Adaptation to human populations is revealed by within-host polymorphisms in HIV-1 and hepatitis C virus

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
PLoS Pathogens

Publisher Rights Statement:
This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Adaptation to Human Populations Is Revealed by Within-Host Polymorphisms in HIV-1 and Hepatitis C Virus

Art F. Y. Poon1*, Sergei L. Kosakovsky Pond1, Phil Bennett2, Douglas D. Richman1,3,4, Andrew J. Leigh Brown5, Simon D. W. Frost1

1 Department of Pathology, University of California San Diego, La Jolla, California, United States of America, 2 Science Park, University of Warwick, Coventry, United Kingdom, 3 School of Medicine, University of California San Diego, La Jolla, California, United States of America, 4 Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America, 5 Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, Scotland, United Kingdom

CD8+ cytotoxic T-lymphocytes (CTLs) perform a critical role in the immune control of viral infections, including those caused by human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV). As a result, genetic variation at CTL epitopes is strongly influenced by host-specific selection for either escape from the immune response, or reversion due to the replicative costs of escape mutations in the absence of CTL recognition. Under strong CTL-mediated selection, codon positions within epitopes may immediately “toggle” in response to each host, such that genetic variation in the circulating virus population is shaped by rapid adaptation to immune variation in the host population. However, this hypothesis neglects the substantial genetic variation that accumulates in virus populations within hosts. Here, we evaluate this quantity for a large number of HIV-1–infected (n ≥ 3,000) and HCV-infected patients (n ≥ 2,600) by screening bulk RT-PCR sequences for sequencing “mixtures” (i.e., ambiguous nucleotides), which act as site-specific markers of genetic variation within each host. We find that nonsynonymous mixtures are abundant and significantly associated with codon positions under host-specific CTL selection, which should deplete within-host variation by driving the fixation of the favored variant. Using a simple model, we demonstrate that this apparently contradictory outcome can be explained by the transmission of unfavorable variants to new hosts before they are removed by selection, which occurs more frequently when selection and transmission occur on similar time scales. Consequently, the circulating virus population is shaped by the transmission rate and the disparity in selection intensities for escape or reversion as much as it is shaped by the immune diversity of the host population, with potentially serious implications for vaccine design.

Introduction

The cellular immune response mediated by CD8+ cytotoxic T-lymphocytes (CTLs) performs a critical role in the immune control of human viruses such as human immunodeficiency virus (HIV-1) [1] and hepatitis C virus (HCV) [2]. Consequently, the major histocompatibility (MHC) loci that encode the human leukocyte antigen (HLA) class I molecules, which recognize and bind CTL epitopes in viral proteins, are among the most highly polymorphic genes in the human population [3]. Nevertheless, the CTL response often fails to control the infection completely because of mutations that occur within HLA-restricted CTL epitopes, enabling the virus to escape binding and recognition [4]. Because epitopes are often located in functionally conserved regions of the viral genome, escape mutations may become costly to maintain in the absence of a selective HLA allele [5,6]. Thus, when an escape variant is transmitted between HLA-mismatched individuals, competitive growth frequently selects for reversion of the mutation to wild-type, as demonstrated experimentally in simian immunodeficiency virus–infected rhesus macaques [7] and in a comparative study of HIV-1–infected human patients [8].

Consequently, host-specific selection for escape or reversion may play an important role in shaping genetic variation in the circulating virus population [1,2,5,9,10]. For instance, population-based analyses of HIV-1 [9] and HCV [11] sequences have found several significant associations between divergent sites within CTL epitopes and the selective HLA alleles in the host population, suggesting that the frequency of escape polymorphisms in the circulating virus population are directly shaped by the immune diversity of the host population. Furthermore, the viral load of HIV-1–infected individuals has been found to be positively correlated with the frequency of the corresponding HLA supertypes in the host population, implying that the total virus population is adapting to the most frequent HLA supertypes [12]. If escape variants are readily transmitted between hosts, then a host...
Author Summary

