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APPENDIX A: MODEL DIAGRAM

The diagrams in Figures 1 and 2 display the structure of the model.
Recruitment occurs immediately prior to a primary occasion with survival
immediately after a primary occasion. Within secondary occasions, arrivals
occur immediately prior to a capture occasion with transitions between the
different states of the HMM (this includes transitions to having left the site,
or between observable states) immediately after a capture event.

open open

time

Primary Occasions 1 2 3

Secondary Occasions 1, 2, . . . ,K(1) 1, 2, . . . ,K(2) 1, 2, . . . ,K(3)

open open open

Supplementary Figure. 1. Diagram depicting the structure of the primary and secondary
occasions.
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Primary Occasion Recruitment t Survival

Secondary Occasions Arr 1 Trans Arr 2 Trans . . . Arr K(t)

Supplementary Figure. 2. Diagram depicting the order of events within a single primary
period.
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APPENDIX B: PRIMARY PERIOD ABUNDANCE ESTIMATION

We implement a forward-backward-type algorithm to estimate primary
period abundance. In order to estimate this abundance we need to esti-
mate the conditional state probabilities (conditional on the observed cap-
ture history on the primary level) where state refers to whether an individ-
ual has been recruited to the population. In general, the states of an HMM
are hidden, however, in the case of capture-recapture the states are par-
tially observed. When an individual is captured their state is observed and
so there is only uncertainty when an individual is missed. For this reason
we call this approach a forward-backward-type algorithm. Additionally, the
forward-backward algorithm is typically used for state decoding, it is used
to identify the most probable hidden state on each occasion given the full
capture history. We have chosen not to decode the state sequence as this
would imply that individuals with the same capture history also share the
same state sequence and this is unlikely to be true in reality. Therefore,
to estimate abundance we take a probabilistic approach and sum over the
conditional state probabilities for all N individuals estimated to be in the
population (N total population size estimated in the model likelihood).

The forward-backward algorithm finds the conditional state probabilities
through a combination of forward and backward probabilities. These prob-
abilities are estimated for each observed individual i = 1, . . . , n along with
an all-zero capture history to account for missed individuals. The model
includes total abundance N as a parameter and so the number of missed
individuals is nm = N − n.

Let Zi(t) be the random variable associated with observing individual i
on primary occasion t = 1, . . . , T , then Zi(t) ∈ {0, 1} for i = 1, . . . , n and
t = 1, . . . , T (for T the total number of primary occasions). Let Hi(t) be
the random variable associated with the state of individual i on primary
occasion t then Hi(t) ∈ {1, 2, 3} where

Hi(t) =


1 not yet recruited
2 recruited
3 departed from population

for i = 1, . . . , n and t = 1, . . . , T . In this derivation we assume no time
since recruitment effects on survival (as per the simulation study in section
3). If time since recruitment effects were included the hidden states would
match those in the model derivation in section 2.2 and abundance could be
estimated for each primary occasion across different time since recruitment
groups.
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Let f = {fi(t, h) : i = 1, . . . , n, t = 1, . . . , T, h ∈ {1, 2, 3}} denote the
forward probabilities for each observed individual. The forward probabilities
find the joint probability of the capture history up to occasion t with the
state on occasion t,

fi(t, h) = (Zi(1) = zi(1), Zi(2) = zi(2), . . . , Zi(t) = zi(t), Hi(t) = h)

where zi(t) is the observation or not of individual i in primary occasion t.
The parameters of the model associated with movement between the primary
states are the recruitment probabilities r = {r(t) : t = 1, . . . , T} (and
conditional recruitment probabilities r∗(t)) and survival s (constant across
all primaries). We initialise the forward probabilities on occasion 1 using,

fi(1, h) =


(1− r(1))× P(Zi(t) = zi(t) | Hi(t) = 1) h = 1
r(1)× P(Zi(t) = zi(t) | Hi(t) = 2) h = 2
0× P(Zi(t) = zi(t) | Hi(t) = 3) h = 3.

