Laser detection of spin-polarized hydrogen from HCl and HBr photodissociation: Comparison of H- and halogen-atom polarizations

Citation for published version:

Digital Object Identifier (DOI):
10.1063/1.2989803

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
The Journal of Chemical Physics

Publisher Rights Statement:
Copyright 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Laser detection of spin-polarized hydrogen from HCl and HBr photodissociation: Comparison of H- and halogen-atom polarizations
Dimitris Sofikitis, Luis Rubio-Lago, Lykourgos Bougas, Andrew J. Alexander, and T. Peter Rakitzis

Citation: J. Chem. Phys. 129, 144302 (2008); doi: 10.1063/1.2989803
View online: http://dx.doi.org/10.1063/1.2989803
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v129/i14
Published by the AIP Publishing LLC.

Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/
Journal Information: http://jcp.aip.org/about/about_the_journal
Top downloads: http://jcp.aip.org/features/most_downloaded
Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

Explore the Most Cited Collection in Applied Physics

AIP Publishing
Laser detection of spin-polarized hydrogen from HCl and HBr photodissociation: Comparison of H- and halogen-atom polarizations

Dimitris Sofikitis,1,2 Luis Rubio-Lago,2 Lykourgos Bougas,1,2 Andrew J. Alexander,3 and T. Peter Rakitzis1,2,a

1Department of Physics, University of Crete, 71003 Heraklion-Crete, Greece
2Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion-Crete, Greece
3School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, United Kingdom

(Received 31 March 2008; accepted 3 September 2008; published online 8 October 2008)

Thermal HCl and HBr molecules were photodissociated using circularly polarized 193 nm light, and the speed-dependent spin polarization of the H-atom photofragments was measured using polarized fluorescence at 121.6 nm. Both polarization components, described by the $a_0^s(\perp)$ and $\text{Re}[a_1^s(\|, \perp)]$ parameters which arise from incoherent and coherent dissociation mechanisms, are measured. The values of the $a_0^s(\perp)$ parameter, for both HCl and HBr photodissociation, are within experimental error of the predictions of both ab initio calculations and of previous measurements of the polarization of the halide cofragments. The experimental and ab initio theoretical values of the $\text{Re}[a_1^s(\|, \perp)]$ parameter show some disagreement, suggesting that further theoretical investigations are required. Overall, good agreement occurs despite the fact that the current experiments photodissociate molecules at 295 K, whereas previous measurements were conducted at rotational temperatures of about 15 K. © 2008 American Institute of Physics. [DOI: 10.1063/1.2989803]

I. INTRODUCTION

The measurement of photofragment angular momentum polarization is an extremely sensitive probe of photodissociation dynamics and offers a powerful method for measuring nonadiabatic-transfer probabilities and asymptotic phase shifts between wavefunctions of dissociative states.1–7 Such measurements are becoming routine, especially since the pioneering work of Siebbeles et al.;7 however, most of these measurements have been limited to a handful of atoms which have convenient laser-detection schemes, such as Cl, Br, O, and S.8–13 Conspicuously absent in photofragment polarization studies has been the ground state of the simplest atom, hydrogen, although mechanisms for the polarization of H atoms from hydrogen halide photodissociation have been discussed for some time.10,27,28 In contrast, the fluorescence of excited H-atom states from the photodissociation of H2 has—until now—been achieved only by resolving the fine structure of the nascent H atoms

The aims of this paper are to give a detailed description of the experimental procedures and checks necessary for the detection of the spin polarization of H atoms and to present results for the photodissociation of HCl at 193 nm, comparing them to the previously published results of the photodissociation of HBr, with ab initio

aElectronic mail: ptr@iesl.forth.gr.
II. EXPERIMENTAL

A schematic of the experimental setup is shown in Fig. 1. Neat HBr or HCl is leaked into a vacuum chamber, and the pressure of the room-temperature gas is measured with a capacitance manometer (typically about 10 μbar were used). The photolysis and probe laser beams counterpropagate through the chamber. The photolysis laser beam, at 193 nm, is generated by an ArF excimer laser (PSX-501, Neweks, Estonia), which is first linearly polarized by reflecting from a thin-film polarizer (Laseroptik, Germany), then circularly polarized using a zero-order quarter-wave plate, and finally is focused at the interaction region (focal length f=50 cm); the laser output of the 193 nm light was about 5 mJ pulse⁻¹. A photoelastic modulator (PEM-80, Hinds Instruments) is placed before the quarter-wave plate. Synchronization to the stress cycle of the PEM allowed the linear polarization of the light to be alternated between vertical and horizontal; after passing through the quarter-wave plate, the photolysis laser polarization alternates between right and left circular polarization states on a shot-to-shot basis. Both photolysis and probe lasers were operated at 10 Hz.