The rapid accumulation of genetic variation in human viruses, such as human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV), enables these pathogens to elude the immune system and forestall the development of effective vaccines. This variation may be shaped by selection due to host-specific immune responses, such that the total virus population mirrors the immune diversity of the host population. However, the often-neglected viral genetic variation within hosts may also play an important role in shaping variation in the total virus population. We carry out an innovative analysis of bulk HIV-1 and HCV sequences isolated from over 4,000 human patients, exploiting “mixtures” (i.e., ambiguous nucleotides) as a site-specific marker of within-host genetic variation. We find that nonsynonymous mixtures are disproportionately abundant at codon positions under strong host-specific immune selection. Because existing models of virus evolution provide no explanation for this outcome, we have formulated a new model supplemented with stochastic simulations to demonstrate that the rapid transmission of viruses through diverse selective environments creates a positive correlation between nonsynonymous variation within and among hosts.

with a common HLA supertype is more likely to encounter a virus that has already escaped its immune response [13], conferring a selective advantage to rare HLA supertypes. However, the virus genotype that becomes transmitted to the next host does not necessarily represent the ultimate outcome of adaptation to the previous host. Escape variants that have been transmitted into a host lacking a selective HLA allele can persist over long periods of time before reversion, or fail to revert at all over the duration of the study [8,14]. A delay or absence of reversion may be attributable to weak selection, when the fitness of the escape variant is either intrinsically high, or it has acquired compensatory mutations.

To evaluate the role of CTL-mediated selection in shaping the genetic variation of human viruses, we have carried out a large-scale analysis of HIV-1 and HCV protein-coding sequences isolated from human hosts. Previous analyses of clonal HIV-1 subtype B envelope [5,15] and protease (PR) [16] sequences have shown that across codon positions, genetic variation within hosts is positively correlated with variation among hosts. These correlations suggest that the genetic variation at both levels of the virus population is being shaped by a common set of biological constraints. However, the use of clonal sequences to characterize within-host variation restricted these analyses to small samples of hosts (n ≤ 12). In addition, quantifying the influence of selection on genetic variation within and among hosts is potentially confounded by variation in mutation rates among codon positions. Because mutation is the ultimate source of all genetic variation, site-specific variation at either level will be roughly proportional to the local mutation rate, which can yield a positive correlation in the absence of selection [17]. Indeed, this effect constitutes the basis for several tests of non-neutral evolution in genetic sequences [18–20].

To address the problem of limited sample size, we exploit “sequencing mixtures” as a site-specific marker of genetic variation within hosts. A sequencing mixture occurs when multiple distinct peaks occur above the same position in a sequencing electropherogram [21]; by convention, mixtures are encoded in sequences by ambiguous nucleotide character-
upon our ability to anticipate the response of an infection to CTL-mediated selection.

Results

Sequencing Mixtures Reveal CTL Selection

We screened for sequencing mixtures in population-based sequences of HIV-1 PR (n = 3,458) and reverse transcriptase (RT, n = 1,997) isolated from 3,004 and 1,989 treatment-naive individuals, respectively, and HCV sequences of envelope protein E1 (n = 2,691) and the hyper-variable region HVR1 of envelope protein E2 (n = 346). Although many sequences had at least one mixture (55% HIV-1, 63% HCV), there were relatively few mixtures per sequence on average (0.015 mixtures per codon position in HIV-1, 0.011 in HCV), suggesting that only a small number of codon positions had mixtures at detectable (20%–80%) frequencies in a given host (Figure S1). We found substantial variation among codon positions in mixture frequencies (Figure S2), which was greater for nonsynonymous (coefficient of variation = 1.98 HIV-1, 1.28 HCV) than synonymous mixtures (0.95 HIV-1, 1.06 HCV). There was no significant correlation between nonsynonymous and synonymous mixture frequencies per codon position in either HIV-1 (RT, Pearson’s ρ = 0.04, p-value < 3 x 10⁻⁶) or HCV gene sequences (E1, ρ = 0.01, p-value = 0.75; E2, ρ = -0.13, p-value = 0.18), indicating that the variation in mixture frequencies among codon positions was not simply due to local mutation rates.

The difference between nonsynonymous and synonymous mixture frequencies (mN - mS) was positively correlated with diversifying selection among hosts (dN - dS) per codon position. Each point corresponds to a unique codon position in the respective gene sequence. Dashed lines indicate the mean value for each quantity, which is consistently negative in dN - dS, implying purifying selection overall. Solid lines indicate a linear fit to the data. HCV genotypes are plotted separately as shown in the figure legends. A single outlier caused by a rare substitution lies outside the plot region for HIV-1 RT, but does not influence the significance of this correlation (Pearson’s ρ = 0.619, p-value < 1 x 10⁻⁶).

