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abstract: Murine knock-out models and blastocyst co-culture studies have identified prostaglandin-endoperoxide synthase (PTGS) 2, pros-
taglandin (PG) E receptor 2 (PTGER2) and the chemokine receptor CXCR4 as important regulators of early pregnancy events. In vitro studies and
studies in non-human primates have shown that these proteins are regulated in the endometrium by the early embryonic signal, chorionic gon-
adotrophin (CG). Here we show that expressions of PTGER2 and CXCR4 are elevated during the mid-secretory phase of the menstrual cycle and
decidua of early pregnancy in humans. Using first trimester decidua explants, we show that CG induces expression of PTGS2 and biosynthesis of
PGE2, and expression of PTGER2. Subsequently, PGE2via PTGER2 induces expression of CXCR4. Using an in vitro model system of Ishikawa
endometrial epithelial cells stably expressing PTGER2 and human first trimester decidua explants, we demonstrate that CXCR4 expression is
regulated by PTGER2 via the epidermal growth factor receptor (EGFR)-phosphatidylinositol-3-kinase (PI3K)-extracellular signal-regulated
kinase (ERK1/2) pathway.Taken together, our data suggest that early embryonic signals may regulate fetal–maternal crosstalk in the human
endometrium by inducing CXCR4 expression via the PGE2–PTGER2-mediated induction of the EGFR, PI3K and ERK1/2 pathways.
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Introduction
Prostaglandins (PGs) have been recognized for many years as key regu-
lators of female reproductive tract function, including ovulation, implan-
tation, menstruation and myometrial contractility (Baird et al., 1996;
Dong et al., 1996; Kniss, 1999; Jabbour et al., 2006). In the human endo-
metrium, PGE2 is abundantly biosynthesized from arachidonic acid by
prostaglandin-endoperoxide synthase (PTGS; also called cyclooxygenase
or COX) and terminal PG E synthase enzymes. Following biosynthesis,
PGE2 is transported out of the cell and functions by binding to and acti-
vating G protein-coupled receptors of which there are 4 subtypes
(PTGER1-4) (Sales and Jabbour, 2003; Jabbour and Sales, 2004).

Although all PG receptors are widely distributed throughout the
human body, expression of PTGER2 is most abundant in the uterus
and placenta (Smock et al., 1999), suggesting an important role for

this receptor in uterine function. Indeed, knock-out mouse studies
have shown that PGE2 and PTGER2 play important roles in uterine
implantation. These studies have highlighted that inhibition of PTGS2
activity and PGE2 biosynthesis results in delayed implantation and
ablation of PTGER2 signalling results in implantation failure (Hizaki
et al., 1999; Kennedy et al., 1999; Tilley et al., 1999; Narumiya and
FitzGerald, 2001; Shah and Catt, 2005).

Successful implantation is reliant on fetal–maternal dialogue during the
window of uterine receptivity, which commences around 6 days after the
luteinizing hormone peak, when the uterus is responsive to embryonic
signals (Tabibzadeh, 1998). One of the earliest embryonic signals in pri-
mates is chorionic gonadotrophin (CG), which is biosynthesized by the
syncitiotrophoblast cells of the blastocyst (Spencer and Bazer, 2004).
Little is known of the precise molecular mechanism regulating fetal–
maternal dialogue to facilitate successful pregnancy outcomes.
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Endometrial receptivity is associated with the induction of
expression of a host of adhesive molecules, growth factors, cytokines,
chemokines and chemokine receptors. One such receptor, CXCR4,
increases in the endometrium of the baboon during the window of
implantation in response to CG treatment (Sherwin et al., 2007), is
elevated in human decidualized stromal cells in response to con-
ditioned medium from trophoblasts (Hess et al., 2007) and is
induced in endometrial epithelial cells at the site of blastocyst apposi-
tion in vitro (Dominguez et al., 2003). Furthermore, its expression is
reduced in the receptive period of women who were refractory to
implantation (Tapia et al., 2008). These data highlight the potential
importance of this receptor for early pregnancy events, however,
the molecular mechanisms regulating its expression in the human
endometrium remain to be fully elucidated.

We have previously shown that PGs can regulate expression of
inflammatory mediators and angiogenic growth factors in endometrial
and cervical epithelial cells via the PTGER2-mediated transphosphor-
ylation of the epidermal growth factor receptor (EGFR) and extracellu-
lar signal-regulated kinase pathways (ERK1/2) (Sales et al., 2002b;
Jabbour and Boddy, 2003; Battersby et al., 2007). The EGFR, ERK1/
2, and more recently, the phosphatidylinositol-3-kinase (PI3K) path-
ways are thought to play a role in regulating genes involved in
growth, differentiation and uterine receptivity (Evans et al., 2008,
2009; Banerjee et al., 2009).