The probe laser beam, at 121.6 nm, is generated by frequency-tripling 364.7 nm light (from the output of an excimer-pumped dye laser system) in a krypton/argon gas mixture, and the beam is then focused into the vacuum chamber with a magnesium fluoride (MgF2) lens. The 121.6 nm light generated is linearly polarized and is made circularly polarized by passing it, under vacuum, through a MgF2 variable wave plate (Alphalas, Germany); the tilt angle (about an axis which was set at 45° to the polarization axis of the 364.7 nm light and hence also to the polarization axis of the 121.6 nm light) is varied until the 121.6 nm light is circularly polarized. The experimental check for verifying the circular polarization of the 121.6 nm probe light was detection of the H-atom fluorescence intensity as the 364.7 nm light was alternated between horizontal and vertical linear polarization states. When the phase shift of the variable wave plate is 0, the polarization of the 121.6 nm light also alternates linearly between horizontal and vertical; when the phase shift is π (half-wave retardation) it alternates between vertical and horizontal; and when the phase shift is π/2 (quarter-wave retardation) it alternates between right and left circular polarization states. As discussed below, the fluorescence intensity ratio, \(I_+ / I_- \), between the 121.6 nm fluorescence polarization axis being parallel (\(I_+ \)) and perpendicular (\(I_- \)) to the polarization direction of the excitation light is 5:2. Initially, with respect to the 364.7 nm light polarization axis (which is parallel to the 121.6 nm polarization axis), a ratio of about 5:2 is measured. When the variable wave plate introduces a phase shift of π, and the vertical and horizontal polarization states of the 121.6 nm light are exchanged (using a half-wave plate), then the polarization ratio with respect to the 364.7 nm light polarization axes is inverted to be 2:5. The intermediate point, where the ratio is 1:1, is where the 121.6 nm light is circularly polarized. However, the signal-to-noise ratio on this fluorescence signal was about 10:1 so that the degree of the circular polarization of the 121.6 nm light could only be determined to be in excess of about 90%. Other methods for generating 121.6 nm exist (not currently available to us), such as four-wave mixing, which can produce more light intensity, and where the polarization of the 121.6 nm light can be controlled more directly by varying the polarization of visible light, obviating the need for the manipulation of polarization optics in vacuum.

The 121.6 nm fluorescence was collected perpendicular to the laser propagation direction. It was collected and collimated with a MgF2 lens (\(f=12 \) cm). The fluorescence was linearly polarized parallel to the laser propagation direction by reflecting it from a MgF2 plate at Brewster’s angle (about 58.5° for 121 nm light) and was passed through a 121.6 nm interference filter with a 10 nm bandwidth (Acton Research Corp., Acton, MA, USA), and finally the fluorescence was detected with a photomultiplier tube (9403B, Electron Tubes, UK). All collection optics and the variable waveplate were held under vacuum (all in the same chamber) and were routinely subjected to pressures of HBr or HCl of up to 1 mbar, without significant adverse effects (cleaning of the optics, especially following use with HBr, was required every few days.).

H atoms were detected via the 2p ← 1s transition at about 121.6 nm. For experimental checks of the detection scheme, H atoms were generated from collisions of background contaminants, such as pump oil, with a nude ion gauge to produce H atoms which, upon thermalization in the chamber, possessed translational temperatures of about 300 K. For these H atoms, the Doppler spread was small enough that some evidence of fine-structure resolution was observed (though mostly unresolved; see below). The two transitions involved were the \(^2P_{1/2} ← ^2S_{1/2} \) and \(^2P_{3/2} ← ^2S_{1/2} \), which, with linearly polarized light, are excited with probability 1:2. The \(^2P_{1/2} \) state fluoresces isotropically since \(J=1/2 \); in contrast, the \(^2P_{3/2} \) state, populated only in the...
m = ± 1/2 states from $^2P_{3/2} \leftarrow ^2S_{1/2}$ excitation with linearly polarized light, fluoresces anisotropically, which can be described by the fluorescence polarization anisotropy R: \[R = \frac{I_1 - I_{2\perp}}{I_1 + 2I_{2\perp}}, \]

where I_1 and $I_{2\perp}$ are defined above. For a $\Delta F = +1$ transition, as for the $^2P_{3/2} \leftarrow ^2S_{1/2}$ transition, the polarization anisotropy is given by $m = 1$.

