLC34A1
PFN3
LMAN2
F12

6p21.31 rs9469578 33814457 C/T (0.08) �0.064 5.15 � 10�10 IHPK3 ITPR3
LEMD2
MLN

6q23.1 rs453639 132091350 A/C (0.36) �0.036 3.59 � 10�07 ENPP3

6q23.2 rs947583 136175352 T/C (0.29) �0.035 2.19 � 10�09 — PDE7B

12p13.32 rs2970818 4476429 T/A (0.09) �0.052 4.04 � 10�08 — FGF6
RAD51AP1
FGF23c

MAF, minor allele frequency; ALPL, alkaline phosphatase, liver/bone/kidney; NBPF3, neuroblastoma breakpoint family, member 3; CSTA, cystatin A; CASR,
calcium-sensing receptor; CCDC58, coiled-coil domain-58; RGS14, regulator of G-protein signaling 14; SLC34A1, solute carrier family 34 (sodium phosphate);
PFN3, profilin 3; LMAN2, lectin, mannose-binding 2; F12, coagulation factor XII (Hageman factor); IHPK3, inositol hexakisphosphate kinase 3; ITPR3, inositol
1,4,5-triphosphate receptor, type 3; LEMD2, LEM domain containing 2; MLN, motilin; ENPP3, ectonucleotide pyrophosphatase/phosphodiesterase 3; PDE7B,
phosphodiesterase 7B; FGF6, fibroblast growth factor 6; RAD51AP1, RAD51 associated protein 1; FGF23, fibroblast growth factor 23.
aAssociation with serum phosphate concentration in mg/dl.
bWithin 50 kb.
cDistance � 133 kb.
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individual would help reduce this source of variation. Our
study was limited to Caucasian subjects; therefore, results do
not apply to other race/ethnicities. The SNPs identified in this

study do not imply a direct causal relationship with the serum
phosphorus concentration; fine mapping and re-sequencing
studies are needed to pinpoint potential causal variants, and

A B

C D

E F

G

Figure 2. Seven loci meet genome wide significance level for the association with the serum phosphorus concentration. Observed log
(P values) by chromosome position for genetic regions surrounding each top SNP in the discovery sample. Recombination rates are
shown in red on the right-sided Y-axis. Correlation of the top SNP with surrounding SNPs indicated by shading—darker boxes indicate
greater correlation (scale in top right-hand corner). (A) Locus 1p36.13; (B) locus 3q21.1; (C) locus 5q35.3; (D) locus 6p21.31; (E) locus
6q21.3; (F) locus 6q23.2; (G) locus 12p13.32.
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functional studies are needed to understand how the specific
genetic variation may be realized at the protein level. Because
of known selection bias in selecting SNPs on the basis of ge-
nome-wide statistical significance and relatively low allele fre-
quencies, study power to replicate associations for loci 3q21.1,
5q35.3, 6q23.1, and 12p13.32 was inadequate. � coefficients
for SNPs within these loci were smaller in magnitude, but in
the same direction as those from the discovery cohort. Finally,
this genome-wide association study is limited to detecting
common genetic variants and is therefore unable to identify
associations for rare alleles, such as those responsible for phos-
phorus wasting disorders in humans.

In summary, we demonstrate that common genetic variants
are associated with the serum phosphorus concentration using
meta-analysis of study-specific GWAS from four large adult
populations. Follow-up studies are needed to identify potential
causal genetic loci in or near the candidate genes identified in
this GWAS. Candidate genes may be explored in more com-
prehensive metabolic studies of phosphorus metabolism and
in translational animal models that could shed new light on the
mechanisms and clinical implications of phosphorus ho-
meostasis.

CONCISE METHODS

CHARGE Consortium
The Cohorts for Heart and Aging Research in Genomic Epidemiology

(CHARGE) consortium was developed to facilitate the conduct and

replication of genetic association studies across established cohort

studies.33 Each participating study approved guidelines for collabora-

tion, and the institutional review boards for each study approved the

consent procedures, data security measures, and collection of genetic

material. All study participants provided written informed consent

for genetic research.

Discovery Study Populations
Serum phosphorus measurements were available from four partici-

pating discovery cohorts within the CHARGE consortium: the Car-

diovascular Health Study (CHS), the Framingham Heart Study

(FHS), the Atherosclerosis Risk in Communities Study (ARIC), and

the Rotterdam Study (RS).

CHS is a community-based study of cardiovascular disease among

adults ages 65 years and older.34 CHS recruited 5201 ambulatory older

adults in 1989 to 1990 from four U.S. communities: Forsyth County,

NC; Sacramento County, CA; Washington County, MD; Pittsburgh,

PA. Subjects were excluded if they were institutionalized, required a

wheelchair in the home, or were undergoing treatment for cancer.

Serum phosphorus concentrations and genomic data were available

for 2337 CHS participants without cardiovascular disease at the time

of 1992 to 1993 exam.