The aim of this study was to determine the mechanism of regulation
of CXCR4 expression in the human endometrium and first trimester
human decidua by CG. We found that CXCR4 was elevated in the
epithelial and stromal compartments during the mid-secretory phase
of the menstrual cycle coincident with PTGER2 and was further elev-
ated in the decidua of early pregnancy. We investigated the molecular
mechanism whereby CG regulates CXCR4 expression in first trime-
ster decidua. We found that CG induces expression of PTGS2 and
PTGER2 and release of PGE2 in first trimester decidua explants. In
turn PGE2 via PTGER2 induces the expression of CXCR4. Using an
in vitro model system of Ishikawa endometrial epithelial cells stably
expressing PTGER2, we found that CXCR4 expression was regulated
by PTGER2 via the EGFR-PI3K-ERK1/2 pathway.

Experimental procedures

Reagents
Dulbecco’s modified Eagle’s medium (DMEM) F-12 GLUTAMAX cell
culture medium was purchased from Invitrogen Life Technologies
(Paisley, UK). The protein kinase A (PKA) inhibitor [4-cyano-
3-methylisoquinoline (4C3MQ), used at 1 mM], mitogen-activated
protein kinase (MAPK kinase)/MEK inhibitor (PD98059, used at
50 mM), the phosphatidylinositol 3-kinase (PI3K/Akt) inhibitor (wortman-
nin, used at 20 nM) and the EGFR tyrosine kinase inhibitor (AG1478; used
at 100 nM) were purchased from Calbiochem (Nottingham, UK). Recom-
binant hCG (used at a final concentration of 1 international unit; IU), the
PTGER2 agonist (butaprost, used at 5 mM) and PTGER2 antagonist
(AH6809, used at 10 mM) were purchased from Sigma (Dorset, UK).
The anti-phospho-ERK1/2, anti-total ERK1/2, anti-phospho-FAKy397,
anti-phospho-FAKy925 and anti-phospho-AKTthr308 were purchased
from Cell Signaling Technologies (New England Biolabs, Ltd., Hertford-
shire, UK).

Patients and tissue collection
Non-pregnant endometrial tissue (n ¼ 30) at different stages of the
menstrual cycle was collected from women undergoing surgery for
minor gynaecological procedures using an endometrial suction
curette (Pipelle, Laboratoire CCD, France). The women had no
underlying endometrial pathology and had regular menstrual cycles
of between 25 and 35 days. None of these women had received a
hormonal preparation in the 3 months preceding biopsy collection.
Biopsies were dated according to stated last menstrual period and
confirmed by histological assessment by a pathologist according to cri-
teria of Noyes et al. (1975). Furthermore, circulating estradiol and
progesterone concentrations were consistent for both the stated
last menstrual cycle and histological assessment of the stage of the
menstrual cycle. First trimester decidua (6–10 weeks, n ¼ 27) was
collected from women undergoing elective first-trimester surgical ter-
mination of pregnancy. Ethical approval was obtained from Lothian
Research Ethics Committee and written informed consent was
obtained from all subjects before tissue collection.

Cell and tissue culture and treatment
Ishikawa endometrial epithelial cells were obtained from the European
Collection of Cell Culture (Wiltshire, UK). Stable PTGER2-transfected
cells were designed and characterized as described before (Abera
et al., 2010). PTGER2 Ishikawa cells were cultured in DMEM/F-12 cul-
tured medium supplemented with 10% fetal bovine serum (Sigma) and
a maintenance dose of 200 mg/ml of G418 antibiotic (Sigma). Cells
(�2 × 105) were incubated in 2 ml serum-free DMEM overnight
prior to agonist treatments either alone or in the presence of inhibi-
tors for times indicated in figure legends. Inhibitors were added
30 min prior to agonist treatment. Vehicle/agonist treatments were
administered once at time zero. Cells were harvested and RNA and
protein was extracted for RT–PCR and western blot/phospho-array
analysis, respectively. Cell experiments were performed in 6-well
plates in duplicate.