(B) Selection for CTL escape elevates the frequency of nonsynonymous mixtures (solid circles) relative to synonymous mixtures (open triangles) at anchor residues within known A2-supertype-restricted epitopes in HIV-1 PR and RT and HCV E1 (predicted). Asterisks indicate anchor residues associated with disproportionately high frequencies of nonsynonymous mixtures.

doi:10.1371/journal.ppat.0030045.g001

Figure 1. Genetic Variation within Hosts Is Shaped by Host-Specific Selection for CTL Escape

(A) The difference in nonsynonymous and synonymous mixture frequencies within hosts (mN - mS) is positively correlated with diversifying selection among hosts (dN – dS) per codon position. Each point corresponds to a unique codon position in the respective gene sequence. Dashed lines indicate the mean value for each quantity, which is consistently negative in dN – dS, implying purifying selection overall. Solid lines indicate a linear fit to the data. HCV genotypes are plotted separately as shown in the figure legends. A single outlier caused by a rare substitution lies outside the plot region for HIV-1 RT, but does not influence the significance of this correlation (Pearson’s ρ = 0.619, p-value < 3 x 10⁻⁶).

(B) Selection for CTL escape elevates the frequency of nonsynonymous mixtures (solid circles) relative to synonymous mixtures (open triangles) at anchor residues within known A2-supertype-restricted epitopes in HIV-1 PR and RT and HCV E1 (predicted). Asterisks indicate anchor residues associated with disproportionately high frequencies of nonsynonymous mixtures.

doi:10.1371/journal.ppat.0030045.g001

upon our ability to anticipate the response of an infection to CTL-mediated selection.
quantity $dN - dS$ assumed a negative value when averaged across the gene sequence, implying that nonsynonymous variation at the majority of codon positions was largely neutral or deleterious throughout the host population. Nevertheless, we detected significant diversifying selection ($dN - dS > 0$) at nine codon positions in HIV-1 PR (12, 13, 19, 33, 37, 63, 64, 77, and 93) and eight positions in RT (35, 39, 102, 122, 135, 200, 211, and 245) after correcting for the false-discovery rate [26] ($p = 0.05$); likewise, significant diversifying selection was attributed to several codon positions in HCV E1 and E2 (HVR1) sequences, which varied by genotype.

For specific CTL epitopes in HIV-1 PR, RT, and HCV E1 sequences, we observed disproportionately higher frequencies of nonsynonymous mixtures at the anchor residues (Figure 1B) critical for MHC binding. In contrast, the profile of synonymous mixture frequencies within these epitopes lacked any distinct peaks in association with anchor residues. Overall, the median difference between the frequencies of nonsynonymous and synonymous mixtures was significantly greater at known HLA-B–restricted epitopes (median $mN - mS = -0.2\%$ mixtures per sequence per site) than in the remainder of the HIV-1 RT sequence (-0.5%; Wilcoxon rank-sum test, p-value = 0.007). We also found that $mN - mS$ was greater at the anchor residues of HLA-B–restricted epitopes (median = -0.2%) than in an equivalent random sample of codon positions from HIV-1 RT on average (median = -0.4%), but this difference was only marginally significant (p-value = 0.11). In contrast, the median was not significantly greater at the known HLA-A–restricted epitopes within RT (Wilcoxon rank-sum test, p-value = 0.22), consistent with previous studies suggesting that HLA-B alleles assume a dominant role in the CTL control of HIV-1 [9,27]. In HIV-1 PR, the median excess in nonsynonymous mixtures was considerably greater within the single known HLA-B–restricted epitope (median = 0.7%) than in the rest of the gene sequence (median = -0.4%), but this difference was only marginally significant due to the small sample of codon positions (Wilcoxon rank-sum test, p-value = 0.1). Again, there was no significant difference in median values between HLA-A–restricted epitopes and the remainder of the PR sequence (Wilcoxon rank-sum test, p-value = 0.55).

