Successful immunization against a parasitic nematode by vaccination with recombinant proteins

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.vaccine.2013.05.026

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Vaccine

Publisher Rights Statement:
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Successful immunization against a parasitic nematode by vaccination with recombinant proteins

Alasdair J. Nisbet\(^a\)\(^,\) Tom N. McNeilly\(^a\), Louise A. Wildblood\(^a\), Alison A. Morrison\(^a\), David J. Bartley\(^a\), Yvonne Bartley\(^a\), Cassandra Longhi\(^a,b\), Iain J. McKendrick\(^c\), Javier Palarea-Albaladejo\(^c\), Jacqueline B. Matthews\(^a\)

\(^a\) Moredun Research Institute, Pentlands Science Park, Edinburgh EH26 0PZ, United Kingdom
\(^b\) Institute of Infection, Immunity and Inflammation, University of Glasgow, Bearsden Road, Glasgow G61 1QH, United Kingdom
\(^c\) Biomathematics & Statistics Scotland, King's Buildings, West Mains Road, Edinburgh EH9 3JZ, United Kingdom

Abstract

Infection of humans and livestock with parasitic nematodes can have devastating effects on health and production, affecting food security in both developed and developing regions. Despite decades of research, the development of recombinant sub-unit vaccines against these pathogens has been largely unsuccessful. We have developed a strategy to identify protective antigens from *Teladorsagia circumcincta*, the major pathogen causing parasitic gastroenteritis in small ruminants in temperate regions, by studying IgA responses directed at proteins specific to post-infective larvae. Antigens were also selected on the basis of their potential immunomodulatory role at the host/parasite interface. Recombinant versions of eight molecules identified by immunoprofiling, homology with vaccine candidates in other nematodes and/or with potential immunoregulatory activities, were therefore administered to sheep in a single vaccine formulation. The vaccine was administered three times with Quil A adjuvant and the animals subsequently subjected to a repeated challenge infection designed to mimic field conditions. Levels of protection in the vaccinates were compared to those obtained in sheep administered with Quil A alone. The trial was performed on two occasions. In both trials, vaccinates had significantly lower mean faecal worm egg counts (FWECs) over the sampling period, with a mean reduction in egg output of 70% (Trial 1) and 58% (Trial 2). During the period of peak worm egg shedding, vaccinates shed 92% and 73% fewer eggs than did controls in Trials 1 and 2, respectively. At post-mortem, vaccinates had 75% (Trial 1) and 56% (Trial 2) lower adult nematode burdens than the controls. These levels of protection are the highest observed in any system using a nematode recombinant sub-unit vaccine in the definitive ruminant host and indicate that control of parasitic helminths via vaccination with recombinant subunit vaccine cocktails is indeed an alternative option in the face of multi-drug resistance.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Infection of livestock and humans with parasitic nematodes has devastating effects on health and production, affecting food security worldwide [1,2]. Despite decades of research, the development of recombinant vaccines against these pathogens has been unsuccessful [3,4]. The primary cause of parasitic gastroenteritis (PGE) in small ruminants in temperate regions worldwide is the nematode *Teladorsagia circumcincta*. Infection is acquired via ingestion of third stage larvae (L3) from pasture. Thereafter, immature (L3 and L4) and adult worms reside in the host's abomasum causing substantial production losses [5]. Currently, *T. circumcincta* is controlled using anthelmintics; however, multi-drug resistance is widespread [6,7] and development of a vaccine is now a priority. Protective immunity against *T. circumcincta* develops after prolonged continual exposure [8] and the degree of immunity acquired depends on the level of parasite challenge, animal age and genotype [9]. Immunity is associated with decreased establishment and development rate of nematode larvae in the abomasal glands and reduced egg output from adults [8,10–13]. The mechanisms responsible for these effects are complex: immediate hypersensitivity reactions, cellular effectors and humoral responses have all been indicated [12,14–22]. The successful adoptive transfer of immunity, using gastric lymph of previously-infected lambs, to
helminth-free monozygotic twins highlighted the importance of local immune responses in protection against re-infection [12] and larval antigen–specific IgA in gastric secretions has been implicated as playing a crucial role [12,14–16,19,21].