Tissue explants were finely chopped with scissors and divided into
equal portions of �20 mg and incubated in 1 ml of serum-free DMEM
overnight. Tissues were then stimulated with vehicle or agonist in the
presence of inhibitors in 1 ml of serum-free DMEM for the times indi-
cated in figure legends. Inhibitors were added 30 min prior to vehicle
or agonist treatment. Vehicle/agonist treatments were administered
once at time zero. Tissues were removed from the culture medium
and weighed. RNA was extracted from the tissues for RT–PCR analy-
sis and the conditioned media was collected for PGE2 ELISA. Tissue
experiments were performed in duplicate.

Taqman quantitative RT–PCR
Total RNA was extracted from cells using Total RNA Isolation
Reagent (TRI reagent) from Sigma following the manufacture’s instruc-
tions using phase lock tubes from Eppendorf (Cambridge, UK). Quan-
tified RNA samples were reverse transcribed and quantitative RT–
PCR was performed as described before (Sales et al., 2004) using
the ABI7500 or ABI7900 real-time PCR platform (Applied Biosystems,
Warrington, UK). Sequence-specific primers and probes were
designed to span an intron. The sequences of the primers and
probes for PTGER2, PTGS2 and ribosomal 18S have been described
in our earlier studies (Sales et al., 2001, 2002a). Primer and probe
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sequences for CXCR4 are as follows: forward: 5′-CAG-TGG-CCG
ACC-TCC-TCT-3′: reverse: 5′-CAG-TTT-GCC-ACG-GCA-TCA-3′

and probe 5′-FAM-TCA-TCA-CGC-TTC-CCT-TCT-GGG-CA-3′.
Analysis of all samples was performed using the comparative CT
method (DDCT) and results were expressed relative to a positive
RNA standard (cDNA obtained from a single endometrial tissue)
included in all reactions. The expression of all analysed genes was nor-
malized for RNA loading using ribosomal 18S RNA as an internal stan-
dard in the same reaction. Where data are expressed as fold above
control, the relative DDCT value for the treatment group was
divided by the DDCT for the vehicle group. All data are expressed
as mean+ SEM.

PGE2 ELISA
The PGE2 ELISA is an established in-house assay system validated and
reported previously (Denison et al., 1999; Ledingham et al., 1999). All
culture medium from tissue experiments for ELISA were treated 1:1
with methyloximating solution (0.1 M methoxyamine hydrochloride in
10% ethanol diluted in 1 M sodium acetate, pH 5.6) overnight at 48C.
Plates (Costar Amine-binding plates, Paisley, UK) were coated with
donkey anti-rabbit (DAR serum; Scottish Antibody Production Unit,
Carluke, UK) using the direct g-globulin binding procedure. The assay
used a PGE–biotin link as a pro-label as described previously
(Denison et al., 1999; Ledingham et al., 1999). Samples and synthetic
standards (Applied Therapeutics, Paisley, UK; highest concentration

5120 pg/ml) were analysed in duplicate. The intra- and inter-assay coef-
ficients of variation were 7.8 and 15.0%, respectively and the ED50 was
195 pg/ml. The PGE2 concentration in all samples was normalized to
the wet weight of the tissue. Fold increase was calculated by dividing
the value obtained for the agonist treatment by the vehicle treatment
for the same sample. Data are presented as mean+ SEM.

Immunohistochemistry
Localization of CXCR4 protein expression was investigated in endo-
metrial (n ¼ 5 proliferative, n ¼ 5 early secretory and n ¼ 5 mid
secretory) and decidual tissues (n ¼ 10 decidual tissues ranging from
week 6 to week 10 of pregnancy) by immunohistochemistry using
the Vision Biosystems Bond Immunostaining Robot under normal
operating conditions (Leica Microsystems Wetzlar, Germany) as
described (Sales et al., 2009). Immunostaining was performed follow-
ing antigen retrieval in 0.01 M sodium citrate pH 6 using a specific
primary antibody for CXCR4 (1:100; Santa Cruz Biotechnology,
Wiltshire, UK). Control tissue was incubated with immunoglobulin
(IgG) from the host species.