where J_i is the angular momentum of the ground state. For $J_i = 1/2$, $R = 1/2$, which yields, from Eq. (1), a fluorescence polarization ratio $(I_1/I_{2\perp}) = 4$. Therefore, for the $^2P_{3/2} \leftarrow ^2S_{1/2}$ and $^2P_{3/2} \leftarrow ^2S_{1/2}$ transitions, the fluorescence polarization ratios $(I_1/I_{2\perp})$ are 1 and 4, respectively. We note that the $2p$ hyperfine depolarization times are more than 15 times longer than the $2p$ fluorescence lifetime of 1.1 ns so that hyperfine structure can be ignored in the calculation of the $(I_1/I_{2\perp})$ polarization ratio. Averaging the two transitions (and noting that the fluorescence intensity ratio over all space between the two transitions is 1:2, equal to the excitation probability ratio), the $(I_1/I_{2\perp})$ ratio for the unresolved $2p \rightarrow 1s$ transition is found to be 2.5 ideally. The calculation of this ratio assumes that all the optics behave ideally and that the fluorescence of the H atoms is unperturbed by external factors such as fields or collisions. Therefore, the measurement of these polarization ratios serves as an important experimental test of the detection scheme.

The polarization ratio $(I_1/I_{2\perp})$ can be used to describe all four polarization ratios that can be realized in our experimental geometry (see Fig. 1; note that the detection system can be rotated so that fluorescence linearly polarized along either Z'_{lab} or Y'_{lab} can be detected). These are described by the signal intensities I_{FG}, where F denotes the axis of the excitation polarization and G denotes the axis of the fluorescence polarization. For example, I_{XY} denotes the signal intensity with the excitation polarization axis parallel to X and the fluorescence polarization axis parallel to Y. We can then deduce the following polarization ratios:

\[\frac{I_{YY}}{I_{YZ}} = 2.5, \quad \frac{I_{XY}}{I_{XZ}} = 1, \quad \frac{I_{YX}}{I_{YX}} = 2.5, \quad \frac{I_{YZ}}{I_{XZ}} = 1. \]

In addition, detection without the use of a polarizer (the label O is used here to denote the lack of polarization selection for the detection step) gives

\[I_{YO} = \frac{1}{2} \left(I_{YY} + I_{YX} \right), \quad I_{XO} = \frac{1}{2} \left(I_{XY} + I_{XZ} \right). \]

Only the ratio (I_{YX}/I_{XZ}) has been substituted with its value of 1 because depolarization mechanisms cannot alter this value; in contrast, depolarization mechanisms, such as depolarizing collisions with the excited H atoms, can cause the fluorescence ratios in Eqs. (3a) and (3c) to be reduced. Equation (4), therefore, describes the relationship between unpolarized fluorescence detection ratio (I_{YO}/I_{XO}) and the ratio (I_{YX}/I_{XZ}); as (I_{YX}/I_{XZ}) ranges from the maximum value of 2.5 (no depolarization) down to 1 (complete depolarization), so (I_{YO}/I_{XO}) ranges from 1.75 to 1.

Equations (3a)–(3d) are used to check the performance of detection system. For our experimental setup, rotation of the excitation polarization between the X and Y axes can be achieved robustly with a $\lambda/2$ plate. In contrast, rotation of the polarizer in the detection system from the Y and Z axis involves a physical rotation of the side arm of the vacuum chamber, which may alter the collection efficiency at the detector. Any such variation, in our case, is observed to be small, as the ratio (I_{YX}/I_{XZ}) is measured to be 1 within our experimental error.

In Fig. 2, we show a scan of the probe laser over the $2p \leftarrow 1s$ transition, using light linearly polarized along the Y and X axes and detecting fluorescence linearly polarized along the Y axis; the probed H atoms are produced by a noble ion gauge and are at a temperature of about 300 K. Even though the signal appears to show only one peak, with no apparent resolution of the $^2P_{1/2} \leftarrow ^2S_{1/2}$ and $^2P_{3/2} \leftarrow ^2S_{1/2}$ transitions, measurements of the (I_{YX}/I_{XZ}) polarization ratio across the profile show values that differ from the predicted integrated average ratio of 2.5. These variations show some sensitivity to the resolution of the $^2P_{1/2} \leftarrow ^2S_{1/2}$ and $^2P_{3/2} \leftarrow ^2S_{1/2}$ transitions as their (I_{YX}/I_{XZ}) polarization ratios are 1 and 4, respectively. This shows that the H atoms