We developed a tripartite approach to identifying antigens for a T. circumcincta vaccine. First, we selected proteins [cathepin F-1 (Tci-CF-1), astacin-like metalloproteinase-1 (Tci-MEP-1), a 20 kDa protein of unknown function (Tci-ES20) and activation-associated secretory protein-1 (Tci-ASP-1)] [21,23,31] by examining larval antigens that are targets of IgA in immune sheep [21,23], focusing on proteins excrated or secreted during the critical phase of worm growth and development [24]. We also selected Tci-SAA-1, an immunogenic homologue of a protective antigen from canine hookworm, Angiostrongylus cantonensis (Ac-SAA-1) [25,26] by bioinformatic analysis of T. circumcincta transcripts [26,27]. Finally, we identified potentially immunosuppressive molecules released by the larvae [macrophage migration inhibitory factor-1 (Tci-MIF-1), calcium–dependent apyrase-1 (Tci-APY-1) and a TGFβ homologue (Tci-TGH-2)] [28–30]. Here, we combined these antigens into a vaccine which, in theory, nullify the immunomodulatory functions of parasite-derived molecules and concurrently allow enhanced immune responses against the immunostimulatory components. We tested the vaccine in two independent trials in which sheep were administered a sustained larval challenge after vaccination.

2. Materials and methods

2.1. Recombinant protein production

Eight recombinant proteins (Table 1) were produced. Production of recombinant Tci-SAA-1, Tci-MIF-1 and Tci-APY-1 has been described previously [26,29,30]. Tci-MEP-1 cDNA was amplified from T. circumcincta RNA (L4, prepared as in [27]) using the SMART™ RACE kit (Clontech) and sub-cloned into pET SUMO (Invitrogen) (omitting bases 1–48 encoding the signal peptide). The coding sequences (CDS) of Tci-tgh-2 and Tci-asp-1 (omitting signal peptide bases [31]) were each sub-cloned into pET SUMO (Invitrogen). Expression of recombinant proteins (Tci-SAA-1, Tci-MIF-1, Tci-APY-1, Tci-MEP-1, Tci-TGH-2 and Tci-ASP-1) in Escherichia coli BL21-CodonPlus® (DE3)-RIL competent cells (Strategene) was induced using 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The CDS of Tci-cf-1 (omitting signal peptide bases 1–42) and the CDS of Tci-ES20 (PCR-amplified from a T. circumcincta L4 SMART™ cDNA library), were each sub-cloned into pPICZaC (Invitrogen) and used to transform P. pastoris [X-33 (Mut’+) (Invitrogen)]. Tci-CF-1 and Tci-ES20 protein expression was induced with 0.5% methanol [32]. Soluble recombinant proteins were purified from cell lysates (E. coli) or culture supernatant (P. pastoris) using HisTrap™ HP columns (GE Healthcare), then dialysed against 20 mM phosphate buffer, 0.5 M NaCl, pH 7.6. Insoluble recombinant Tci-MEP-1 was purified via nickel column affinity chromatography in the presence of 8 M urea, then dialysed against 2 M urea in 20 mM phosphate buffer, 0.5 M NaCl, pH 7.6. Protein concentrations were determined using the Pierce BCA™ (bicinchoninic acid) assay (Thermo Scientific) with bovine serum albumin (BSA) standards and the integrity of each recombinant protein monitored via SDS-PAGE.

2.2. Immunization experiments

2.2.1. Trial 1

Fourteen Texel crossbred lambs, 204–206 days old, reared under conditions to exclude helminth infection (confirmed by fecal worm egg counts (FWECs), [33]), were housed in two groups of 7 animals in separate pens. Sheep in Group 1 were injected subcutaneously with 400 μg recombinant protein mix (incorporating 50 μg each of Tci-ASP-1; Tci-MIF-1; Tci-TGH-2; Tci-APY-1; Tci-SAA-1; Tci-CF-1; Tci-ES20; Tci-MEP-1) plus 10 μg Quil A (Brenntag Biosector). PBS-soluble proteins were administered as a mixture in a single injection with 5 μg Quil A in PBS. Tci-MEP-1 was formulated with 2 M urea in PBS plus 5 μg Quil A. The preparations were injected separately at two sites on the neck. Three immunizations were administered, 3 weeks apart. Sheep in Group 2 received three immunizations with urea/PBS/10 μg Quil A, at the same time as Group 1. Following the final immunization each sheep was administered orally with 2000 T. circumcincta L3, three times per week for 4 weeks. FWECs were performed three times per week from 14 days after the start of the L3 challenge period until the end of the experiment. Cumulative FWEC values were estimated using the trapezoidal method for calculation [34]. Abomasal nematode burdens were classified and enumerated following standard techniques [20,24,35]. Blood samples were taken prior to each immunization and weekly from the third immunization. Abomasal swab samples were collected at post-mortem [21] to determine levels of antigen-specific IgA and IgG in abomasal mucus.