Similarly, in the HCV E1 sequences, we found that the median excess of nonsynonymous mixtures was significantly greater within the two known HLA-B–restricted epitopes (median = 0.9%) than in an equivalent random sample of codon positions (median = -0.2%; Wilcoxon rank-sum test, p-value = 0.023). However, the median value for known HLA-A–restricted epitopes in HCV E1 was significantly less (median = -0.5%) than that in the remaining codon positions (median = -0.1%; Wilcoxon rank-sum test, p-value = 0.003). There were only two known CTL epitopes in the HCV E2 HVR1 sequence, both classified as HLA-A–restricted. We found no significant association between the quantity $mN - mS$ and codon positions located within these epitopes (Wilcoxon rank-sum test, p-value = 0.87). In sum, nonsynonymous mixtures tend to accumulate proportionately at codon positions under CTL selection, preferentially within HLA-B–restricted epitopes.

Simulation Results

A surplus of nonsynonymous mixtures within CTL epitopes represents transient polymorphisms that are eventually driven to fixation in the host by selection for escape or reversion [28]. This implies that the probability of sampling nonsynonymous sequencing mixture should decline with the intensity of host-specific selection at that codon position. As a result, host-specific selection would produce negative correlation between $mN - mS$ and $dN - dS$ across codon positions in the range $dN - dS > 0$, contrary to what we have observed in HIV-1 and HCV gene sequences. This paradox can be reconciled by incorporating the early transmission of unfavorable variants into a model of virus evolution (Figure 2). When selection and transmission act on similar time scales, the composition of the circulating virus population (i.e., the source of new infections) will not necessarily match the diversity of HLA genotypes in the host population. Suppose that an escape variant is transmitted from a host with a rare HLA genotype to a new host with a common HLA genotype. If the escape variant cannot outcompete the wild-type virus in the absence of a CTL response, then selection will favor reversion [7,8]. But the selective advantage of the wild-type virus may be so narrow that a substantial probability remains of transmitting the original escape variant [8,14]. Under such conditions, the severe bottleneck upon transmission could fix either the wild-type or escape variant in the new individual population (Figure 2). Because the next host will likely have the common HLA genotype, this transmission event can recreate the selective conditions requiring a transient nonsynonymous polymorphism to occur.

To investigate this hypothesis, we implemented a simulation of allele frequency evolution within individual virus
Each set of points represents mean estimates of virus population size \(E_y \) The sesc causes variation is greatest [31]). The typical range of \(q \) when predicted values from the deterministic model, which performs poorly doi:10.1371/journal.ppat.0030045.g003 shaded plot region. (The expectation \(E[\text{poly}] \) is jointly determined by the forward and back mutation rates, \(\mu \) and \(v \), and population size, \(N \).

The x-axis corresponds to the log-transformed transmission rate, \(\log_10 k \). The y-axis represents the mean log-transformed selection coefficient, \(E(\log_{10}s) = \log_10(s_{\text{sec}}) + (1-q)\log_10(s_{\text{rev}}) \).

A 10-fold disparity in selection intensities \(s_{\text{sec}} = 0.02, s_{\text{rev}} = 0.002 \) causes \(\pi \) to substantially exceed \(q \) with increasing transmission rate, \(k \). Each set of points represents mean estimates of \(\pi \) from simulations (with virus population size \(N = 5,000 \) and \(\mu = v = 10^{-7} \)). Dashed lines indicate predicted values from the deterministic model, which performs poorly when \(k \) is too high (i.e., when transmissions occur rapidly, allele frequencies are almost always near zero or one where stochastic variation is greatest [31]). The typical range of \(q \) is indicated by the shaded plot region.

doi:10.1371/journal.ppat.0030045.g003

Figure 3. Factors Influencing Within-Host Polymorphisms and the Global Frequency of Escape Variants

(A) A contour plot depicting the mean effect of selection and transmission rate on displacing the frequency of detectable polymorphisms from the neutral expectation (\(\Delta f_{\text{poly}} \) refer to the color key), as estimated from simulations. (The expectation \(E[f_{\text{poly}}] \) is jointly determined by the forward and back mutation rates, \(\mu \) and \(v \), and population size, \(N \).

