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ABSTRACT

Perturbed physics con�gurations of the HadAM3 atmospheric model driven with observed sea
surface temperatures (SST) and sea ice were tuned to outgoing radiation observations using
a Gauss-Newton line-search optimisation algorithm to adjust the model parameters. Four key
parameters, that previous research found a�ected climate sensitivity, were adjusted to several
di�erent target values including two sets of observations. The observations used were the global
average Reected Shortwave Radiation (RSR) and Outgoing Longwave Radiation (OLR) from the
Clouds and Earth’s Radiant Energy System instruments combined with observations of ocean heat
content. Using the same method, con�gurations were also generated that were consistent with the
earlier Earth Radiation Budget Experiment results. Many, though not all, tuning experiments were
successful with about 2500 con�gurations being generated and the changes in simulated outgoing
radiation largely due to changes in clouds. Clear sky radiation changes were small largely due to a
cancellation between changes in upper-tropospheric relative humidity and temperature. Changes in
other climate variables are strongly related to changes in OLR and RSR particularly on large scales.
There appears to be some equi�nality with di�erent parameter con�gurations producing OLR and
RSR values close to observed values. These models have small di�erences in their climatology with
the one group being similar to the standard con�guration and the other group drier in the tropics
and warmer everywhere.

1. Introduction

There have been several attempts to constrain climate
sensitivity using observations. Some of these compare di-
agnostics from an ensemble of multiple model simulations
(e.g. Knutti and Hegerl (2008)) while others systemati-
cally vary parameters in a single model (e.g. Stainforth
et al. (2005)). Varying parameters in a single model typi-
cally represents the ocean as a \slab" which, though com-
putationally less expensive than using a full ocean model,
requires simulations of a few decades in length both to es-
timate the model climatology, for comparison with obser-
vations, and to estimate the climate sensitivity. Randomly
perturbing parameters generates model con�gurations that
have large di�erences from observations. Such con�gu-
rations will have low likelihoods and so contribute little

to observationally constrained distributions. An approach
which preferentially generates \plausible" model con�gura-
tions would reduce the computational cost of generating an
ensemble of models to explore future uncertainty in climate
change. The computational cost could be reduced further
if atmospheric model simulations of a few years could be
used.

In part 1 of this paper we use an optimisation method
to show that it is possible to \tune" an atmospheric model
to di�erent outgoing radiation targets through modifying
parameters in the models parametrisation schemes. Unlike
others who have considered several observational datasets
we use several di�erent targets but only two observations:
the global-mean outgoing longwave radiation (OLR) and
reected shortwave radiation (RSR). An important reason
to focus on global-mean outgoing radiation is that an at-
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mosphere/ocean climate model with a poor simulation of
net radiation will drift until the model is back in equi-
librium leading to signi�cant surface temperature errors.
Such models with large surface temperature errors will have
distorted climate feedbacks. We chose targets that are close
to two di�erent observational values and sampled around
the edge of the \plausible" region of model-observational
agreement whose construction we describe in part 2 of this
paper. We also explore the physical mechanisms by which
the model makes these changes and if di�erent climatolo-
gies are possible for similar outgoing radiation values. Our
results suggest that automatic tuning of an atmospheric
model is possible.

In part 2 we use the data from the simulations we gen-
erated to �rst investigate the relationship between climate
feedbacks and outgoing radiation in HadAM3 �nding there
is a strong relationship between outgoing radiation and
climate sensitivity for the parameters we varied. Using
these simulations and an uncertainty estimate for model-
observational di�erence we make an observationally con-
strained estimate of climate sensitivity based on the struc-
ture of HadAM3. We �nd that that the range of plausible
climate sensitivities is considerably narrower than the prior
range when using the CERES record of Loeb et al. (2009).
These results suggest that the CERES data provides a sig-
ni�cant observational constraint on climate sensitivity.

Turning to the question of \tuning" which is the focus
of part 1. Current techniques to "tune" climate models are
slow, expensive and require expert judgement (e.g. Mau-
ritsen et al. (2012)). Several authors have attempted to
automatically \tune" climate models in a variety of ways.
Gregoire et al. (2011) carried out 100 evaluations of the
FAMOUS AOGCM and selected those con�gurations that
were in objective good agreement with present observations
and Last Glacial Maximum reconstructions. Medvigy et al.
(2010) sampled uniformly across a plausible range of two
parameters for the Ocean-Land-Atmosphere Model(Walko
and Avissar 2008) and found the con�gurations that max-
imised the likelihood of multiple weighted observations.
These approaches which require sampling uniformly across
parameter space are fairly ine�cient particularly as the di-
mensionality of the problem increases.

To estimate the multivariate probability distribution of
parameters, Jackson et al. (2004) proposed using instead of
pure MCMC sampling, an approximate Bayesian stochastic
inversion algorithm based on multiple very fast simulated
annealing that ’focuses’ the sampling so as to also decrease
a cost function of the error between model output and ob-
servations; this algorithm is one to two orders of magnitude
more e�cient in terms of evaluations count than classi-
cal samplers (e.g. J�arvinen et al. (2010)). Though possi-
bly not yielding equally good sampling of the parameter
space, optimisation methods that locally minimise model-
observational di�erence have the potential to be even more

e�cient in terms of model evaluations required.
Jones et al. (2005) used an optimisation algorithm based

on coordinate search directions, to tune multiple character-
istics of the low resolution FAMOUS coupled atmosphere/ocean
climate model to the climatology of its higher resolution
HadCM3 parent (Gordon et al. 2000). To avoid over�tting
they used a skill score that summed over several climate
variables. Their algorithm recursively updates one param-
eter at a time, by maximising a quadratic approximation of
the skill score determined by the current best guess of the
solution and two perturbations along the same coordinate
that span the allowed range of the parameter.