KinetworksTM phosphoprotein analysis
For phosphoprotein array analysis, approximately 3 × 106cells were
seeded in 10 cm dishes. On the following day, the cells were
washed with PBS and incubated in serum-free culture medium con-
taining penicillin/streptomycin for at least 16 h. After stimulation

Figure 1 Relative mRNA expression for PTGER2 (A and C) and CXCR4 (B and D) in proliferative phase (n ¼ 10), early secretory phase (n ¼ 10)
and mid-secretory phase (n ¼ 10) endometrium and first trimester decidua (n ¼ 30) as determined by quantitative RT–PCR analysis. Data are pre-
sented as mean+ SEM. *and ***denotes significance at P , 0.05 and P , 0.001, respectively.
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with vehicle (ethanol v/v) or butaprost for 10 min, cells were washed
with ice-cold PBS and proteins were extracted with protein lysis buffer
[150 mM NaCl, 50 mM Tris–HCl (pH 7.4), 10 mM EDTA, 0.6%
nonidet-P40 and 10% glycerol containing protease inhibitors (Protease
inhibitor mini-cocktail, Roche, UK and 1 mM Na3VO4)]. Insoluble
material was pelleted by centrifugation at 14 000 × rpm for 20 min
at 48C. The clarified lysate was removed to a new tube and protein
content was quantified by the method of Lowry (Bio-Rad, Hemel
Hempstead, UK). Detergent-solubilized extracts (500 mg) from
PTGER2 cells were subjected to Kinetworks phospho-site screening
(KPSS) as described on the Kinexus Bioinformatics Corporation
Website (www.kinexus.ca). These screens use panels of highly vali-
dated commercial phosphosite-specific antibodies and 20-lane multi-
channel blotters. The intensities of the enhanced chemiluminescence
signals for the target protein bands on the Kinetworks immunoblots
were quantified with a fluorS Max imager and Quantity One software
(Biorad) as described on the Kinexus Bioinformatics Corporation
Website (www.kinexus.ca).

Western blot analysis
Immunoprecipitation and western blot analysis was carried out as
described previously (Sales et al., 2004, 2005, 2008; Maldonado-Perez
et al., 2009). After resolving and immunoblotting, membranes were
incubated overnight at 48C, with a specific primary antibodies as
described in the figure legend and secondary antibodies conjugated
to Alexafluor 680 (1:5000; Invitrogen) or IRDyeTM 800 (1:5000;

Rockland, Gilbersville, PA, USA) for 60 min at room temperature.
Blots were visualized and quantified using an Odyssey infrared
imaging system (LI-COR, Cambridge, UK). Data are presented as
mean+ SEM for three independent experiments and are calculated
as fold above control unstimulated cells at time zero after normalizing
to either total ERK or IgG as loading controls as described previously
(Sales et al., 2004, 2005, 2008; Maldonado-Perez et al., 2009).

Statistical analysis
Data are represented as mean+ SEM and were analysed by t-test or
ANOVA using Prism 5.0c (Graph Pad, San Diego, CA, USA).

Results

PTGER2 and CXCR4 expression are
co-regulated during the menstrual cycle
We investigated the temporal expression of PTGER2 and CXCR4
mRNA across the human menstrual cycle by quantitative RT–PCR.
We found that PTGER2 (Fig. 1A) and CXCR4 (Fig. 1B) mRNA
expression levels were significantly elevated in mid-secretory phase
(n ¼ 10), compared with proliferative phase (n ¼ 10) and early
secretory phase (n ¼ 10) endometrium (P , 0.05). Furthermore, we
found that PTGER2 mRNA expression was sustained (Fig. 1C),
while CXCR4 mRNA expression was further increased (Fig. 1D) in

Figure 2 Immunolocalization of CXCR4 protein expression. CXCR4 protein (brown staining) was immunolocalized to the glandular and stromal
compartment of endometrial tissues across the menstrual cycle and first trimester decidua. Images are shown for proliferative phase endometrium (Pr;
n ¼ 5), early secretory phase endometrium (ES; n ¼ 5), mid-secretory phase endometrium (MS; n ¼ 5) and decidua of early pregnancy (n ¼ 10 from
weeks 6 to 10), with greatest immunoreactivity observed in the mid-secretory phase endometrium and decidua, compared with proliferative phase
and early secretory phase endometrium. A representative section at the same magnification is shown for each tissue. Scale bar shown in decidua
sample ¼50 mm.
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the decidua of early pregnancy (n ¼ 30) compared with mid-secretory
phase endometrium (P , 0.01).

Localization of CXCR4 expression in the
endometrium and first trimester decidua
CXCR4 protein was immunolocalized to the glandular and stromal
compartment of endometrial tissues across the menstrual cycle and
decidua of early pregnancy, with greatest immunoreactivity observed
in the mid-secretory phase and decidua, compared with proliferative
phase and early secretory phase endometrium (Fig. 2). CXCR4
protein expression was localized to the same cellular compartment
as PTGER2 in our previous study (Milne et al., 2001). The expression
pattern and intensity of staining for CXCR4 were similar for all patients
at different stages of the menstrual cycle and early pregnancy.