For the remaining primary occasions t = 2, . . . , T we use a recursive ap-
proach,

fi(t, h) =
∑

j∈1,2,3

fi(t− 1, j)Γ(t− 1)[j, h]P(Zi(t) = zi(t) | Hi(t) = h)

where

Γ(t) =

 1− r∗(t + 1) r∗(t + 1) 0
0 s 1− s
0 0 1


is the transition matrix between the hidden states. The conditional proba-
bility P(Zi(t) | Hi(t)) describes whether an individual is seen or not seen in
primary t given the hidden state of the individual. These probabilities are
taken from the observation probability matrices of the HMM,

P(t, zi(t)) =

{
diag(1, L0(t), 1) zi(t) = 0
diag(0, Li(t), 0) zi(t) = 1

where L0(t) and Li(t) are respectively the probabilities of observing an all-
zero or individual capture history i = 1, . . . , n across the secondary occasions
within primary t, i.e. the likelihood contribution for a single-period stopover
model.

Let b = {bi(t, h) : i = 1, . . . , n, t = 1, . . . , T, h ∈ {1, 2, 3}} be the back-
ward probabilities for all observed individuals. The backward probabilities
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find the conditional probability of observing the remaining capture history
from occasion t + 1 onwards given the state on occasion t,

bi(t, h) = P(Zi(t+1) = zi(t+1), Zi(t+2) = zi(t+2), . . . , Zi(T ) = zi(T ) |Hi(t) = h).

The backward probabilities are also calculated in a recursive manner, we
initialise for the final occasion T ,

bi(T, h) = 1

for h ∈ {1, 2, 3}. For occasions t = 1, . . . , T − 1,

bi(t, h) =
∑

j∈{1,2,3}

Γ(t)[h, j]P(Zi(t+ 1) = zi(t+ 1) | Hi(t+ 1) = j)bi(t+ 1, j).

The product of the forward and backward probabilities gives the joint prob-
ability of the entire capture history and the current state,

fi(t, h)×bi(t, h) = P(Zi(1) = zi(1), Zi(2) = zi(2), . . . , Zi(T ) = zi(T ), Si(t) = h)

for i = 1, . . . , n, t = 1, . . . , T and h ∈ {1, 2, 3}. To estimate the abundance
in each primary we need to find the conditional probabilities for each hid-
den state given the capture histories of each observed individual along with
an all-zero capture history (to account for missed individuals). f0(t, h) and
b0(t, h), the forward and backward probabilities for an all zero-history, are
found in the analogous way to the observed histories above. We use the
result

P(Hi(t) = h | Zi(1) = zi(1), Zi(2) = zi(2), . . . , Zi(T ) = zi(T )) =
fi(t, h)× bi(t, h)

fi(t, ·)bi(t, ·)T

for fi(t, ·) = {fi(t, h) : h ∈ {1, 2, 3}}, similarly for bi(t, ·) and bi(t, ·)T denot-
ing the transpose.

Taking a probabilistic approach the estimators for abundance in each
hidden state and primary period, N(t, h) are given by,

N(t, h) =

(
n∑

i=1

fi(t, h)bi(t, h)

fi(t, ·)bi(t, ·)T

)
+

(
nm × f0(t, h)b0(t, h)

f0(t, ·)b0(t, ·)T

)
.

Through these state abundances it is possible to see the progression of the
population through recruitment, attendance and then departure from the
population.
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APPENDIX C: SECONDARY OCCASION STATE ABUNDANCE
ESTIMATION

The estimation of abundance per state and secondary occasion within a
primary period follows in a similar manner to primary abundance.

Given an estimate for the number of individuals in the recruited popula-
tion for primary occasion t (N(t, 2) from appendix A), the forward-backward
algorithm can estimate the abundance per state and secondary occasion. In
the following we take the definitions from the model derivation in section
2.2.

Let Xi(t, k) be the random variable associated with xi(t, k) the capture
history for individual i = 1, . . . , n(t) on occasion k = 1, . . . ,K(t) in primary
period t = 1, . . . , T . Let Hi(t, k) be the random variable associated with
the hidden state of individual i on occasion k of primary period t. Then
Xi(t, k) ∈ {0, 1, 2} corresponding to a non-capture or capture in one of
the two observable discrete states and Hi(t, k) ∈ H where H is the set
of hidden states of the secondary level of the HMM for t = 1, . . . , T and
k = 1, . . . ,K(t). These states include progression through time since arrival
and movement between the two observable states (this approach can be
generalised to more observable states).