Severijns and Hazeleger (2005) employed the | "of-
ten unreliable" Wright (1995) | Nelder-Mead simplex to
tune a fast climate model to observations. Like Jones et al.
(2005) they maximised a skill score based on several climate
variabilities. Neelin et al. (2010) de�ned a weighted error
function as a weighted sum of root-mean-square errors for
model-observation di�erences. Their innovative approach
was to emulate the skill score for di�erent observational
datasets. This then allows post-optimisation selection of
minima based on which datasets were considered most re-
liable or important.

Schirber et al. (2013) used ensemble Kalman �lter data
assimilation to simultaneously estimate six model param-
eters and atmospheric states on timescales of a few days.
However, they found the their model performed worse on
climatological time scales. Ollinaho et al. (2012) also used
an ensemble forecast technique but with each forecast us-
ing di�erent parameter values. After reweighting they esti-
mated a best estimate parameter combination and covari-
ances.

In contrast to Jones et al. (2005); Neelin et al. (2010);
Gregoire et al. (2011); Severijns and Hazeleger (2005) who
include multiple variables in their error function we focus
on the global average of the top-of-atmosphere reected
shortwave and outgoing longwave radiation. We do this
partly for simplicity and transparency, and partly because
estimating the covariance structure over multiple climate
variables is likely to be di�cult and very subjective. Our
principal focus is on the Clouds and Earth’s Radiant En-
ergy System (CERES) estimates(Loeb et al. 2009) adjusted
for the small net-ux imbalance found in ocean observa-
tions. We also consider optimising to the older ERBE re-
sults(Fasullo and Trenberth 2008).

Our experimental design uses many six-year atmospheric
only simulations of the HadAM3 model(Pope et al. 2000)
driven by observed Sea Surface Temperature (SST) and
sea-ice as well as a package of climate forcings. We vary
four parameters that have been found to have most impact
on climate sensitivity(Knight et al. 2007). Though this
model is no longer state-of-the-art it is still in widespread
use and a good test case. In part 1 of the paper we aim to
explore if:
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i. simple optimisation methods can be used to tune the
atmospheric model component of a climate model
against radiation observations.

ii. the climatologies of the models that result are related
to the outgoing global-mean uxes.

iii. how sensitive the climatologies obtained are to di�er-
ent observed estimates from Fasullo and Trenberth
(2008) and Loeb et al. (2009).

The rest of the paper is structured as follows. In the
following section we describe our experimental design, then
describe how we optimised the model so that it produced
speci�ed outgoing longwave radiation (OLR) and reected
shortwave radiation (RSR) showing that we could, in most
cases regardless of starting parameter values, adjust model
parameters to observations. We then present results from
our optimisation experiments before showing that other
diagnostics are strongly correlated with global-mean RSR
and OLR. We explore issues of equi�nality (Beven and
Freer 2001) showing that model con�gurations with simi-
lar OLR/RSR values can have a wide variety of parameter
values and somewhat di�erent surface climatologies before
concluding.

2. Methods

a. Experimental Design

Our experimental design is a \perturbed physics" en-
semble of simulations of HadAM3(Pope et al. 2000) driven
with the HadISST SST & Sea-Ice analysis(Rayner et al.
2003) and a updated package of natural and human forc-
ings(Tett et al. 2007). We use the standard N48 resolution
(3:75

�
� 2:5

�
) of HadAM3.

The anthropogenic forcings include well mixed green-
house gases, tropospheric and stratospheric ozone, the di-
rect e�ect of aerosols, and a relatively crude parameterisa-
tion of the indirect e�ect of aerosols. The di�erences from
Tett et al. (2007) are the use of greenhouse gases that are
close to observed values to 2010, the use of Total Solar Ir-
radiance (TSI) values from recent observations(Kopp and
Lean 2011) and a �x to an error in the shortwave atmo-
spheric (Rayleigh) scattering in HadAM3. The e�ect of
the reduction in TSI is to reduce RSR by 0.3 Wm�2 while
�xing the Rayleigh scattering error increases RSR by 1.3
Wm�2 .

Our simulations all started 11th December 1998 and ran
to 1st March 2005. Simulated values of 5-year average OLR
and RSR, for the period March 2000 to February 2005 are
compared with the observed CERES values of Loeb et al.
(2009) for the same period.

Previous work(Knight et al. 2007; Murphy et al. 2004;
Sanderson et al. 2008) has found that four parameters,
which a�ect the vertical mixing of water and cloud forma-
tion, largely control climate sensitivity in HadAM3. The

range of acceptable parameters values for these parame-
ters was reported by Murphy et al. (2004) based on expert
judgement and we use this range (see Table 1). The four
parameters we focus on are:

entcoef Parameter in the model’s convection scheme that con-
trols the rate at which bulk air is entrained into the
convective plumes.

vf1 A parameter in the model’s large scale precipitation
scheme which is the speed of falling ice.

ct Another parameter in the model’s large scale pre-
cipitation scheme which is the rate at which cloud
droplets turn into rain.

rhcrit A parameter in the model’s large scale cloud scheme
which gives the critical value, at each model level, of
relative humidity for clouds to form in a grid box.
We speci�ed a single value for rhcrit and assigned
it to each of the 19 model levels as follows: Levels one
and two always set rhcrit to 0.95 & 0.9 respectively.
Level three had a value of two thirds the speci�ed
value + 0.3 but with a minimum value of 0.85. Levels
4-19 used the speci�ed value.