HCG induces PTGS2 and PTGER2 mRNA
expression and PGE2 secretion in first
trimester decidua tissue
A recent study by Banerjee et al. demonstrated that CG regulates PG
E synthase via a phosphatidylinositol 3-kinase (PI3K)–ERK1/2
pathway in human endometrial epithelial cells to potentially regulate
endometrial responses for embryo implantation (Banerjee et al.,
2009). We investigated whether hCG could regulate the PTGS2-PG
pathway in human first trimester decidua tissue. We found that

treatment of first trimester decidua tissue with 1 IU hCG for 8 h sig-
nificantly elevated the mRNA expression of PTGS2 (Fig. 3A; n ¼ 8;
P , 0.05) and PTGER2 (Fig. 3B; n ¼ 8; P , 0.05) and promoted the
secretion of PGE2 (Fig. 3C; n ¼ 8; P , 0.05) compared with vehicle
(phosphate buffered saline; PBS v/v) treated tissue.

CXCR4 expression in first trimester decidua
tissue is regulated by HCG via the
PTGS2-PGE2-PTGER2 pathway
CG is known to regulate CXCR4 expression in the baboon endome-
trium during the window of implantation (Sherwin et al., 2007). We
therefore investigated whether hCG regulates CXCR4 expression in
human first trimester decidua tissue. We found that treatment of
first trimester decidua tissue with 1 IU hCG for 8 h significantly elev-
ated expression of CXCR4 mRNA (Fig. 3D; n ¼ 8; P , 0.05) com-
pared with vehicle (PBS v/v)-treated tissue. We next investigated
whether hCG mediates expression of CXCR4 via PGE2–PTGER2
interaction since PGE2 has recently been shown to regulate CXCR4
expression in hematopoietic stem cells (Hoggatt et al., 2009) and
stromal cells (Katoh et al., 2010). We found that co-treatment of
first trimester decidua tissue with the specific PTGER2 antagonist
AH6809 abrogated the hCG-mediated induction of CXCR4
(Fig. 3D; n ¼ 8; P , 0.01), indicating that the hCG-mediated induction

Figure 3 (A) Expression of PTGS2 (n ¼ 8) and (B) PTGER2 (n ¼ 8) mRNA expression and secretion of PGE2 (C; n ¼ 8) in first trimester decidua
explants as determined by quantitative RT–PCR analysis and ELISA, respectively. Tissues were treated with vehicle (PBS) or 1 IU recombinant hCG
for 8 h. (D) Tissues were treated with vehicle (PBS) or 1 IU recombinant hCG for 8 h, in the absence/presence of the specific PTGER2 antagonist
AH6809 and subjected to quantitative RT–PCR analysis. Data are presented as mean+ SEM. *and **denotes significance at P , 0.05 and P , 0.01,
respectively.
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of CXCR4 occurred by the induction of the PTGS2–PTGER2 pathway
via the biosynthesis of PGE2.

PTGER2 mediates CXCR4 expression in
endometrial epithelial cells via the
EGFR-PI3K-ERK pathway
To investigate PTGER2 signalling to CXCR4, we used an Ishikawa endo-
metrial epithelial cell line stably expressing PTGER2 (Abera et al., 2010).
Treatment of PTGER2 cells with 5 mM butaprost, a specific PTGER2
agonist, resulted in a time-dependent increase in CXCR4 expression

peaking at 6 h [7.1+ 1.9-fold above vehicle (ethanol v/v) treated
control; P , 0.001] (Fig. 4A). To investigate changes in cell signalling
potential in PTGER2 cells after butaprost treatment, a Kinexus
pathway microarray was used to determine target proteins which
could mediate the PTGER2 induction of CXCR4. For this, PTGER2
cells were treated with vehicle (ethanol v/v) or 5 mM butaprost for
10 min and the detergent-solubilized cell lysates were subjected to
Kinexus phosphosite-phosphoprotein array (Table I).