2.2.2. Trial 2

Twenty-eight Texel crossbred lambs, 172–178 days old, were raised as described for Trial 1 and housed in four groups of 7 animals. Groups 1 and 3 were immunized with recombinant protein mix as described for Trial 1. Sheep in Groups 2 and 4 received immunizations with urea/PBS/Quil A, at the same time as Groups 1 and 3. At the final immunization, oral L3 challenge commenced in all groups for 4 weeks. All biological samples were obtained as described above. Sheep in Groups 1 and 2 were euthanized 7 weeks after the start of the infection period and those in Groups 3 and 4 were euthanized 4 weeks later. Trials were performed under the regulations of a UK Home Office Project Licence; experimental design was ratified by MRI’s Experiments and Ethics Committee.
2.3. Measurement of antibody responses

Recombinant antigen-specific IgG and IgA levels in serum and abomasal mucus from each animal were assessed by ELISA as described previously [31]. In addition, the binding of serum IgG to native T. circumcincta antigens was also assessed as follows: Native antigens (L4 ES products, prepared from ex vivo L4 nematodes maintained in culture for 48 h, as described in [21]) were used to coat ELISA plates and antigen-specific IgG levels were assessed in sera from all animals in Trial 1 and from four, randomly selected, animals from Groups 1 and 2 of Trial 2. Each sample was assayed in triplicate. OD values were corrected against a reagent blank and all test plates had a positive and negative serum control to account for plate to plate variation.

2.4. Immunoblotting of nematode somatic extracts

Somatic extracts of T. circumcincta L3, L4 and adult worms [26], along with L4 ES products, [21], were subjected to immunoblotting to determine serum IgG and IgA binding to components of each extract, as described previously [26], using pools of sera from 7 immunized (Group 3) and 7 control sheep (Group 4) collected on the date of the third (final) immunization before infection.

2.5. Statistical analysis

For longitudinal FWEC analysis, a generalised additive mixed model (GAMM) model on log(FWEC + 1) was specified (Gaussian error structure and identity link function, group as fixed effect, animal effects as random). The model included separate smoothing curves for the nonlinear relationship of the response with time by group, non-homogenous within-group variances were allowed. A first order autoregressive residual correlation structure was incorporated. Antibody responses were modeled using linear mixed models (LMMs) (group as fixed effect, animal as random effect). For serum antibody data, repeated measures over time were modeled by random intercept and slope LMMs, including time and its interaction with group as fixed effect. Heterogeneous within-group variances were allowed. Linear contrasts compared subsets of responses in abomasal mucus.

In Trial 2, the 28 animals were housed in 4 separate groups of 7 animals. No statistically significant pen effects were found between Groups 1 and 3 or Groups 2 and 4, so Groups 1 and 3 were combined and Groups 2 and 4 were combined for data modeling. For analyses of worm burden data, generalised linear models (GLMs) were used. Data overdispersion was generally accounted for by specifying a negative binomial error distribution. Where necessary, overdispersion was incorporated using Poisson GLMs correcting the standard errors by specifying the mean and variance relationship.

Model selection was based on the Akaike’s information criterion (AIC) and likelihood ratio tests (LRT); optimal mixed models were fitted by residual maximum likelihood (REML). Comparisons between groups were made by evaluating marginal statistical significance of the associated fixed effect by conditional t-tests. Cook’s distance with a 4/n cut-off was used to support decisions for outliers. Statistical significance was assessed at the 5% level. Statistical analyses were conducted using R version 2.13.

3. Results

3.1. FWEC analysis

In Trial 1, sheep in Groups 1 (immunized) and 2 (control, adjuvant only) began to excrete T. circumcincta eggs in feces from 16 to 19 days after the start of challenge (Fig. 1A). At the final time point, Group 1 sheep were producing a mean (±SEM) of 8.7 (±5.5) eggs per gram (EPG) of feces, whereas sheep in Group 2 were producing 107.6 (±50.8) EPG, representing a 92% reduction in mean FWEC. GAMM analysis identified a statistically significant effect of immunization on mean FWEC over the timecourse of the experiment (P<0.001); mean cumulative FWECs were 595 (±316) EPG in Group 1 and 1755 (±532) EPG in Group 2, representing an overall reduction of 70% in the immunized versus the control (adjuvant only) group (Fig. 1B).