The parameters in the large-scale precipitation scheme
a�ect cloud as they are one mechanism by which cloud ice
and liquid water are removed but through evaporation of
precipitation they also moisten layers below clouds.

We also carried out an ensemble of 19 simulations of
the standard con�guration of HadAM3 started with di�er-
ent initial conditions and use this to assess the impact of
internal climate variability on our results. In doing this
we are assuming that parameter changes have no signi�-
cant impact on internal variability. Though unlikely to be
strictly true as internal variability is small (see below) our
neglect of its changes is not likely to be important.

b. Optimisation techniques

In this section we describe the optimisation algorithm
we use with the aim of �nding parameter combinations that
reduce model-observational di�erence, where the latter is
measured by the root-mean-square error of the di�erence
between the observations and simulated OLR and RSR.
The essential challenges that this (non-linear non-convex)
optimisation problem poses and that the algorithm must
face are: the computational expensiveness of each func-
tion evaluation (here, each function evaluation requires a 5
year simulation of HadAM3); noise present in the function
values (estimated to be of order 0:1 Wm�2 , due to the
chaotic nature of the climate model) and the unavailability
of derivatives of the error function (no adjoint exists) that
we aim to minimise.

State-of-the-art optimisation approaches that are de-
signed to tackle such challenges are known as derivative free
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optimisation algorithms (Conn and Vicente (2008); Powell
(1998)), and signi�cant research continues into such algo-
rithms, especially in the last decade. Deciding which vari-
ant within this class of methods is best for a given problem
is not straightforward, but some general purpose software
packages are available (such as DFO, BOBYQA, BFO, etc.)
for testing. However, in our case, due to the need to in-
tegrate the optimisation approach with HadAM3, it was
crucial to have easy access to the source code of the opti-
misation algorithm, control over its parameters and possi-
bility to do changes so as to improve performance, which
constrained some of our choices. We experimented with
BOBYQA and derivative-free gradient methods (Liu 2010),
but found that what was most e�cient was an implicit
�ltering-type approach(Kelley 2011) based on the classical
Gauss-Newton (Nocedal and Wright 2006) method, that
we implemented and customised appropriately.

The key ingredients of this iterative technique involve
computing approximate derivatives of the model; then, based
on these, choosing a regularised direction of change of our
current best estimate of a solution that takes into account
parameter constraints and deciding how far along this di-
rection to go to ensure the error function is decreased; �-
nally, deciding what to do when no progress can be made
and relatedly, when to terminate the algorithm. Next, we
describe each of these aspects in greater detail.

Firstly, for the \base"/current set of parameter values,
we estimate the model derivatives (i.e., Jacobian) using for-
ward �nite di�erences by increasing each parameter value
by a �xed amount (Table 1). The magnitude of the per-
turbation was approximately 5-10% of the parameter range
and chosen to be large enough to avoid making derivative
evaluations su�ciently close together to generate strongly
noise-contained estimates of the derivatives. In our early
attempts we modi�ed the parameter values by 1% of their
range and found that convergence was di�cult.

We perform an initial scaling of the parameters that
brings their values within similar magnitudes, so as to
avoid algorithmic ine�ciencies due to ill-conditioning. As
our inverse problem is ill-posed, the Jacobian is singular
and so it requires some regularisation to make the problem
well-posed and allow us to compute an iterative improve-
ment. We used a Tihkonov-type regularisation(Nocedal
and Wright 2006) of the Jacobian, namely a perturbation
of the Jacobian by a small multiple of the identity matrix,
to ensure the resulting matrix is full rank. The e�ect of
this is to prefer solutions in which the four parameters,
after the initial scaling, all have similar magnitudes. For
example preferring solutions of the form (1, 1, 1, 1) to (10,
0.1, 1, 1).

To compute an improvement to the current best guess of
optimal parameters values, we form a Gauss-Newton direc-
tion of search using the regularised approximate derivatives
we have computed. To keep all parameters within their

expert-de�ned bounds(Murphy et al. 2004) (Table 1), we
project the search vector along the boundary of allowed pa-
rameters values whenever such a boundary is encountered
by our search. The projection keeps the points, that are
within the bounds, unchanged and inexpensively computes
the closest point, within bounds, to any points outside the
allowed bounds.

Finally, to ensure the error is decreased, we carry out
a linesearch along this vector by evaluating the error at
the full feasible vector, at 90% and at 30% of the feasible
vector. Then by comparing the errors at these points with
the current best value of the error, we update our current
set of parameter values to the values, if any, that gave most
decrease in the error.

We terminate the optimisation algorithm when the min-
imum linesearch root-mean-square error is less than 1 Wm�2

(this error level is meant to keep the runs well above noise
levels) or when an iteration yields no or insigni�cant de-
crease in the error over previous iterations. If an iteration
yields no decrease in the error, it is customary in implicit-
�ltering techniques to shrink the perturbations used to
compute the model derivatives (while still keeping their
size above noise levels). This is meant to give a more \ac-
curate" approximation of model derivatives; indeed, if we
had exact derivatives, a su�ciently small move along the
Gauss-Newton direction would be guaranteed to decrease
the error locally. Until now, we have only marginally ex-
perimented with this additional heuristic, see Section 3.