(B) Escape allele frequency, \(\pi \)

HLA\(^+ \) allele frequency, \(q \)

\(+ \) \(k=10^{-7} \)

\(\diamond \) \(k=10^{-3} \)

\(\blacklozenge \) \(k=2.5 \times 10^{-4} \)

populations with ongoing transmission through a succession of hosts. Each individual virus population was represented by a single locus containing either an escape variant (at frequency \(p \)) or the wild-type allele. We assumed that transmission of the virus to a new host involved a severe bottleneck, such that the next population was initially fixed for either the escape variant (with probability \(p \)) or wild-type allele. Viral fitness in a given host was determined by a single MHC locus, at which an allele restricting the wild-type virus (HLA\(^+ \)) was present at a frequency \(q \) in the host population. We observed that the mean frequency of within-host polymorphisms \(f_{\text{poly}} = 0.2 \leq p \leq 0.8 \) converged over time to an equilibrium value, which declined with stronger host-specific selection if the transmission rate was low (Figure 3A). On the other hand, if the transmission rate was high, then \(f_{\text{poly}} \) increased with stronger selection and thereby became positively correlated with genetic variation among hosts.

By sustaining high levels of polymorphism within hosts, a joint increase in selection and transmission rate may also cause the frequency of the escape mutation in the circulating virus population (\(\pi = E(p) \)) to depart substantially from the expected value at equilibrium in the absence of polymorphism (\(\hat{\pi} = q \), i.e., individual virus populations fix alleles matching host HLA genotypes). In our simulations, if selection favoring escape in HLA\(^+ \) hosts was sufficiently stronger than selection for reversion in HLA\(^- \) hosts, then \(\hat{\pi} \) became substantially greater than \(q \) at equilibrium (Figure 3B). On the other hand, if selection favoring reversion in HLA\(^+ \) hosts was greater, then the equilibrium value of \(\hat{\pi} \) was deflected in the opposite direction, below \(q \) (not shown). This departure of \(\hat{\pi} \) from \(q \) became more pronounced with increasing transmission rates. Unequal mutation rates between the virus alleles could also contribute to this effect (Figure S3). An escape allele may therefore predominate the circulating virus population even when the selective HLA allele in the host population is rare. In other words, an individual possessing a rare HLA allele may nevertheless stand a high chance of becoming infected by a matched escape variant if selection for reversion is weak and the transmission rate is high.

Deterministic Model of Viral Evolution

This process sustaining high levels of nonsynonymous polymorphism at codon positions under host-specific selection is related to the maintenance of genetic variation in a subdivided population by local adaptation [29,30] and can be illustrated with a simple deterministic model. We use the following differential equation [31]:

\[
\frac{dp}{dt} = sp(1-p) + \mu(1-p) - vp
\]

to describe the mean rate of change in \(p \) within a given host, where \(s \) is the selection coefficient, and \(\mu \) and \(v \) are the forward and back mutation rates, respectively. Initial conditions for Equation 1 were defined to reflect the severe bottleneck imposed by transmission of the virus (i.e., \(p(0) = 0 \) or \(p(0) = 1 \)). Assuming that transmission occurs after a constant time interval (\(t \)), the expected value of \(\pi \) after \(n \) transmissions is obtained from the recurrence equation:

\[
nu = q(n_{n-1} + (1 - n_{n-1})p_{\text{HLA}^+}(\tau)) + (1 - q)(n_{n-3}p_{\text{HLA}^-}(\tau))
\]

where \(p_{\text{HLA}^+} \) and \(p_{\text{HLA}^-} \) are approximate solutions of Equation 1 for evolution of \(p \) in HLA\(^+ \) and HLA\(^- \) hosts, respectively (Protocol S1). Equation 2 has an equilibrium solution:
The rapid accumulation of genetic variation in HIV-1 and HCV enables these viruses to elude the immune system and forestalls the development of effective vaccines. Identifying the factors that shape genetic diversity in these human viruses remains a formidable challenge. Because these viruses possess exceptionally high mutation rates, extensive genetic variation accumulates within hosts that may be shaped by ongoing host-specific adaptation. However, the development of models of virus evolution within hosts has been largely independent of “dynamical” models of the transmission and spread of viruses across host cells and individuals [25]. As a result, few models of virus evolution integrate the evolution within hosts with viral dynamics at the level of the host population, which could otherwise reveal emergent properties of evolution within hosts. For example, there is an extensive literature characterizing selection in HIV-1 [10,35–47] by comparing inferred rates of nonsynonymous and synonymous substitutions, but these studies employ methods that do not explicitly distinguish between within- and among-host variation (but see [19,48]).