FIG. 2. Scan of the 121.6 nm probe laser over the $2p \leftarrow 1s$ transition of H atoms produced from a noble ion gauge and with a translational temperature of about 300 K. No fine-structure resolution is visible. Measurement of the polarization ratio I_{YX}/I_{XZ} at three different probe wavelengths within the profile (solid squares) shows that the ratio I_{YX}/I_{XZ} varies strongly with probe wavelength, demonstrating some degree of fine-structure resolution (see text). In contrast, measurements from H-atom photofragments from the photodissociation of HCl at about 0.2 mbar, with speeds of about 19 km s$^{-1}$ (open circles), show that the ratio I_{YX}/I_{XZ} does not vary significantly over a larger wavelength range and thus does not show any fine-structure resolution.
from the nude ion gauge are not ideal for the polarization calibration of the detection system as integration over the Doppler peak is necessary (which increases acquisition times and sensitivity to experimental instabilities) and the density of the H atoms cannot be measured easily or controlled quantitatively. Therefore, all polarization tests were performed on H atoms from the photodissociation of HCl at 193 nm; these H atoms have a very large Doppler spread so that there is no partial resolution of the fine-structure transitions, and the density of the H atoms can be varied quantitatively by varying the pressure of the HCl. In Fig. 2, measurements of fluorescence ratio \(I_{YY}/I_{XY} \) from H atoms from the photodissociation of HCl at a pressure of 0.2 mbar show no significant variation over a wavelength range larger than the fine-structure splitting.

In Fig. 3, we show the polarization ratio \(I_{YY}/I_{XY} \) measured from H atoms from the photodissociation of HCl as a function of HCl pressure. We see that the ratio increases and tends toward the ideal value of 2.5 as the pressure is decreased. The lowest pressure we were able to work at confidently was about 0.01 mbar, which is the pressure at which all subsequent experiments were conducted. A discussion of the detection of the spin polarization follows, to understand how degradation in the measured \(I_{YY}/I_{XY} \) ratio affects the sensitivity of the detection of the spin polarization.

The H atoms are excited from the 1s \(^2S_{1/2} \) to the 2p \(^2P_{j} \) states using circularly polarized 121.6 nm light. The 121.6 nm fluorescence of the excited atoms is detected perpendicular to the propagation of the excitation laser, and a polarizer is used to detect only fluorescence that is linearly polarized along the Z axis (see Fig. 1), which ensures that the polarization components of the transitions that are observed are those that correspond to \(\Delta m=0 \), irrespective of the original polarization of fluorescence (we note that the polarization components of the transitions that corresponded to \(m= \pm 1 \) are rejected by the polarizer). The geometry of the experiment has been chosen so that angular momentum selection rules constrain the excitation and fluorescence processes to be allowed for only one of the spin states so that the H-atom spin polarization can be determined along the Z axis. The success of the detection scheme relies on the coupling of the electron’s spin to its orbital motion. If the H atoms were to fluoresce very rapidly, on a subpicosecond timescale where spin-orbit coupling can be ignored, our detector would see no fluorescence since, according to selection rules for linearly polarized fluorescence emission, \(\Delta m=0 \) [see Fig. 4(a)]. In contrast, for the \(\sim 1 \) ns fluorescence lifetime of the 2p state, we see that only atoms that originate from the 1s \((m=+1/2) \) “spin-down” state, and that are excited to either of the 2p \(^2P_{j} (m=+1/2) \) states, can subsequently fluoresce linearly polarized photons back to 1s \((m=+1/2) \); no fluorescence can be detected from atoms that originate in the 1s \((m=-1/2) \) “spin-up” state for this particular experimental geometry [see Fig. 4(b)]. The reverse applies for excitation by right circularly polarized light (with \(\Delta m=-1 \)), whereby only the spin-up state can be detected. Thus, this detection scheme allows complete spin-state detection selectivity for spin-polarized hydrogen (SPH) in the ground state, assuming that all the optics and the H-atom fluorescence process behave ideally. In particular, if the extinction ratio of the 121.6 nm polarizer is poor, or if collisions with the excited H-atom cause the fluorescence spatial distribution to become depolarized, then the detection sensitivity will be reduced. This reduction can be described by the factor \(Q \) in the polarization detection expression:

\[
I_{LL(RL)} = \left(\frac{I_0}{2} \right) \left[1 - \frac{\beta}{2} P_2 (\cos \theta) \pm s_1 G^{(1)}_{2s} Q \right. \\
\times \left. \left[1 - \frac{\beta}{2} \vert a_0^\dagger (\perp) \vert^2 \cos^2 \theta \\
- \frac{1}{\sqrt{2}} \text{Re}[a_1^\dagger (\parallel, \perp) \sin^2 \theta] \right] \right].
\]