The use of �nite di�erences implies that n+1 function
evaluations are required for a problem in n variables plus
an additional 3 for the linesearch giving a total of n+4
evaluations per each iteration of the algorithm. This cost of
n+4 evaluations is computationally feasible for problems,
like ours, where the dimensionality is small.

3. Optimisation Results

In this section we focus on results from our optimi-
sation calculations. We �rst report on results which tar-
geted the observed CERES values(Loeb et al. 2009) and
the ERBE estimates(Fasullo and Trenberth 2008) start-
ing from two di�erent parameter combinations. We then
report on results in which we initialised the optimisation
algorithm with all 16 combinations of extreme parameter
choices and optimised to six di�erent target values.

We found parameter combinations using an emulator
(see part 2), for the four parameters being considered,
that gave a model con�guration with the smallest (Low) or
largest (High) climate sensitivities and started our optimi-
sation algorithm from them (Table 2). We �rst optimised
both these initial parameter choices to the CERES values
and then to the ERBE values (Fig. 1). The high sensitiv-
ity case did not converge to the CERES target though the
remaining three cases converged. For the case when con-
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vergence failed, we tried further halving and quartering the
perturbations used to compute the Jacobian, following an
implicit-�ltering strategy described earlier. No signi�cant
improvement was found suggesting we have reached a local
error-minimum.

We then carried out optimisation studies where we started
the algorithm with the extreme values for the four vari-
ables, and targeted the CERES observations, giving 16
cases in all. Twelve of these cases failed not because of
a failure to converge but because the model failed or \blew
up" indicating unrealistic model physics. Examining the
annual mean of OLR and RSR for 1999 (Fig. 2) we see
mainly, though not exclusively, that failure occurs for model
con�gurations with OLR and RSR values very di�erent
from observations or the standard con�guration of HadAM3.
The four con�gurations that did not fail converged to the
CERES observations with between 3 and 6 iterations.

We then repeated our attempt with parameters at 75%
of the di�erence between the default and limiting values
(Table 1). No failures occurred and 15 cases converged to
the CERES observed values taking from one to eight itera-
tions to do so (Table 3). These �nal con�gurations have a
broad range of parameter values (see below). We then re-
peated this for the ERBE target, and due to a setup error,
a target value near the ERBE values. Twelve cases success-
fully converged to the ERBE target while 13 successfully
converged to the Near ERBE target. For the cases that
failed six, in total, had a model failure while one, in total,
failed to converge.

The ERBE value lies at the edge of the plausible re-
gion around the CERES values (see part 2 for details). We
then carried out further experiments, targeting three val-
ues spread approximately equally around the edge of the
uncertainty region (Fig. 1). For one target we only had 4
successful optimisation cases with 11 failing to converge,
and one model failure. This target appears to be di�cult
to generate model con�gurations that match with the opti-
misation algorithm, likely getting trapped in local minima
though further experimentation is required to con�rm this.
The other two target values appeared to behave similarly
to the ERBE targets with a total of four model failures and
two cases, in total, when the algorithm failed to converge.

To provide a statistical summary of our optimisation re-
sults we focus our analysis on �ve targets all started with
initial parameter values at 75% of the di�erence between
the default and limiting values (� in Table 3) giving 60
"sample" cases in all. About 30% of these failed with the
remainder converging. The failure cases took, on average,
about 28 model evaluations to either \blow up" or termi-
nate due to failure to reduce the error. The convergent
cases took, on average, about 24 evaluations. One algo-
rithm to �nd an optimal solution would be to start with
some initial parameter choice and apply our algorithm. If
the optimisation fails to converge or the model \blows up"

then generate another con�guration and keep trying until
convergence happens. The number of model evaluations
required, taking account of the possibility of repeated fail-
ure, is:

E = Ec +
1X

i=1

Eff i (1)

where E is the total number of evaluations, Ec(Ef ) the
number of evaluations for convergence (failure) and f the
probability of failure.This gives E = Ec +Ef

f
1�f . For our

values this means that such an algorithm would take, on
average, about 36 model-evaluations, each of 6.25 years,
requiring 225 simulated years.

4. Changes in Other Climate Variables

So far we have focused our attention on global-mean
Reected Shortwave Radiation (RSR) and Outgoing Long-
wave Radiation (OLR). We did this as it allows a relatively
simple and reproducible tuning strategy allowing us to gen-
erate model con�gurations that agree well with the global
mean outgoing longwave and reected shortwave. How-
ever, in so doing, we might produce con�gurations that
have poor climatologies for other variables including OLR
and RSR themselves. In this section we examine clima-
tologies in land temperature and precipitation, and several
other climate variables to see what relationship there is
between OLR and RSR and those variables. If there are
strong relationships between those variables and OLR and
RSR then that supports our focus on OLR/RSR while if
there is little relationship then we should include them in
our minimisation algorithm to produce model con�gura-
tions that are in better agreement with observations.

Some of our model con�gurations produce OLR or RSR
values that are tens of watts di�erent from the observa-
tions. In order to avoid our analysis being overdetermined
by these cases we only consider model con�gurations that
have reected SW and outgoing longwave values both within
10 Wm�2 of the observed values. As we show in part 2 of
this paper that is well outside the observed uncertainty
range. This gives us 1849 HadAM3 con�gurations, from a
total of 2640 con�gurations, to analyse in this section.

a. Clear or Cloudy e�ects?