The Kinexus phosphosite-phosphoprotein array identified the
EGFR, PI3K/protein kinase B (also called Akt), extracellular-signal-
regulated kinase (ERK1/2) and focal adhesion kinase (FAK) pathways

Figure 4 (A) Expression of CXCR4 mRNA in PTGER2 cells. Cells were treated with vehicle (ethanol v/v) or 5 mM butaprost for 2, 4, 6 or 8 h and
subjected to quantitative RT–PCR analysis. (B) PTGER2 cells were treated with 5 mM butaprost for 5, 10, 20, 30, 60 and 120 min or left unstimulated
(time ¼ 0) and subjected to western blot analysis. Representative immunoblots with densitometric quantification are shown for phosphoERK1/2 (top
left-hand panel), phosphoAktthr308 (bottom left-hand panel), phosphoFAKy397 (top right-hand panel) and phosphoFAKy925 (bottom right-hand panel).
Data are presented as mean+ SEM from at least three independent experiments. *denotes significance at P , 0.05.
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as significantly elevated more than 25% over the empirically verified
limit by butaprost stimulation (as highlighted in bold on Table I). To
verify the results of the phosphosite array, PTGER2 cells were
treated with 5 mM butaprost for 5, 10, 20, 30, 60 and 120 min or
left unstimulated (time ¼ 0) and the detergent-solubilized lysates
were subjected to western blot analysis. As shown in Fig. 4B, buta-
prost rapidly phosphorylated ERK1/2 and Akt with maximal response
after 10 min of agonist treatment (top and bottom left-hand panel for
ERK1/2 and Akt, respectively; P , 0.05), whereas FAK at tyrosine
residues 397 and 925 (top and bottom right-hand panels, respectively;
P , 0.05) were phosphorylated maximally at 20 and 30 min of agonist
treatment.

Based on the signalling pathways identified in Table I, we investigated
PTGER2 signalling to CXCR4 by quantitative RT–PCR analysis using
small molecule chemical inhibitors. PTGER2 cells (Fig. 5A) and first tri-
mester decidua explants (Fig. 5B; n ¼ 8) were treated with vehicle
(ethanol v/v) or 5 mM butaprost for 6 h in the absence or presence
of the specific PTGER2 antagonist AH6809 or inhibitors of adenosine
3′,5′-cyclicmonophosphate-mediated (PKA; 4C3MQ), EGFR tyrosine
kinase activity (AG1478), PI3K/Akt (wortmannin) or ERK1/2 (MEK,
PD98059). We found that butaprost-mediated CXCR4 induction in
PTGER2 cells and first trimester decidua tissues was inhibited by the
PTGER2 antagonist, EGFR, PI3K/Akt and ERK1/2 inhibitors, but not
by the PKA inhibitor (P , 0.05).

Discussion
Fetal–maternal crosstalk between the blastocyst and endometrium is
essential for successful implantation and pregnancy. The process of
implantation may be divided into three stages: apposition, adhesion
and invasion (Enders, 1976). During apposition, fetal–maternal dialo-
gue often occurs in the absence of physical contact between the blas-
tocyst and endometrium via soluble factors. This is followed by
adhesion and anchorage of the trophoblast cells to the receptive
endometrial epithelium and invasive penetration of the blastocyst
through the luminal epithelium (Enders, 1976). Although it is known
that the blastocyst can implant in different human tissues, in the
endometrium it can only implant during the window of uterine
receptivity, which commences around 6 days after the luteinizing
hormone peak when the uterus is primed for blastocyst attachment
(Psychoyos, 1973).

The blastocyst is known to secrete various factors during early
embryogenesis in addition to CG, which influences endometrial recep-
tivity. For example, the chemokine CXCL12, secreted from the blas-
tocyst, has been shown to promote crosstalk between trophoblast
cells and decidua during early pregnancy (Zhou et al., 2008). Further-
more the receptor for CXCL12, CXCR4 is regulated in the endome-
trium by embryonic signals (Sherwin et al., 2007). However, its
regulation in the human endometrium during early pregnancy
remains to be fully described.

Since ablation of PTGER2 expression in the mouse results in implan-
tation failure and since PGE2 has been shown recently to regulate
CXCR4 expression in hematopoietic stem cells (Hoggatt et al., 2009)
and stromal cells (Katoh et al., 2010), we examined the expression of

........................................................................................

Table I Target proteins phosphorylated in response to
treatment with butaprost.

Target protein Fold
increase

Extracellular regulated protein-serine kinase 1
(p44 MAP kinase) [T202 1 Y204]

2.199204413

Extracellular regulated protein-serine kinase 2
(p42 MAP kinase) [T185 1 Y187]

1.509530949

Glycogen synthase-serine kinase 3 alpha [S21] 1.174561456

Glycogen synthase-serine kinase 3 alpha [Y279] 1.105722953

Glycogen synthase-serine kinase 3 beta [Y216] 1.047696379

Jun N-terminus protein-serine kinase [stress-activated
protein kinase (SAPK)] [T183 + Y185]

0.829448891

Jun proto-oncogene-encoded AP1
transcription factor [S73]