FHS is a prospective cohort study initiated in 1948 to investigate

risk factors for cardiovascular disease. Children and spouses of chil-

dren from the original cohort were recruited in 1972 (Framingham

Offspring Study) and followed prospectively with clinic examinations

every 4 years.35 Serum phosphorus concentrations and genomic data

were available for 2865 participants during the second examination

cycle in 1979 to 1982.5

ARIC is a community-based, prospective cohort study of athero-

sclerosis that recruited 15,792 Caucasian and African-American indi-

viduals aged 45 to 64 years from four U.S. communities: Forsyth

County, NC, Washington County, MD, Minneapolis, MN, and Jackson,

MS.36 Participants underwent three follow-up examinations at 3-year

intervals. Serum phosphorus concentrations and genomic data were

available for 8122 ARIC participants from the baseline examination in

1987 to 1989.

Figure 3. Mean serum phosphorus concentrations associate with
the number of SNPs individually associated with serum phospho-
rous. Mean serum phosphorus concentration as a function of the
number of risk alleles in the discovery sample; number of partic-
ipants with the risk alleles shown below the graph.

Table 3. Meta-analysis of the replication cohorts

SNP ID Replication n Powera Discovery � Replication � Replication P Combined �b Combined Pb

rs1697421 5536 0.999 �0.044 �0.070 2.08 � 10�14 �0.050 1.14 � 10�27

rs17265703 5543 0.730 �0.040 �0.026 0.015 �0.036 4.32 � 10�9

rs4074995 5497 0.734 �0.032 �0.010 0.168 — —
rs9469578 5544 0.978 �0.064 �0.046 0.004 �0.059 1.11 � 10�11

rs453639 5544 0.409 �0.036 �0.014 0.096 — —
rs947583 5543 0.921 �0.035 �0.034 3.94 � 10�4 �0.035 3.45 � 10�12

rs2970818 5544 0.760 �0.052 �0.034 0.025 �0.047 4.38 � 10�9

aPower to replicate findings from the discovery cohorts.
bCombined results shown for replication P � 0.05.
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RS is a community-based cohort study to assess determinants of

chronic diseases among the elderly that recruited 7983 participants

(78% of the eligible population) aged �55 years living in a well-de-

fined suburb of the city of Rotterdam, The Netherlands, in 1990 to

1993.37 Home visits were used to collect health status information.

Participants were subsequently examined at the research center in

1990 to 1993 and every 3 to 4 years thereafter. Serum phosphorus

concentrations and genomic data were available for 3516 RS partici-

pants.

Because of the relatively small number of non-Caucasian partici-

pants, we limited analyses to participants of primarily European

(Caucasian) ancestry. Previous studies have demonstrated that serum

phosphorus concentrations increase markedly in advanced stages of

chronic kidney disease.38 We therefore excluded participants who had

an estimated GFR �45 ml/min per 1.73 m2 to focus on potential

factors that regulate phosphorus under normal conditions. We esti-

mated GFR using the four-variable Modification of Diet in Renal

Disease equation.39

Replication Study Populations
KORA S3 is an independent population-based sample from the gen-

eral population living in the region of Augsburg, Southern Germany,

in 1994 to 1995. A total of 3006 subjects participated in a follow-up

examination in 2004 to 2005 (KORA F3). The KORA S4 survey (4261

participants) is an independent population-based sample from the

same region and was conducted in 1999 to 2001.40 Serum phosphorus

concentrations and genomic data were available for 1599 participants

of KORA F3 and for 1779 participants of KORA F4. The Vis study was

conducted in 2003 to 2004 among 986 unselected, 18- to 93-year-old

Croatians recruited from the villages of Vis and Komiza, on the Dal-

matian island of Vis. These settlements have unique population his-

tories and have preserved isolation from other villages and from the

outside world for centuries. Health ABC is a prospective cohort study

designed to investigate the effect of health conditions on age-related

functional changes. Participants aged 70 to 79 years were recruited

from the metropolitan areas surrounding Pittsburgh, PA, and Mem-

phis, TN. Eligibility criteria were no difficulty walking one-quarter of

a mile, climbing 10 steps, or performing basic activities of daily living.

Serum Phosphorus Measurements
Blood specimens were collected in the morning, centrifuged, and ei-

ther frozen at �70°C for storage or run daily; not all participants were

fasting. Serum phosphorus concentrations were quantified using an

automated platform (Beckman-Coulter for CHS and ARIC, Roche

for FHS, and a Kone Diagnostica reagent kit and a Kone autoanalyzer

for RS) in which inorganic phosphorus reacts with ammonium mo-

lybdate in an acidic solution to form a colored phosphomolybdate

complex. The reported intra-assay coefficients of variation for these

assays are 5.8 and 5.6%, respectively. Intraindividual biologic varia-

tion in serum phosphorus measurements are available from a previ-

ous population-based cohort study in which 1878 participants under-

went repeat serum phosphorus measurements a median of 16 days

apart.13 The correlation between measurements was 0.63, and the SD

for the difference in measurements was 0.31 mg/dl.