(5)

where \(\cos \theta \) is the normalized Doppler shift of the SPH atoms given by the velocity projection \(u_\parallel/|v| \) and ranges from -1 to +1. The parameter \(\beta \) describes the spatial distribution of the SPH atom velocities from the photodissociation of HCl or HBr. The \(a_0^\dagger (\perp) \) and \(\text{Re}[a_1^\dagger (\parallel, \perp)] \) parameters describe the recoil-angle-dependent spin polarization of the H atoms. The hyperfine depolarization factor \(G^{(1)}_{2s} \) describes the time-averaged reduction of the spin polarization by the nuclear spin and is given by \(G^{(1)}_{2s}=1/2 \). The detection sensi-
polarization sensitivity is only about 5%, whereas at higher
pressures this reduction is at least 20:1. We decided to use Brewster-angle reflection as a method of polarizing the 121.6 nm fluorescence because the extinction ratio was at least 20:1 (this measurement was limited by our signal-to-noise ratio), which is better than other polarizers used in the vacuum ultraviolet, and the transmission is comparable to these other polarizers. Rotation of our polarizer involved the complete rotation of the side arm of the vacuum chamber, including the Brewster plate and the detector (see Fig. 1).

III. RESULTS AND DISCUSSION

Details of the HCl and HBr photodissociation at 193 nm have been published in the previous experimental and theoretical studies of the cofragment halogen-atom polarization. To set the stage for discussion of the H-atom results, we make a brief review of the electronic states involved, as shown in Fig. 6. We will discuss primarily the case of HCl, but similar conclusions apply for HBr. There are five adiabatic electronic states, three that correlate to ground-state Cl(2P3/2) and two that correlate to excited-state Cl*(2P1/2). The long-range correlations to specific |J, m\rangle states are summarized in Table I, and for brevity we shall refer to these states by nΩ as X0, A1, a1, a0, and r1. Excitation occurs mostly to the A1 state, with some excitation to a0. Previously published experimental measurements and ab initio calculations of the polarization parameters \(a_0^\parallel(\perp) \) and Re\(a_1^\parallel(\perp) \) of the halogen atoms are summarized in Table II. The measurements of the halogen-atom branching ratios, spatial distributions of the halogen atoms (described by the parameter \(\beta \)), and the polarization of the halogen atoms [in particular, the parameter \(a_0^\parallel(\perp) \)] are together sufficient to determine the branching fractions into each of the five product

![FIG. 5. The dependence of the sensitivity reduction factor \(Q \) on the polarization ratio \(I_{YY}/I_{XY} \), from Eq. (6), showing that the reduction in sensitivity in the detection of the spin polarization of H atoms is small provided the ratio \(I_{YY}/I_{XY} \) is close to a maximal value of 2.5 (see Fig. 3).](image)

![FIG. 6. Adiabatic electronic potential energy curves of HCl, showing the five states that are relevant to the present study: \(X(2^3\Sigma^\pm_0) \), \(A'(\Pi) \), \(a'(\Pi) \), \(a'(\Pi)_0 \), and \(r'(\Sigma) \). The potential energy curves for HBr are similar (see Fig. 1 of Ref. 43).](image)
TABLE I. Electronic states involved in the 193 nm photodissociation of HCl and HBr. Y represents the halogen atom (Cl or Br). The product branching into ground and excited halogen atoms has been measured to be 0.59 (Cl) and 0.41 (Cl+) for HCl and 0.86 (Br) and 0.14 (Br+) for HBr. The corresponding spatial distributions of halogen atoms are described by $\beta=-0.97$ (Cl), $\beta=-0.87$ (Cl+), $\beta=-0.88$ (Br), and $\beta=-0.21$ (Br+). The orientation for ground-state atoms was reported to be $a_0(\perp)=0.39\pm0.08$ for Cl and $a_0(\perp)=0.3\pm0.03$ for Br (2σ error bars). In combination, these measurements are sufficient to determine the experimental branching into the five product electronic states, as given in the last two columns of the table for HCl and HBr.