1.282139734

Jun proto-oncogene-encoded AP1
transcription factor [S73]

1.763621955

MAPK/ERK protein-serine kinase 1/2 (MKK1/2)
[S218 1 S222]

1.964825861

MAPK/ERK protein-serine kinase 3/6 (MKK3/6)
[S189/S207]

0.980927973

Mitogen-activated protein-serine kinase p38
alpha [T180 1 Y182]

1.391426114

p70 ribosomal protein-serine S6 kinase alpha [T389] 0.495045106

Protein-serine kinase B alpha [S473] 0.977595521

Protein-serine kinase B alpha [T308] 1.391434041

Protein-serine kinase C alpha [S657] 0.909071756

Protein-serine kinase C alpha/beta 2 [T638/T641] 0.906168084

Protein-serine kinase A alpha/beta 0.48832985

Raf1 proto-oncogene-encoded protein-serine
kinase [S259]

1.381611395

Raf1 proto-oncogene-encoded protein-serine
kinase [S259]

1.586721643

3-phosphoinositide-dependent protein-serine
kinase 1 [S244]

1.332741421

Signal transducer and activator of transcription 3 [S727] 0.505564594

Src proto-oncogene-encoded protein-tyrosine kinase
[Y529]

0.68232502

Src proto-oncogene-encoded protein-tyrosine kinase
[Y529]

0.59734941

Calcium/calmodulin-dependent protein-serine kinase
2 alpha [T286]

0.750772375

Catenin (cadherin-associated protein) beta 1 [S45] 0.989877993

cAMP response element binding protein 1 [S133] 1.12843861

Epidermal growth factor receptor-tyrosine kinase
[Y1148]

1.559698077

ErbB2 (Neu) receptor-tyrosine kinase [Y1248] 0.681088989

Focal adhesion protein-tyrosine kinase [Y397] 1.495268512

A Kinexus antibody pathway array was used to detect changes in cell signalling pathways
after treatment of PTGER2 cells with vehicle (ethanol v/v) or 5 mM butaprost for
10 min. The results are reported as fold change above vehicle control. Selected proteins
that increased more than 25% over the empirically verified limit (indicated in bold by a
fold increase of 1.25 or more) were validated by western blot (Fig. 4B).
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PTGER2 and expression and localization of CXCR4 in the human endo-
metrium across the menstrual cycle and in first trimester human
decidua. We found that CXCR4 was elevated in the epithelial and
stromal compartments during the mid-secretory phase of the menstrual
cycle. This is an agreement with previous observations for up-regulation
of this chemokine receptor during the receptive phase of the menstrual
cycle, where its expression is regulated endogenously by estradiol and
progesterone (Dominguez et al., 2003).

We found that CXCR4 expression was coincident with PTGER2
expression in endometrial tissues in the mid-secretory phase of the
cycle, and was further elevated in the decidua of early pregnancy. The
spacio-temporal pattern of expression and localization of CXCR4 to
epithelial cells and stromal cells in the endometrium was similar to
that of PTGER2, reported in our previous study (Milne et al., 2001),
suggesting a potential crosstalk between these two receptors.

In an in vitro model, blastocyst apposition can polarize CXCR4
expression in cultured endometrial epithelial cells (Dominguez et al.,
2003). These findings, together with data from the baboon, showing
that CG induces CXCR4 expression in the endometrium (Sherwin
et al., 2007), and co-culture studies showing elevated CXCR4 expression

in human decidualized stromal cells in response to conditioned medium
from trophoblasts (Hess et al., 2007) suggest that embryonic signals in
primates can induce, polarize and maintain expression of CXCR4 in
the endometrial epithelium to ensure successful implantation. Indeed,
women who exhibit recurrent implantation failure have lower levels of
CXCR4 compared with fertile women, despite having normal levels of
estradiol and progesterone (Tapia et al., 2008). These findings indicate
that hormonal regulation alone may not be sufficient to regulate
CXCR4 expression for successful implantation.

We therefore investigated the regulation of CXCR4 in the decidua
of early pregnancy in response to the embryonic signal CG. We found
that CG induces expression of PTGS2 and PTGER2 and release of
PGE2 in first trimester decidua explants. These observations are
similar to those of Zhou et al. (1999) and Banerjee et al. (2009)
who have shown that CG can increase the expression of PTGS2
and PGE synthase in endometrial epithelial cells. Once biosynthesized
and released, PGE2 via PTGER2 induces the expression of CXCR4,
since treatment of human first trimester decidua tissue explants with
CG and the specific PTGER2 antagonist, AH6809, abrogated the
induction of CXCR4.