We �rst consider those variables that are closely re-
lated to RSR and OLR with the aim of determining if
the changes in RSR and OLR arise from clear sky e�ects
or changes in cloud. Examining �rst the fractional cloud
(Fig. 3(a)) we see systematic changes in fractional cloud
area with values ranging from 0.38 to 0.57. The systematic
variation is a reduction in cloud fraction as OLR increases
and an increase in cloud fraction as reected shortwave
radiation increases. This is what we would expect as re-
ducing cloud amount increases OLR (more radiation from
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lower in the atmosphere) and reduces RSR (less reected
radiation) (see below). The range of clear sky RSR val-
ues are small ranging from 52.6 to 53.4 Wm�2 suggesting
our parameter changes are not greatly a�ecting the sur-
face albedo even though the land temperatures (see below)
change somewhat.

The range for clear-sky OLR (Fig. 3(b)) at 258.4 to
262.1 Wm�2 is larger than the clear-sky RSR range but
much smaller then the �10 Wm�2 range in all-sky OLR
and RSR. The simulated clear sky OLR of around 260
Wm�2 is also much smaller than the Loeb et al. (2009)
value of 269.1 Wm�2 . Simulated clear sky OLR is com-
puted by running the radiation scheme with clouds re-
moved but no other changes made to the model state. This
is di�erent from the observed values which sample those
few pixels where there are no clouds. This di�erence can
lead to quite large biases (John et al. 2011). So the rea-
son for model-data discrepancy in clear sky OLR may be
due to this bias or reect some systematic problem with
HadAM3 that no amount of model adjustment can rectify.

Changes in upper tropospheric water vapour and tem-
perature may explain the changes in clear sky OLR. We
�nd (Fig. 3(c) and (d)) that 250 hPa temperatures are
greatest when 250 hPa relative humidity (RH) is also largest.
That suggests a compensation between these two variables
such as to keep the clear sky OLR near constant. When the
atmosphere is warmer and so emits more outgoing radia-
tion it is also wetter. The moister upper troposphere means
the radiation that reaches space is coming from higher in
the atmosphere where it is colder. This compensation be-
tween lapse rate and moisture changes has been found for
many models in response to climate change (Randall et al.
2007).

We now investigate, in more detail, the small changes in
clear sky radiation and the dominance of cloud changes on
the outgoing radiation. One possibility is that our results
are an artifact of the four parameters we tuned or because
we are using results from \tuning" experiments. Rowlands
et al. (2012) used 14,001 perturbed physics simulations of
HadCM3 perturbing the same 10 parameters as Sander-
son et al. (2008). We randomly sampled 100 parameter-
con�gurations from these 14,001 con�gurations and carried
out atmospheric model simulations using these parameter
values (\randomly sampled" simulations). Two of the sim-
ulations failed through model \blow up" leaving 98. For
the clear sky RSR ten parameters gives a larger scatter
than just modifying four. However, the range of clear sky
RSR values is still small at less than 3 Wm�2 compared to
range of 100 Wm�2 in all sky RSR (Fig. 4(a)). For clear sky
OLR the range is about 5 Wm�2 which is small compared
to the range of OLR values in both the \tuned" and \ran-
domly sampled" simulations (Fig. 4(b)). The \tuned" and
\randomly sampled" simulations appear to behave simi-
larly with RSR increasing as cloud fraction increases and

OLR decreasing as cloud fraction decreases (Fig. 4(c-d)).
Thus, at least for the parameters we consider, changes in
outgoing radiation are driven by changes in cloud rather
than changes in clear sky conditions. Changes in clear
sky OLR are small likely because upper tropospheric tem-
perature (UTT) and humidity (UTH) change to partially
compensate the impact each one has on OLR. These re-
sults do not appear to be an artifact of our focus on four
parameters or \tuning" as similar results hold for a set of
100 randomly sampled parameter con�gurations.

b. Other climatologies

In this section we investigate how changes in the clima-
tology of other variables are related to global-mean OLR
and RSR. If these variables are independent of OLR and
RSR then including them as separate variables in our anal-
ysis might have bene�t { see for example the climate pre-
diction index of Sexton and Murphy (2011). In this section
we focus on large-scale averages over a many of our sim-
ulations. In Section 5 we consider, in more detail, those
con�gurations that are close to the CERES and ERBE
observations. In this section we carry out a weighted re-
gression between global-mean OLR and RSR with several
variables. The weights we use are the areas of the Voronoi
polygons for each model con�guration in OLR & RSR.

A Voronoi polygon is the polygon enclosing the region of
space closer to a point than to any other point(Aurenhammer
1991). Using this weighting gives smallest weight to those
individual con�gurations that are close, in terms of their
simulated OLR/RSR values, to other con�gurations. We
set a maximum weight of � for each polygon to stop large
polygons on the boundary biasing our results. We chose
this factor to give a disk of radius 1 corresponding to our
precision for tuning. The e�ect of this maximum weight
is to reduce the variance explained in our results below.
We computed the Voronoi polygons for all our results and
then selected the points and weights only for those where
the RSR and OLR was within 10 Wm�2 of the CERES
observations.

We �rst focus on changes in global-mean or land-average
values. We �nd that land-temperature, global-mean pre-
cipitation, fractional cloud, 250 hPa RH and land precipi-
tation are all strongly related to global-mean all-sky OLR
and RSR with these two variables explaining more than
67% of the variance in the other variables (Fig. 5). In
this �gure the spread along the x-axis is a measure of the
variability unexplained by OLR and RSR. For global-mean
precipitation, cloud and 250 hPa relative humidity more
than 90% of the variance is explained. Only for clear sky
OLR is a small amount (38%) of the variance explained.