However, empirical evidence indicates that aspects of the host population can influence patterns of evolution within hosts, and vice versa. For instance, Ross and Rodrigo [10] found evidence that the magnitude and persistence of site-specific diversifying selection within patients was correlated with the rate of progression to acquired immune deficiency syndrome (AIDS), which may influence long-term epidemiological dynamics in the host population. Moore et al. [9] found significant associations between divergent codon positions within CTL epitopes in HIV-1 RT and HLA allelic variation in the host population, which implied that CTL-mediated selection within hosts was influencing the evolution of the total virus population. More recently, Kosakovsky Pond et al. [48] developed a customized phylogenetic analysis to detect significant turnover in codon positions under diversifying selection in HIV-1 PR and RT sequences among human populations with distinct HLA frequencies. They also found that many nonsynonymous substitutions that were mapped to terminal branches of the tree (i.e., occurring within hosts) were absent from internal branches, suggesting that adaptations within individual virus populations were not always maintained at the level of the total virus population [48].

These observations motivate the theoretical development of models of viral evolution that capture the interaction between the within-host and among-host levels of genetic variation. Recently, Grenfell et al. [24] sought to unify the characteristic shape of phylogenetic trees for different virus pathogens with the evolutionary processes within hosts. For instance, phylogenetic trees derived from HIV-1 or HCV sequences sampled from the host population tend to be more “balanced”, reflecting the epidemiological spread of the virus [24]. In contrast, trees derived from influenza A virus hemagglutinin sequences are less balanced, containing a persistent “backbone” that continually spawns short-lived lineages [49]. They proposed that this variation in tree shape, which indirectly manifests the genetic variation among hosts, was driven by the rate at which variants with a selective advantage in the previous host were being transmitted to the subsequent host. Our model complements this previous work by directly evaluating the influence of within-host evolution on the accumulation of nonsynonymous substitutions that differentiate individual virus populations, and the reciprocal effect of this divergence among hosts on variation within hosts. As a result, we can obtain quantitative predictions on how selection within hosts and the transmission rate will
influence the frequency of escape variants in the total virus population. The model also predicts that variation in the mean surplus of nonsynonymous mixtures (quantified by the summary statistic \(mN - sM \)) per gene indicates divergent intensities of host-specific selection. Similarly, the characteristic transmission rates and overall intensity of selection of different viruses (e.g., HIV-1, HCV, influenza A virus) may be revealed by a divergence in the mean surplus of nonsynonymous mixtures per virus. We did not attempt to infer differences between genes or viruses from the absolute frequencies of mixtures in the current data set due to the potential variation in sequencing protocols (as discussed above). Nevertheless, our model should motivate investigators in viral evolution to provide access to raw sequencing data, including annotation of variables that could influence the detection of polymorphisms (e.g., lab sequencing protocol, automated sequencer type and manufacturer).

Based on the distribution of relative mixture frequencies (i.e., site-by-site comparisons within genes), our model indicates that the genetic variation of HIV-1 and HCV is being shaped by the ongoing transmission of unfavorable variants, skewing the frequency of an escape variant in the total virus population towards the direction that host-specific selection is strongest. This unexplored imprint of within-host evolution, manifested as a site-specific surplus of nonsynonymous mixtures within CTL epitopes, can strongly influence the overall composition of the circulating virus population, in addition to founder effects. Because we observed this phenomenon in both HIV-1 and HCV, it may be a common feature of viruses that exhibit both prolific genetic variation within hosts and substantial rates of transmission.

Materials and Methods

HIV-1 and HCV sequence data. We obtained treatment-naive HIV-1 subtype B sequences from the HIV Drug Resistance Database at Stanford University (HIVDB) [50]. At the time of analysis, there were 3,458 PR and 1,997 RT sequences meeting our criteria, representing 3,004 and 1,989 patients, respectively. By restricting the data set to treatment-naive individuals, we sought to minimize the confounding effects of selection for drug-resistant variants. Further screening for antiviral resistance was carried out by aligning each sequence to its closest subtype reference sequence (obtained from the Los Alamos National Laboratory [LANL] HIV sequence database; [51]) and scoring for resistance according to the Stanford HIVDB mutation dictionaries using customized scripts in HyPhy [52]. To account for sequencing error, we included 149 RT and 58 PR sequences with at least low-level resistance sequences (score \(\geq 59 \)) and scoring for resistance according to the Stanford HIVDB mutation dictionaries using customized scripts in HyPhy [52,63]. To model the probability that a given proportion of substitutions are nonsynonymous, we inferred the proportion of sites that are nonsynonymous at the codon position [63].