In Trial 2, sheep began to excrete nematode eggs from 14 to 16 days after challenge (Fig. 1C). At peak egg shedding (day 86) mean FWECs in the extant immunized group (Group 3) were 251 ± 75 EPG, whereas in the control group (Group 4) they were 908 ± 158 EPG, representing a 73% reduction in mean FWEC. Mean cumulative FWECs in Trial 2 were 4998 (±2233) EPG in Group 1 (immunized) and 4127 (±803) EPG in Group 2 (adjuvant only, Fig. 1D). Using Cook’s distance criterion, sheep 675J was regarded as a “highly influential” case (D = 0.3129 based on a LMM model) on the high mean FWECs and associated SEM for Group 1. For Groups 3 and 4, which were necropsied 4 weeks after Groups 1 and 2, mean cumulative FWECs were 7005 (±681) EPG in Group 3 (immunized) and 16,727 (±2699) EPG in Group 4 (control, adjuvant only), representing an overall mean FWEC reduction of 58% in the immunized versus the control group (Fig. 1D). GAMM analysis indicated a statistically-significant effect of immunization (data from Groups 1 and 3 combined versus Groups 2 and 4 combined) on mean FWEC over the course of the experiment (P = 0.024).

3.2. Abomasal nematode burdens

3.2.1. Trial 1

On average, immunized sheep (Group 1) harbored 55 fewer T. circumcincta (total of adults and juveniles) at necropsy than control, adjuvant only (Group 2) sheep (P = 0.011, Fig. 2A). Group 1 sheep had statistically-significantly lower mean adult nematode burdens than sheep in Group 2 (75% reduction, P = 0.007, Fig. 2A). Comparison of mean juvenile nematode burdens in the abomasum indicated no significant differences between the groups (Fig. 2A). No significant differences were observed in the mean length of worms recovered from the different groups.

3.2.2. Trial 2

3.2.2.1. Groups 1 and 2 (post mortem at day 84). The mean total abomasal nematode burdens (adults and juveniles) in immunized sheep were not statistically significantly different to those from the control, adjuvant only group (mean total nematode burdens ± SEM: Group 1: 6843 ± 1144, Group 2: 6250 ± 966).

3.2.2.2. Groups 3 and 4 (post mortem at day 112). On average, immunized sheep (Group 3) harbored 57% fewer T. circumcincta total nematodes at necropsy than did the control, adjuvant only (Group 4) recipients (P = 0.020, Fig. 2B). In both Groups 3 and 4, adult worms comprised 99% of the total nematode burden.

3.3. Measurement of serum antibody responses to T. circumcincta antigens

In both trials, 7–14 days after tertiary immunization, serum IgG levels against all recombinant proteins reached peak levels, then declined slowly [Supplementary Information (SI) Figs. S1, S2]. Serum IgA levels peaked after secondary immunization and, for all recombinants with the exception of Tc-MIF-1, remained relatively constant until the end of the experiment. Immunized sheep produced serum IgG, prior to parasite challenge, which bound native L4 ES components (SI, Fig. S3); IgG bound to parasite components, in L4 ES, somatic extracts of L4 and adult T. circumcincta, of the expected size range for Tc-CF-1 (23.9 kDa), Tc-APY-1 (38.6 kDa)
and Tci-MEP-1 (55.6 kDa) (Fig. 3A). Serum IgA also bound parasite components of the expected size range for vaccine components Tci-CF-1, Tci-APY-1 and Tci-MEP-1 (Fig. 3B). In addition, IgA bound a parasite component of ca. 43 kDa in L3 somatic extract. From 14 days after initiation of challenge, control, adjuvant only recipients generated serum IgG that bound recombinant Tci-MEP-1 and Tci-APY-1 but no other recombinants (SI Fig. S4). Antigen-specific serum IgA which bound to the recombinant proteins was not observed in these control sheep.

3.4. Measurement of mucus antibody responses to recombinant antigens

Mean antigen-specific IgG levels in abomasal mucus of the immunized sheep were significantly higher than in the control sheep for each protein (SI, Figs. S5A and S6A). In Trial 1, mean Tci-APY-1-, Tci-MEP-1-, and Tci-CF-1-specific IgG levels were higher than for the other recombinants (P < 0.0001). In Trial 2, mean Tci-MEP-1-specific IgG levels were significantly higher than for the remaining antigens (Day 84 necropsy) while mean Tci-MEP-1- and Tci-APY-1-specific IgG levels were significantly higher at the Day 112 necropsy. Mucous Tci-APY-1- and Tci-MEP-1-specific IgA levels were significantly higher than those directed against the other six antigens (SI, Figs. S5B and S6B).