For these variables we also repeated the analysis but
using land-temperature as a predictor. These regression
models are much poorer than regressions using OLR and
RSR. Internal climate variability could a�ect these regres-
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sions and using the ensemble of 19 HadAM3 default con-
�gurations found that the impact is small for the variables
investigated here (Fig. 5).

As already discussed clear sky OLR is less than the
Loeb et al. (2009) estimate. We can also investigate if
land-mean precipitation and temperatures are consistent
with other observations. For observed land-precipitation
we use the CRU TS3.1 dataset. This dataset is an update
of the CRU TS2.1 data(Mitchell and Jones 2005) but with-
out including any new corrections for changes in observing
practise. We compute average area-weighted precipitation
from it from all land-points north of 60

�
S. For 2000-2005

period average this precipitation is 2.14 mm/day. This
value is smaller than many, but far from all, of the pa-
rameter con�gurations considered (Fig. 5(c)). We can also
compare the simulated temperature records for 2001-2005
with the CRUTS3.1 dataset. None of the con�gurations
have simulated land-surface temperatures greater than the
observed estimate of 286.9K.

Considering only the con�gurations that have a RMS
error of less than a Wm�2 with the ERBE and CERES
observations (Fig. 5) we �nd that the scatter for these con-
�gurations is approximately the same for both cases. This
scatter is the variability unexplained by changes in OLR
and RSR and is about 1K (land temperature), 0.1mm/day
(global-mean precipitation), 0.2 mm/day (land precipita-
tion), 5% (cloud fraction), 2 Wm�2 (OLR) and 5% (RH).
These ranges are much larger than that generated by chaotic
climate variability suggesting that there is some scope for
tuning both outgoing radiation and other facets of the sim-
ulated climate. In Section 5 we explore the surface clima-
tologies of those con�gurations.

We now repeat the regression calculations on 5-year av-
erages of zonal-mean temperature and humidity. As before
we only use those con�gurations that are within 10 Wm�2

of the CERES observations and weight them by the area
of Voronoi polynomials. We �rst consider the variance
explained by OLR and RSR in zonal-mean temperature
(Fig. 6(a)). Over almost all of the model troposphere more
than 50% of the variance is explained by OLR and RSR
and in much of the mid to upper troposphere more than
75% of the temperature variance is explained. There are
only a few regions where the fraction of variance explained
drops below 50%. Carrying out a similar analysis for rel-
ative humidity (Fig. 6(b)) we �nd over almost all of the
troposphere more than 50% of the variance can be linearly
explained by changes in OLR and RSR. There are regions
in the tropical troposphere at around 300 hPa and in the
extra-tropical upper troposphere where more than 75% of
the variance is related to changes in outgoing radiation.
Water vapour in these regions is particular important as
it has impact on the outgoing radiation (see earlier discus-
sion). In summary for zonal-mean temperature and rela-
tive humidity much of the intra-con�guration variability is

strongly correlated with changes in global mean OLR and
RSR.

We repeated these calculations on the gridded 5-year
averages for �elds from the di�erent con�gurations weight-
ing, as before, by the area of the Voronoi polynomials. We
�nd that for large parts of the world global-mean RSR and
OLR explain more than 75% of the variance in RSR and
OLR (Fig. 7(a) & (b)). For RSR over much of the tropics
and o� the coast of Antarctica more than 75% of the vari-
ance can be explained by changes in global-mean RSR and
OLR. For OLR there are large parts of the extra-tropics
where more than 90% of the variance can be explained by
global-mean OLR and RSR. In only a very few regions is
the variance explained in OLR less than 50%. RSR in the
northern extra-tropics is not well explained by changes in
global-mean OLR and RSR suggesting that some inclusion
of spatial information may improve our optimisation al-
gorithm. With the exception of this our results suggest
that the parameter changes are coherently a�ecting out-
going radiation across the planet supporting our focus on
global-mean OLR and RSR.

Clear sky OLR has a much weaker relationship with
global average all-sky OLR and RSR than all sky OLR(Fig. 7(c)).
Though there are regions in the tropics and polar regions
where more than 50% of the variance in clear sky OLR can
be explained by global-average OLR and RSR over most
of the mid-latitudes the variance explained is 25{50 %.

Near-surface temperature has some parts of the world
where more than 50% of the variance in grid-scale val-
ues can be explained by the TOA all-sky uxes(Fig. 7(d)).
These regions are much of Asia, inland North America and
Antarctica.

Precipitation does not show such a clear relationship, as
the other variables we have considered, with global-mean
OLR and RSR with a quite noisy appearance. Neverthe-
less, this linear relationship explains more than 50% of the
variance across parts of the world mainly in the tropics.
Over much of the world more than 50% of the variance in
mean sea level pressure can be explained by OLR and RSR.
This is particularly apparent in the tropics where there are
large regions where more than 75% of the variance can be
explained by OLR and RSR. As the parameters we adjust
a�ect the model convection, cloud and rainfall scheme then
we speculate that they are a�ecting the atmospheric heat-
ing rates and thus the atmospheric circulation particularly
in the tropics.

Overall there are very strong relationships between global-
mean OLR and RSR and other climatologies as we perturb
model parameters. This supports our focus on OLR and
RSR rather than optimising on several variables as others
have done. However, there is still variability unexplained
by changes in OLR and RSR which is larger than that
generated by internal climate variability. This suggests we
might have been able to tune surface temperature and pre-
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cipitation to bring them closer to observations as well as
OLR and RSR. We examine the surface climatologies of
those con�gurations in the next section.