Association with CTL epitopes. For analyzing associations between nonsynonymous mixture frequencies and epitopes within HIV-1 PR and RT, we applied the CTL epitope definitions from the LANL HIV immunology database [64]. Similarly, we applied the CTL epitope definitions from the LANL HCV immunology database for analyzing associations within HCV E1 and E2 (HVR1) [65].

Transmission of virus evolution. We implemented a simulation of virus evolution in a host population using an iterative Moran process [66]. Both virus and host populations were each modeled by a single two-allele locus, representing the immune escape and HLA genotypes, respectively. Instantaneous rates for the unit increase and decrease of escape allele frequency within a host were

\[
\begin{align*}
\lambda_1 &= (\lambda_1(1 - \mu) + \lambda_2(1 - \pi) - \lambda_3 - \lambda_4)/N, \\
\lambda_2 &= (\lambda_2(1 - \pi) - \lambda_3)/N, \\
\lambda_3 &= (\lambda_3 - \lambda_4)/N,
\end{align*}
\]

where \(j \) is the number of wild-type alleles in an ideal population of constant size \(N \), and \(\lambda_1 \) and \(\lambda_2 \) are the wild-type and escape virus growth rates. If the host was HLA\(^{-}\), we set \(\lambda_1 = 1 \) and \(\lambda_2 \) such that the selection coefficient for reversion \(\lambda_{rev} = (\lambda_1 - \lambda_2)/2 \). Otherwise, we set \(\lambda_1 < \lambda_2 \) so that \(\lambda_{rev} = (\lambda_2 - \lambda_1)/2 > 0 \). After an exponentially distributed waiting time \(\tau \) with rate \(\kappa \), a randomly selected individual from an infected \(N_0 \) hosts was replaced. This new host was replaced with probability \(q \) (and HLA\(^{-}\) otherwise), and infected by wild-type virus with probability \(jN/\lambda_1 \), where \(jN \) is obtained from the iterative application of \(j \) and \(jN \) and the total number of events occurring in the time interval \(\tau \) determined by random draws from an exponential distribution with parameter \(\kappa jN \). Otherwise, it was infected by the escape mutant virus. This new infection was therefore initially fixed for either the wild-type or escape virus genotype, assuming a severe bottleneck upon transmission between hosts.

Simulations were run for \(200 \times K \) transmissions, which was sufficient for \(\pi \) to converge to equilibrium for all parameter values evaluated. We recorded the frequency of the escape allele in the individual virus population \((\pi = 1 - jN) \), from which we calculated the mean frequency among hosts \(\bar{\pi} (= \pi(K)) \). Given the empirical detection threshold of minority variants from population-based sequencing, an individual virus population was considered to be detectably polymorphic if \(0.2 < \bar{\pi} < 0.8 \). Unique parameter values were assigned to 100 replicate simulations by Latin hypercube sampling from their respective ranges: \(q = (0, 0.5); \mu V = (10^{-5}, 10^{-3}); \lambda_{rev}/\lambda_1 = (0.002, 0.2); N = (10^5, 10^7); \) and \(k = (0.00157, 0.0137) \), such that transmissions occur after approximately 0.2 to 2 years (where \(\tau \) is in units of days).

To compare the simulation results to our deterministic model, we used the numerical integration function in Mathematica 5.1 (Wolfram Research, http://www.wolfram.com) to calculate the expectation of Equation 3 assuming that the waiting time \(\tau \) was exponentially distributed with rate parameter \(\kappa jN \).

Supporting Information

Figure S1. Histograms for the Frequency of Nonsynonymous and Synonymous Mixtures per Sequence.

The range of frequencies for HCV E2 (HVR1) has been truncated at ten mixtures per sequence for clarity, although a small number of sequences contain as many as 18 mixtures. In HIV-1 PR and RT and HCV E2 (HVR1), there is an excess of mixture-free sequences, possibly due to an under-reporting bias of mixtures which are often interpreted as sequencing errors. HCV E1 sequences were obtained directly from unprocessed trace files and were not subject to this bias.
The level of dispersion in the observed frequency distributions was evaluated by fitting Poisson and negative binomial models using a generalized linear models procedure. Goodness-of-fit, quantified by Akaikes information criterion, was improved by the negative binomial model in all cases, and estimates of the dispersion parameter confirmed overdispersion of mixture frequencies in HIV-1 PR and RT and HCV E2 (HVR1).