4. Discussion

Here, we demonstrate that immunization of sheep with a cocktail of eight recombinant proteins induces levels of protection against T. circumcincta which are higher than those observed in any other system using a recombinant vaccine against a parasitic nematode in the definitive ruminant host. Previous attempts to immunise mammalian hosts against parasitic nematodes have used:

(i) Irradiated larvae. In the case of the bovine lungworm, Dictyocaulus viviparus [36] and the dog hookworm, A. caninum [37] these have given high levels of protection and yielded commercial products. This approach was not successful for a number of other nematodes including T. circumcincta [38].

(ii) Native extracts. There are numerous examples of the use of extracts of dead parasites, or sub-fractions thereof,
immunise hosts against parasitic nematodes [39]. In *T. circumcincta*, when detergent extracts of L3 were used as immunogen, anti-parasite responses were variable, but parasite burdens were significantly reduced (by up to 72%) and FWECS reduced by more than 70% [40,41]. Other attempts to protect sheep against *T. circumcincta* using native antigen preparations, for example lectin-binding integral membrane glycoproteins [42,43], were unsuccessful.

(iii) Recombinant subunit vaccines. A number of studies have reported difficulties in stimulating protective immunity with recombinant antigens [44–46]. For example, the N-type single domain ASPs, Oo-ASP-1 and Oo-ASP-2, are principal components of an ASP-enriched native extract of *Ostertagia ostertagi*, which has been used with success to immunize cattle against challenge [45,47,48]. However, immunization with a recombinant version of Oo-ASP-1 failed to induce protective immunity [44]. Other protection trials using single recombinant proteins have also failed: in *O. ostertagi*, for example, the astacin-like metalloproteinase MET-1, which shares 50% amino acid identity with Tci-MEP-1, failed to stimulate protection [49]. In addition, a recombinant version of the *Necator americanus* orthologue of Tci-SAA-1 (Na-SAA-1) did not induce significant protection against L3 challenge in a hamster model [50].

In contrast, our multi-component vaccine reduced FWECS and adult parasite burdens by >70% in Trial 1. It is not essential for a vaccine against ruminant parasitic nematodes to be 100% effective, and “substantial benefits” can be gained by using a vaccine that is 60% effective in 80% of the flock [51]. It has also been postulated that a vaccine which could reduce egg output by 60% in *O. ostertagi* infected calves during the first 2 months on pasture could control bovine ostertagiosis by reducing peak pasture contamination while also allowing natural immunity to develop [47,48].

The serological analyses presented here (Figs. S1–S6) demonstrate that co-administration of immunomodulatory molecules with other vaccine antigens did not prevent high antigen-specific antibody levels developing. Although the recombinant antigens elicited high serum antibody levels following immunization in both Trials, there was no antigen-specific anamnestic response following parasite challenge. Thus, if the observed protection is antibody-based, high antibody levels produced by vaccination could protect young lambs when they are most susceptible to detrimental effects of *T. circumcincta* infection [52] but, because the vaccine does not produce sterile immunity, naturally-acquired immunity (which develops as the lambs mature [11]) would be allowed to develop through exposure to the limited numbers of L3 from pasture.

Overall, both trials produced comparable effects, although the timing differed. In Trial 1, when post mortems were conducted at day 84, vaccinated sheep contained 75% fewer adult nematodes than non-vaccinated sheep. In Trial 2 however, the effects of the vaccine on both FWECS and nematode burden were not obvious by day 84, with the differences between the vaccinated animals and the control animals becoming clearer later in the experiment. This observation may have been related to the ages of the animals involved in each trial—lambs in Trial 2 were ~30 days younger than those in Trial 1 and may have been less able to control the infectious dose [11,19].

Further studies with the recombinant vaccine will focus on a reductionist approach to determine the most simple, effective...
antigen combinations; to further elucidate the mechanism of action and to determine the efficacy of the vaccine in newly-weaned lambs where infection with *T. circumcincta* has the highest economical and welfare impacts [52].

Acknowledgements

We gratefully acknowledge funding from The Scottish Government’s Rural and Environmental Science and Analytical Services Division (RESAS). We are grateful to the Bioservices Division, More- dun Research Institute, for expert care and assistance with animals and to Claire MacArthur, Leigh Devin, Dave McBean and Lynsey Melville for their help in parasitological analyses.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.vaccine.2013.05.026.

References

""