5. Equi-�nality

Equi-�nality (Beven and Freer 2001) is when di�erent
parameter values lead to similar outputs and frequently
arises in complex environmental models. In this section we
examine in more detail those con�gurations whose simu-
lated RSR and OLR are in good agreement CERES and
ERBE observations. We examine the parameter values for
the con�gurations to see if 1) the parameter values are con-
strained by OLR and RSR values and 2) if the simulated
temperature and precipitation climatologies are related to
particular parameter values. We consider the 37 (41) con-
�gurations that have a RMS error of less than 1 Wm�2

from the CERES (ERBE) observations of which 20 (14)
are the best �t cases arising from earlier optimisation tri-
als.

First considering land, north of 60
�
S, temperature (Fig 5(a)).

For con�gurations close to the CERES values that there are
two groups with a gap between them while for con�gura-
tions close to the ERBE values there is an approximately
1K range of land temperatures but no obvious gap.

To simplify further analysis we group the model con-
�gurations into �ve groups and average within each group.
These groups are: 1) The standard con�guration of HadAM3
with di�erent initial conditions (Standard); 2) the con-
�gurations close to CERES that are colder than 285.3 K
(CERES cold group ); 3) the con�gurations close to CERES
that are warmer than 285.3K (CERES warm group); 4) the
con�gurations close to ERBE that are colder than 285.6 K
(ERBE cold group); 5) the con�gurations close to ERBE
that are warmer than 285.6K (ERBE warm group). These
values were chosen to keep the groups approximately equally
sized (Table 4) and allow us to see if there is any relation-
ship between surface temperatures and other facets of the
simulated climatologies.

The warm CERES and ERBE groups are warmer, by
construction, than the Standard con�guration and so are in
better agreement with observed large-scale temperatures.
The CERES cold group has similar temperatures to the
Standard con�guration though with larger temperature vari-
ability than internal climate variability. The global-average
precipitation is not greatly di�erent in the two CERES
groups though this is a result of a broad spread (Fig. 5(b))
across the two groups. The warm CERES group, on aver-
age, has 0.1 mm/day greater land precipitation (Table 4)
than the cold CERES group and Standard con�guration.
However, there is signi�cant variability within the two groups
with the two groups overlapping. For global and land av-
erage precipitation both ERBE groups overlap each other
(Fig. 5(b-c)) and have similar average land-precipitation

(Table 4).
Both CERES groups are well separated for cloud, clear

sky OLR and 250 hPa Relative Humidity (Fig. 5)(d-f)). In
contrast, the two ERBE groups are not strongly separated.
Average values of the groups show that each ERBE group,
compared to the equivalent CERES group, has more cloud,
less land precipitation, similar clear-sky OLR and larger
250 hPa relative humidities. Compared to the equivalent
warm groups the cold groups have more cloud, less clear
sky OLR and larger 250 hPa relative humidity (Table 4).
In general the standard con�guration is most similar to the
cold CERES group.

For the con�gurations close to the ERBE and CERES
observations individual parameter values(Fig. 8) can have
values across their valid range. However, this requires cor-
relation between di�erent parameter values. For exam-
ple high values of vf1 are associated with high values of
rhcrit(Fig. 8(c)). While, high values of ct are associated
with high values of entcoef (Fig. 8(d)). Jackson (2009)
following Jackson et al. (2008) examined the probability
distribution of several parameters and, like us, found mul-
tiple parameter values could lead to similar model simula-
tions.

The ct parameter appears to be responsible for the
behaviour of the warm vs cold groups with both warm
groups having values of around 10�4. The cold groups
have more scatter with the cold CERES group having ct
values around 3 � 4 � 10�4 while the cold ERBE group
has ct values around 2 � 4 � 10�4 and less separation
between the two groups. Of the other three parameters
only entcoef shows some sensitivity to group with the
cold CERES group have generally lower values than the
warm group. The cold ERBE group has, on average, lower
values of entcoef there is some overlap between the two
groups.

The correlation exhibited between the parameter values
suggests that very di�erent parameter choices can lead to
similar surface and outgoing radiation climatologies lead-
ing support to the idea that HadAM3 can exhibit equi-
�nality. However, as we’ve already seen di�erent parame-
ter choices can modify the surface temperature, and other
variables, and still produce similar values of outgoing radi-
ation. Thus, if we had used more parameters and observ-
ables in our analysis we might have been able to reduce
this equi-�nality.

We now compare the standard con�guration, and av-
erages from the four groups with observations focusing
on zonal-mean values. As before we compare with the
CRUTS3.1 dataset. In very broad terms all con�gura-
tions capture the broad features of the observed zonal-
mean temperatures (Fig. 9(a)) with largest temperatures
in the tropics and cooling towards the extra-tropics. This
is not greatly surprising { some of this will be driven by
the SSTs and some by resolved ows. Examining the dif-
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ferences between the various simulated land temperatures
and observations (Fig. 9(b)) we can see that the cold ERBE
and CERES groups and Standard con�gurations have sim-
ilar temperature di�erences from observations. The pat-
terns of zonal-mean error in all �ve groups appear to be
similar with a simple shift explaining most of the di�er-
ences. Both warm groups have smallest di�erences from
observations near the equator and largest at high northern
latitudes though still cooler than the observations. This
suggests that other parameters, probably closely related to
the land surface scheme, need adjusting or better repre-
sentation of land surface processes are needed to remove
these temperature biases while producing outgoing radia-
tion values that are comparable with observations.