We initialise the forward probabilities for each hidden state h ∈ H,

fi(t, 1, h) = π(t, 1)[h]× P(Xi(t, k) = xi(t, k) | Hi(t, k) = h).

For the remaining occasions,

fi(t, k, h) =
∑
j∈H

fi(t, k−1, j)Γ(t, k−1)[j, h]P(Xi(t, k) = xi(t, k) |Hi(t, k) = h).

The conditional probability of the observation Xi(t, k) given a hidden state
is taken from P(t, k, xi(t, k)).

The backward probabilities are initialised on the final secondary occasion
within a primary period

bi(t,K(t), h) = 1.

For occasions k = 1, . . . ,K(t)− 1,

bi(t, k, h) =
∑
j∈H

Γ(t, k−1)[h, j]P(Xi(t, k+1) = xi(t, k+1) |Hi(t, k+1) = j)bi(t, k+1, j).

As above the product of the forward and backward probabilities give the
joint probability of the entire capture history over the secondary occasions
within a primary given the hidden state.
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To estimate the abundance in each state we find the forward and backward
probabilities for each observed individual i = 1, . . . , n(t) in primary period t
along with f0(t, k, h) and b0(t, k, h) the analogous probabilities for an all-zero
history. Within a primary period, given an estimate N(t) for the number
of individuals in the recruited population, the number of missed individuals
nm(t) = N(t) − n(t). As above we take a probabilistic approach to the
abundance estimation to avoid assigning the same state sequence to every
individual with the same capture history.

N(t, k, h) =

N(t)∑
i=1

fi(t, k, h)bi(t, k, h)

fi(t, k, ·)bi(t, k, ·)T

+

(
nm(t)× f0(t, k, h)bi(t, k, h)

f0(t, k, ·)bi(t, k, ·)T

)
.

To achieve estimates for the abundance in each observable state (old and
new ponds in the great crested newt application) sum over all ages (time
since arrival) within the same state.
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APPENDIX D: ADDITIONAL SIMULATION STUDY RESULTS
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Supplementary Figure. 3. Results from the simulation study where N = 100 for: (top,
left) bias of the recruitment and survival probabilities for the multi-period model; (top,
right) bias of the capture probabilities in each primary period for the single-period model
(white) and the multi-period model (grey); (bottom, left) bias of the retention probabil-
ities for each primary period, each capture occasion within primaries and ages for the
single-period model and; (bottom, right) bias of the retention probabilities for each capture
occasion and ages (shared across primaries) for the multi-period model.
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Supplementary Figure. 4. Results from the simulation study where N = 1000 for: (top,
left) bias of the recruitment and survival probabilities for the multi-period model; (top,
right) bias of the capture probabilities in each primary period for the single-period model
(white) and the multi-period model (grey); (bottom, left) bias of the retention probabil-
ities for each primary period, each capture occasion within primaries and ages for the
single-period model and; (bottom, right) bias of the retention probabilities for each capture
occasion and ages (shared across primaries) for the multi-period model.
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Supplementary Figure. 5. Bias of the population size estimates for each secondary
occasion and discrete state (state 1 white, state 2 grey) for the multi-period model from
the simulation study where N = 100.
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Supplementary Figure. 6. Bias of the population size estimates for each secondary
occasion and discrete state (state 1 white, state 2 grey) for the multi-period model from
the simulation study where N = 1000.
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APPENDIX E: ABUNDANCE ESTIMATES FOR THE GREAT
CRESTED NEWT STUDY
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Supplementary Figure. 7. Estimated abundance and 95% bootstrap confidence intervals
for each year 2002–2013 of the great crested newt study.
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Supplementary Figure. 8. Estimated abundance for each secondary capture occasion
and 95% bootstrap confidence intervals for each year 2002–2009 of the great crested newt
study.
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