| Product channel | Electronic state | Designation | Product atom correlation $\langle j_m \mu_m | j_m \mu_m \rangle$ | Experimental branching fractions |
|-----------------|-----------------|-------------|---------------------------------|---------------------------------|
| $\text{H}(^2\Pi)+\text{Y}(^2P_{3/2})$ | $X(\Sigma^+_0)$ | $x0$ | $\frac{1}{\sqrt{2}}[1 , 1 , 1 , 1] \quad [1 , 1 \frac{1}{2} , 1 \frac{1}{2} , 1 \frac{1}{2} , 1] \quad [1 , 1 \frac{1}{2} , 1 \frac{1}{2} , 1 \frac{1}{2} , 1]$ | HCl: 0.006, 0.034 |
| $\text{H}(^2\Pi)+\text{Y}(^2P_{1/2})$ | $A(\Pi_1)$ | $a1$ | $\frac{1}{\sqrt{2}}[1 , 1 \frac{1}{2} , 1 \frac{1}{2} , 1 \frac{1}{2} , 1]$ | HBr: 0.149, 0.067 |
| $\text{H}(^2\Pi)+\text{Y}(^2P_{3/2})$ | $a(\Pi^0_1)$ | $a0$ | $\frac{1}{\sqrt{2}}[1 , 1 , 1 , 1] \quad [1 , 1 \frac{1}{2} , 1 \frac{1}{2} , 1 \frac{1}{2} , 1] \quad [1 , 1 \frac{1}{2} , 1 \frac{1}{2} , 1 \frac{1}{2} , 1]$ | HCl: 0.018, 0.037 |
| $\text{H}(^2\Pi)+\text{Y}(^2P_{1/2})$ | $\tau(\Sigma^+_1)$ | $\tau1$ | $\frac{1}{\sqrt{2}}[1 , 1 , 1 , 1] \quad [1 , 1 \frac{1}{2} , 1 \frac{1}{2} , 1 \frac{1}{2} , 1]$ | HBr: 0.392, 0.103 |

TABLE II. A summary of previously published experimental and ab initio values of polarization parameters $a_0(\perp)$ and $\text{Re}[a_1(\parallel, \perp)]$ for the halogen-atom photofragments from the photodissociation of HCl and HBr (Refs. 10, 13, 43, and 44). Note that the sign of the parameter $\text{Re}[a_1(\parallel, \perp)]$ used here has been corrected from Refs. 10 and 13. The uncertainties represent 2σ of the values.

<table>
<thead>
<tr>
<th>HCl photodissociation</th>
<th>HBr photodissociation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expt.</td>
</tr>
<tr>
<td>$a_0(\perp)$</td>
<td>Y($^2P_{3/2}$)</td>
</tr>
<tr>
<td></td>
<td>Y($^2P_{1/2}$)</td>
</tr>
<tr>
<td>$\text{Re}[a_1(\parallel, \perp)]$</td>
<td>Y($^2P_{3/2}$)</td>
</tr>
<tr>
<td></td>
<td>Y($^2P_{1/2}$)</td>
</tr>
</tbody>
</table>
The spin-orbit coupling in the HBr system, suggest an in-
dependent excitations, e.g., it is found that for Cl* atoms
tations tend to overestimate the contribution from perpen-
dental fluorescence signals \(I_{L} \) and \(I_{R} \). (b) The spherical velocity distribu-
tion of the SPH, showing the SPH polarization as a function of angle with
respect to the laser propagation axis, showing \(P_{x} \) cos \(\theta \), the polarization component parallel to the atom recoil direction \(\mathbf{v} \), and \(P_{x} \) sin \(\theta \), the polar-
ization component perpendicular to \(\mathbf{v} \). Both \(P_{L} \) and \(P_{R} \) have positive projec-
tions along \(+Z_{\text{lab}}\). The one-dimensional projection of this distribution gives the
experimental signals. (c) The sum \(I_{L}+I_{R} \) and difference \(I_{L}-I_{R} \) of traces in (a). The sum trace depends only on the velocity distribution of the
H atoms, and the difference trace is proportional to the SPH polarization
[see Eqs. (7a) and (7b)].

FIG. 7. SPH detection from HCl photodissociation at 193 nm. (a) Experimental fluorescence signals \(I_{L} \) and \(I_{R} \). (b) The spherical velocity distribu-
tion of the SPH, showing the SPH polarization as a function of angle with
respect to the laser propagation axis, showing \(P_{x} \) cos \(\theta \), the polarization component parallel to the atom recoil direction \(\mathbf{v} \), and \(P_{x} \) sin \(\theta \), the polar-
ization component perpendicular to \(\mathbf{v} \). Both \(P_{L} \) and \(P_{R} \) have positive projec-
tions along \(+Z_{\text{lab}}\). The one-dimensional projection of this distribution gives the
experimental signals. (c) The sum \(I_{L}+I_{R} \) and difference \(I_{L}-I_{R} \) of traces in (a). The sum trace depends only on the velocity distribution of the
H atoms, and the difference trace is proportional to the SPH polarization
[see Eqs. (7a) and (7b)].