Figure 5 Expression of CXCR4 mRNA in PTGER2 cells and first trimester decidua explants. Cells (A) and tissues (B; n ¼ 8) were treated with
vehicle (ethanol v/v) or 5 mM butaprost for 6 h in the absence/presence of the specific PTGER2 antagonist AH6809, MEK inhibitor PD98 059,
cAMP-PKA inhibitor 4C3MQ, PI3K/Akt inhibitor wortmannin or EGFR tyrosine kinase AG1478 and subjected to quantitative RT–PCR analysis.
Data are presented as mean+ SEM. b denotes significance from a; P , 0.05.
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Using an in vitro model system of endometrial epithelial cells stably
expressing PTGER2 and first trimester decidua tissue explants, we
investigated the molecular mechanism whereby PTGER2 signalling
regulates CXCR4. We found that CXCR4 expression was regulated
by PTGER2 via the EGFR-PI3K-ERK1/2 pathway. In a previous
study, we found that PTGER2-mediated activation of ERK1/2 in endo-
metrial epithelial cells is mediated via sequential transactivation of the
EGFR and activation of the MAPK kinase kinase Raf, which results in
the sequential phosphorylation of the MAPK/ERK protein serine
kinase 1/2 (MEK), which in turn activates ERK1/2 (Sales et al.,
2004). These findings have been confirmed by our phosphosite
array in our present study. Furthermore, the phosphosite array has
highlighted the potential importance of the PI3K/Akt pathway in
PTGER2-mediated cell signalling. This is in accordance with a recent
study by Banerjee et al. who showed that CG-mediated ERK1/2 phos-
phorylation in endometrial epithelial cells is mediated via the Raf-
mediated activation of the PI3K/Akt pathway (Banerjee et al.,
2009). It is therefore likely that the PI3K/Akt pathway is an intermedi-
ate step between the PTGER2-mediated activation of Raf-ERK1/2
phosphorylation in PTGER2 cells. The PI3K/Akt and ERK1/2 path-
ways are both pro-survival pathways which support cellular growth,
proliferation, differentiation and survival: critical responses that occur
in the endometrium during implantation (Gentilini et al., 2007). Inter-
estingly we found that PTGER2 signalling to CXCR4 was independent
of the cAMP-mediated PKA pathway since the phosphosite array
showed that cAMP response element binding protein was not phos-
phorylated and the PKA inhibitor, 4C3MQ, failed to reduce the
agonist-mediated induction of CXCR4.

Moreover, our phosphosite array has highlighted the activation of
FAK at tyrosine residue 397. FAK is a non-receptor tyrosine kinase
that forms part of the plasma membrane focal adhesion complex,
which assembles on integrin heterodimers following integrin engage-
ment of extracellular matrix proteins (Wozniak et al., 2004). FAK is
activated by autophosphorylation at tyrosine 397 that is initiated by
integrin engagement with its ligand. When phosphorylated, tyrosine
397 becomes a docking site for various adaptor proteins which in
turn phosphorylate FAK at tyrosine 925 to further activate the FAK
kinase activity (Wozniak et al., 2004). In our study, we found that
FAK is phosphorylated at both tyrosine residues 397 and 925. In
the reproductive tract, integrins undergo dramatic alterations in
expression during the normal menstrual cycle, with integrin avb3
and its ligand expressed in the endometrium during implantation
(Lessey et al., 1994). Indeed, FAK neutralization studies conducted
in a blastocyst-endometrium co-culture model have shown that FAK
is important during embryonic implantation by regulating blastocyst
cellular outgrowth (Hanashi et al., 2003). Therefore in addition to reg-
ulating cell proliferation/differentiation/survival signals via activation of
PI3K-Akt signalling during the window of implantation and early preg-
nancy, PTGER2 signalling may also prepare the endometrium for
implantation by up-regulating expression of proteins involved in
cell–matrix interaction and attachment, such as FAK.

Conclusion
Our data show that CXCR4 and PTGER2 receptors are coincidently
up-regulated during the window of implantation and the decidua of
early pregnancy. In first trimester decidua explants, CG induces the

expression of PTGS2 and biosynthesis of PGE2, which in turn
induces expression of CXCR4 via PTGER2 interaction. Taken
together our data suggest that embryonic signals can prime the endo-
metrium for implantation and early pregnancy by regulating expression
of chemokine receptors, such as CXCR4 via the EGFR, PI3K/Akt and
ERK1/2 pathways.
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