Figure S2. Mixture Frequency Distributions

The histograms depict frequency distributions for nonsynonymous (above) and synonymous (below) mixtures per codon position. Note that the histograms for HCV E1 and E2 (HVR1) are on different scales. There is conspicuously greater variation among codon positions in nonsynonymous mixture frequencies, more notably in HIV-1 sequences. Codon positions associated with peaks in the frequency of nonsynonymous mixtures are indicated above each distribution by the alignment consensus amino acid and residue number.

Figure S3. Effect of Mutation Rate Asymmetry on the Frequency of Escape Mutations

A contour plot depicting the difference \(\pi - q \) as a function of the disparity in selection coefficients and mutation rates between HLA and HLA* hosts (\(\log_2(q) - \log_2(k) \)). When the net effect of mutation and selection is equivalent between HLA* hosts (\(r = 0 \)), then \(\pi \) converges to \(q \) and is independent of variation in transmission rate. In contrast, when there is a net imbalance in mutation and selection (\(r \neq 0 \)), there is a departure of \(\pi \) from \(q \); this departure becomes greater with increasing transmission rates. Viral population size has no apparent effect on the difference \(\pi - q \). Each open circle corresponds to a replicate simulation with unique parameter values set by Latin hypercube sampling.

Figure S4. Comparison of Stochastic Simulation and Model Predictions

Scatterplot illustrating correspondence between predicted value of \(\pi \) from the deterministic model (x-axis) and values obtained from simulations at equilibrium (\(\pi \), y-axis). A solid line is drawn at \(\pi = y \) to indicate an exact match between model and simulation frequencies. Dashed lines above and below the \(\pi = y \) axis enclose variation in frequencies within a \(\pm 10\% \) interval. Disparity between the model and simulations is caused by a lack of stochastic factors in the model. Replacing the unidirectional mutation approximations \(p_{D,L=0} \) and \(p_{D,L=1} \) by the exact formulas has no visible effect on the correspondence between the model and simulations.

Figure S5. Frequency Distributions of Pair-Wise Distances of HIV-1 and HCV Sequences

There is a substantial amount of divergence among the vast majority of HIV-1 sequences in the reconstructed phylogenetic trees, with only \(<0.1\% \) of pairwise distances below 0.01. This is consistent with the low number of HIV-1 PR and RT sequences that were re-sampled from the same patient. HCV E1 and E2 (HVR1) sequences were highly divergent on average. A small proportion of pairwise distances between HCV E1 sequences (1.1\%), particularly in subtype 4d, are below 0.05. Similarly, about 3\% of pairwise distances between HCV E2 (HVR1) sequences were below a threshold of 0.25. Hence, a minority of HCV sequences may have represented multiple isolates from patients, but were too few overall to influence the outcome of our analyses.

Accession Numbers

GenBank (http://www.ncbi.nlm.nih.gov/Genbank/index.html) accession numbers for the HCV E1 envelope protein-coding sequences used in our study are AY766700–AY768365. GenBank accession numbers for the E2 envelope protein (HVR1) sequences used in our study are the following: AY390002, AY390005, AY390008, AY390010, AY390013, AY390016, AY390019, AY390022, AY390024, AY390027, AY390030, AY390032, AY742960–AY743049, AY390923–AY390954, AY314963–AY314969, AY390902–AY390903, AY354735–AY354784, and AY953999–AY953612.

Acknowledgments

We also wish to thank Robert Shafer and the Stanford HIV Drug Resistance Database team for the development and maintenance of an excellent resource for HIV resistance analyses.

Author contributions. DDR, AJLB, and SDWF conceived and designed the experiments. AFYP performed the experiments and wrote the paper. AFYP and SLKP analyzed the data. AFYP, SLKP, and PB contributed reagents/materials/analysis tools.

Funding. This work was supported by the US National Institutes of Health (grant numbers AI43638, AI47745, AI37167), the University-wide AIDS Research Program (grant number IS02-SD-701), and UCSD Centers for AIDS Research (CFAR)/National Institute of Allergy and Infectious Diseases (NIAID) Developmental Awards to SDWF and SLKP (grant number AI30214).

Competing interests. The authors have declared that no competing interests exist.

References