Genotyping
CHS.
Genotyping was performed at the General Clinical Research Center’s

Phenotyping/Genotyping Laboratory at Cedars-Sinai using the Illumina

370CNV BeadChip system. Genotypes were called using the Illumina

BeadStudio software. Samples were excluded for genotypic sex mis-

match, discordance with prior genotyping, or call rate �95%. Genotyp-

ing was successful in 96%. The following exclusions were then applied:

call rate �97%, Hardy Weinberg Equilibrium P � 10�5, duplicate error

or Mendelian inconsistency, heterozygote frequency of approximately 0,

or SNP not found in dbSNP. SNPs were further excluded from analysis if

the ratio of the variance of the allele dosage to the variance expected under

Hardy Weinberg Equilibrium was �0.01.

ARIC.
Genotyping was performed using the Affymetrix 6.0 array and geno-

types were called using the Birdsees software. Of 8861 samples, 734

were excluded because of discordance with previous genotype data,

mismatch of reported and genotypic sex, first-degree relative of an

included individual based on genotype data, or genetic outliers as

assessed by average allele sharing and principal components analyses.

Before imputation, SNPs with call rate �95%, minor allele frequency

�1%, and Hardy-Weinberg equilibrium P � 10�5 were excluded to

ensure good quality for imputation. After imputation, no SNPs were

excluded.

FHS.
Genotyping was conducted using the Affymetrix 500K mapping array

and the Affymetrix 50K gene-focused macrophage inflammatory pro-

tein array. Individuals were excluded when their call rate across all SNPs

was �97%. After exclusion of SNPs with genotype call rate �95% or

Hardy-Weinberg equilibrium P � 10�6, there were 503,551 SNPs avail-

able for analysis.

RS.
Genotyping was done with the Illumina 550K array (Illumina, San

Diego, CA, USA) in self-reported Caucasian individuals. Individuals

were excluded for an overall call rate �97.5%, excess autosomal het-

erozygosity, mismatch between genotypic and phenotypic sex, or out-

liers identified by the identity-by-state clustering analysis; genotyping

was successful in 93% of RS. SNPs were excluded when the minor

allele frequency was �1%, Hardy-Weinberg equilibrium P � 10�6, or

SNP call rate �98%, resulting in 530,683 directly measured SNPs

used for imputation.

Imputation
In all studies, genotypes were imputed to approximately 2.5 million

SNPs in HapMap, using the Phase II CEU individuals as a reference

panel. For imputation software, ARIC, FHS, and RS used MACH and

CHS used BIMBAM.41,42 Imputation results are summarized as an

“allele dosage” (a fractional value between 0 and 2), defined as the

expected number of copies of the minor allele at that SNP.

Statistical Analysis
We evaluated serum phosphorus concentrations as a continuous vari-

able, in mg/dl. The distribution of serum phosphorus concentrations
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was not strongly skewed and was analyzed without transformation.

We did not exclude any individuals based on their serum phosphorus

concentration.

Genome-wide analyses were conducted within each cohort. Using

an additive genetic model, we used linear regression to evaluate the

association between the allele dosage and serum phosphorus concen-

tration, quantifying the regression slope (�) and standard error

[SE(�)]. We adjusted analyses for age, sex, and study site. We ac-

counted for relatedness of individuals in FHS using random effects to

account for the covariance between family members with the specific

covariance structure determined by the degree of relatedness between

each relative pair.33 Within each study, genomic control was used to

adjust each study’s standard errors for potential effects of population

stratification; the genomic control � values ranged from 1.01 to 1.04

across the discovery and replication cohorts. In all cohorts except for

Health ABC, principal components were not associated with the serum

phosphorous concentration. In Health ABC, principal components were

associated with serum phosphorus; therefore, we adjusted for principal

components in Health ABC to account for population substructure. We

combined within-study associations by meta-analysis, using inverse

variance weighting. After meta-analysis, we filtered results on

weighted minor allele frequency �0.005. We selected an a priori ge-

nome-wide significance threshold of 4 � 10�7, which corresponds to

a �1 expected false-positive result for 2.5 million tests. The validity of

this boundary is not affected by correlation between test statistics.43

To assess interactions, we used a genotype-sex interaction param-

eter within the same linear modeling and meta-analysis framework.

To summarize the main effects from the discovery sample, we con-

structed an additive gene score model using the number of copies of

each risk allele from each SNP (possible values 0 to 14) and used linear

regression to evaluate the association of gene score with serum phos-

phorus concentration.

We estimated power to replicate observed associations from the

discovery phase in a replication sample size of 5544, an observed SD

for phosphorus of 0.5, and a one-sided � of 0.05. Allele frequencies

were based on the discovery cohorts and effect sizes were adjusted for

the “winners curse” selection bias.44 Because of this adjustment and

relatively low minor allele frequencies, power was limited to replicate

findings in loci 3q21.1, 5q35.3, 6q23.1, and 12p13.32.
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