ence between parallel (\(|| \)) and perpendicular (\(\perp \)) states. For the ground-state Cl atoms this involves more than one pair of
interfering states, namely, \(A_{1} \), \(X_{0} \) and \(a_{1} \), \(X_{0} \). In order to obtain a value, we require both Re[\(a_{x}^{1}(||, \perp) \)] and Re[\(a_{y}^{1}(||, \perp) \)] for Cl to obtain the two phases: The details are
given in the Appendix. We find that the present experimental results are in reasonably good agreement with the values inferred from the CI/Cl* and Br/Br* atoms. However, the \(\textit{ab initio} \) results do not agree very well with the experiments, and we see that this could have been expected from the halogen-atom results. The exact origin of the discrepancy at present is not understood. It is evident that, so far, the calcula-
tions tend to overestimate the contribution from perpen-
dicular excitations, e.g., it is found that for Cl* atoms \(\beta=-0.87 \) (experiment), whereas \(\beta=-0.989 \) (theory). \(^{44}\)
Recent calculations by Truhlar \textit{et al}. \(^{50}\) specifically looking at the spin-orbit coupling in the HBr system, suggest an in-
creased contribution from excitation to the \(a_{0} \) state. It is well
recognized that the polarization parameters Re[\(a_{x}^{1}(||, \perp) \)] that
depend on coherence are very sensitive to the shapes of the
potential energy curves. \(^{51}\) In the present case, given the breadth of evidence for significant nonadiabatic dynamics, there may be significant additional phase (i.e., dynamical phase) terms that have not thus far been included in the caculations. It is clear that HCl and HBr continue to set the high bar for further investigations of photodissociation
dynamics.

The \(a_{x}^{1}(||, \perp) \) parameter can be related to the spin polarization of the H atoms along the \(X \) axis in the
molecular frame, perpendicular to the recoil direction but in the plane of the photolysis polarization, by \(P_{X} = -\sqrt{3}/2 \text{Re}[a_{y}^{1}(||, \perp)]/(1+\beta/4) \). Using these relations, we find that the spin polarizations of the H atoms are given by \(P_{Z} = 0.48^{+0.14}_{-0.09} \) and \(P_{X} = 0.25 \pm 0.10 \) for the case of HCl photodissociation and \(P_{Z} = 0.59^{+0.14}_{-0.07} \) and \(P_{X} = 0.07 \pm 0.06 \) for the case of HBr photodissociation (all errors 2\(\sigma \)).

We consider briefly the effects of temperature of the sample on the coherent polarization moments of the product H atoms. Calculations of Lambert \textit{et al}. \(^{52}\) suggest that parent rotation (\(J_{\text{HCl}} \)) has almost no effect on the product branching into Cl and Cl* product channels, and therefore we do not expect the H-atom polarization to be significantly affected by effects of Coriolis coupling. So far there have been no calculations of the effects of \(J_{\text{HCl}} \) on the spatial distribution (\(\beta \)), which would indicate a shift in the proportion of excitations to the parallel and perpendicular states. At the temperatures of the beam experiments (15 K), more than 70% of the parent molecule population is in \(J_{\text{HCl}}=0 \), and for the present experiments at room temperature (295 K) the population peaks at \(J_{\text{HCl}}=3 \) with more than 90% of the population in levels, \(J_{\text{HCl}} \leq 6 \). From a mechanical point of view, the axial rotation of the molecule is very small compared to the high velocity of the H atoms (19.1 km s\(^{-1}\)), and therefore we expect the axial recoil approximation to be entirely valid even at \(J_{\text{HCl}}=6 \). \(^{53}\) We have looked at the effects of an additional

FIG. 8. Analysis of the experimental profiles, using Eq. (7), yields values of \(a_{x}^{1}(||, \perp) \) and Re[\(a_{y}^{1}(||, \perp) \)] for the H-atom photofragments from the photodissociation of HCl, shown here along with the results from the photodissociation of HBr (solid squares), from Ref. 41. These values are compared with \textit{ab initio} calculated values (crosses), from Refs. 43 and 44, and values inferred from the Br and Cl cofragment polarizations (open circles), from Refs. 10 and 13. The lower error bars represent 2\(\sigma \) of the fitted values, determined by a Monte Carlo sampling procedure (Ref. 49). The upper error bars also include the uncertainty in the degree of circular polarization of the 121.6 nm light.

\[\text{Parameter value} = \begin{cases} a_{x}^{1}(||, \perp) & \text{Re}[a_{y}^{1}(||, \perp)] \\
\end{cases} \]
centrifugal potential $E_{\text{cen}} = \hbar^2 J(J+1)/2m_r^2$ (where r is the HCl internuclear distance) on the asymptotic phase difference. We carried out semiclassical calculations of the phase difference $\cos \Delta \phi_{ta}$ using the $t1$ and $a0$ electronic potential energy curves of Lambert et al. (for H atoms paired with Cl$^+$).

The semiclassical methods used have been detailed elsewhere. The uncertainties represent 2σ of the values. For the present work, the upper error bars also include uncertainty in the degree of circular polarization of the 121.6 nm light (see text for details).

<table>
<thead>
<tr>
<th></th>
<th>HCl photodissociation</th>
<th></th>
<th>HBr photodissociation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Expt.</td>
<td>ab initio</td>
<td>Infer from</td>
</tr>
<tr>
<td>$a_{\ell}(\ell)$</td>
<td>0.28$^{+0.08}_{-0.05}$</td>
<td>0.38</td>
<td>0.39$^{+0.11}_{-0.13}$</td>
</tr>
<tr>
<td>Re[$a_{\ell}(\ell, \ell)$]</td>
<td>$-0.16^{+0.06}_{-0.059}$</td>
<td>0.059</td>
<td>$-0.13^{+0.13}_{-0.11}$</td>
</tr>
</tbody>
</table>

FIG. 9. Spin-polarized H atoms from the photodissociation of HCl at a pump-probe delay of 100 ns. Only the H atoms with velocities that are nearly parallel or antiparallel to the probe laser propagation direction remain in the probe volume and are detected.
only between \(r_1 \) and \(a_0 \) states; both H-atom and halogen-atom fragments have \(J=1/2 \), and we obtain
\[
\text{Re}[a_1^*(\|, \downarrow)][(H; Y)] = \text{Re}[a_1^*(\|, \downarrow)][(Y^*)].
\] (A4)

The previously published orientation parameters \(\text{Re}[a_1^*(\|, \downarrow)][(Y^*)] \) for Cl* and Br* are given in Table II. For the \(Y \) channel, we find that there are coherences involving the pairs \((A_1, X_0)\) and \((a_1, X_0)\), and the \(Y \)-atom parameter can be written as
\[
\text{Re}[a_1^*(\|, \downarrow)][(Y)] = \frac{12}{\sqrt{40}} \left(\frac{r_{A1r_{X0}}}{r_{X0}^2 + 2r_{A1}^2 + 2r_{a1}^2} \right) \cos \Delta \phi_{AX} - \frac{12}{\sqrt{30}} \left(\frac{r_{A1r_{X0}}}{r_{X0}^2 + 2r_{A1}^2 + 2r_{a1}^2} \right) \cos \Delta \phi_{aX}.
\] (A5)

However, the H-atom parameter \(\text{Re}[a_1^*(\|, \downarrow)][(H; Y)] \) only depends on \(\cos \Delta \phi_{aX} \); so we require an additional polarization parameter for \(Y \) atoms to infer the value for H atoms partnered by \(Y \). We use
\[
\text{Re}[a_1^*(\|, \downarrow)][(H; Y)] = \frac{12}{5} \left(\frac{r_{A1r_{X0}}}{r_{X0}^2 + 2r_{A1}^2 + 2r_{a1}^2} \right) \cos \Delta \phi_{AX}.
\] (A6)

By combining Eqs. (A3), (A5), and (A6) we finally obtain
\[
\text{Re}[a_1^*(\|, \downarrow)][(H; Y)] = \frac{5}{6} \text{Re}[a_1^*(\|, \downarrow)][(Y)] - \frac{5}{2} \text{Re}[a_1^*(\|, \downarrow)][(Y)].
\] (A7)

Values obtained from Eqs. (A4) and (A7) can be combined to give the final inferred value \(\text{Re}[a_1^*(\|, \downarrow)][(H)] \) for H atoms, using Eq. (A1). The previously published orientation parameters \(\text{Re}[a_1^*(\|, \downarrow)][(Y)] \) for Cl and Br are given in Table II. The alignment parameters \(\text{Re}[a_1^*(\|, \downarrow)] \) for Cl and Br atoms were obtained from the previously published work of Rakitzis et al.\(^9\) In that work, the parameter \(\text{Re}[a_1^*(\|, \downarrow)] \) was taken to be identically zero at first approximation because the dissociation is very nearly all perpendicular in character (>96%). The more recent measurements of \(\text{Re}[a_1^*(\|, \downarrow)] \) for Br and Cl, however, suggest that the coherences involved are non-negligible. We have reanalyzed the alignment data from Rakitzis et al.\(^9\) to obtain \(\text{Re}[a_1^*(\|, \downarrow)][(Cl)]=0.12 \pm 0.12 \) and \(\text{Re}[a_1^*(\|, \downarrow)][(Br)]=0.24 \pm 0.24 \) (errors 2\(\sigma \)), with the other parameters \(a_0^*(\downarrow) \) and \(a_0^*(\downarrow) \) being largely unchanged within their published uncertainties. The final values for \(\text{Re}[a_1^*(\|, \downarrow)][(H)] \) inferred from the halogen polarization parameters are shown in Fig. 8 and are given in Table III.

7. L. D. A. Siebbeles, M. Glass-Maujean, O. S. Vasyutinskii, J. A. Beswick,