Examining simulated and observed zonal-mean land pre-
cipitation now (Fig. 9(c)) we see that the simulations cap-
ture the major observed features but are all more similar
to one another than they are to the observations. The ma-
jor di�erences from observations is that all model con�g-
urations have too much precipitation at 45

�
S. This is due

to excessive precipitation over the southern Andes likely
due to excessive di�usion of moisture over the steep orog-
raphy in this region. All model con�gurations also have
too much precipitation north of about 30

�
N and produce

too little precipitation in the equatorial region with this
being particularly apparent for the warm group. Looking
at the di�erences between observations and model con�gu-
rations (Fig. 9(d)) we see that the Standard con�guration
and both cold groups have similar errors: about a mm/day
too little precipitation near the equator and about half a
mm/day too much precipitation in northern extra-tropics.
Both warm groups are too dry by about one and a half
mm/day in the equatorial regions but elsewhere have sim-
ilar errors to the Standard and cold group.

We now focus on the average di�erence between the
CERES warm and cold groups. Near surface temperature
di�erences (Fig. 10(a)) show spatial heterogeneity with some
regions being 1K warmer and others close to zero. Most
of the land is between 0.5-1K warmer. Regions with the
least warming appear in the wet tropics while largest warm-
ing is at high northern latitudes, India and parts of East
Africa. Precipitation di�erences (Fig. 10(b)) appear to be
important only in the tropics with a reduction in land pre-
cipitation and an increase in ocean precipitation. Perhaps
these precipitation di�erences are water vapour transports
from ocean to land being a�ected by the parameter choices.
MSLP di�erences are also apparent with increases in pres-
sure in the Indian and North Atlantic Oceans and reduc-
tions in the mid-latitude north and south Paci�c. Earlier
we found the changes in cloud were the dominant contribu-
tor to changes in RSR and OLR. Cloud fractions are about
30 % less o� the coast of Peru, 20 % smaller o� the coast
of Namibia and 5-10% less in the Arctic in the warm group
than in the cold group. Only in the tropical Paci�c and

Atlantic is there an increase in fractional cloud of 5-10% in
the warm group relative to the cold group.

We repeated this calculation for ERBE warm - cold and
found similar patterns to that for the two CERES groups
though with a greater magnitude (not shown). This sug-
gests that the perturbed climatologies that result from per-
turbing the model physics have di�erences that are large
scale and systematic.

To summarise our analysis has found evidence of some
equi-�nality with di�erent parameter combinations that
produce similar outgoing radiation also producing similar
surface climatologies. The values for individual parame-
ters have a broad range though that requires correlation
between the parameters. We de�ned two groups based on
their land temperatures and found the warm group, regard-
less of use of ERBE or CERES observations, was warmer
over the land everywhere but drier in the tropics. The main
di�erences between the groups arose from changes in the
ct parameter which controls the rate at which cloud wa-
ter turns to precipitation. When it is high HadAM3 has a
warmer land but produces less rain over the tropical land.
The impact of this is to make the land-temperature simu-
lation warmer and in better agreement with observations
but the simulation of tropical land-precipitation worse.

6. Summary and Conclusions

Our results show that tuning atmosphere-only models
and exploring parameter space is straightforward using an
optimisation method. It is computationally e�cient requir-
ing short simulations of an atmospheric only model. Our
results suggest that, if other atmospheric models behave
like HadAM3, one approach to developing a climate model
would be to automate a manual tuning process(Mauritsen
et al. 2012) by �rst automatically optimising the atmo-
spheric model to have near-radiative balance before cou-
pling it to an ocean model.

We systematically explored the reliability of our optimi-
sation algorithm by changing the target values and starting
from all 16 combinations of extreme parameters values. We
found convergence, to a RMS error of 1 Wm�2 or less, took
a median of four iterations. Failure to converge, for most
targets, occurred about once in 16 cases. For one target
we found many more failures to converge. This suggests
that convergence depends on the target reecting the local
nature of the optimisation algorithm we are using.

Though HadAM3 has been superseded and so it is no
longer state-of-the-art the application of our techniques to
more computationally complex models should be feasible.
The algorithm has two steps: the �rst in which �nite dif-
ferences are computed and the second in which the line-
search is performed. For the four parameters we consid-
ered the �rst step required 4 model simulations and the
second step required 3 model simulation. In each step each
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simulation can be run in parallel. Modelling centres with
more resources than were available to us should be able
to apply the techniques we used to more state-of-the-art
climate models as each optimisation would, on average,
require about 225 simulated atmospheric years. This as-
sumes, on average, about 36 model-evaluations each of 6.25
years in length. We expect that the optimisation algorithm
we used should scale to order 10 parameters with a linear
increase in the number of model evaluations per evaluation
though would need to explore how the number of itera-
tions behaves. It may be possible to reduce the length of
the simulation to 18 months as internal climate variability
in OLR and RSR is small which would reduce the number
of simulated years to 54.

Looking in more detail at the model climatologies we
found that the changes in several large scale variables was
strongly related to changes in reected shortwave radiation
(RSR) and outgoing longwave radiation (OLR). We found
little change in clear sky RSR and OLR largely due, for
the latter, due to a cancellation between changes in upper
tropospheric water and atmospheric temperatures which
may be due to the HadAM3 model structure. As a con-
sequence of this cancellation changes in outgoing radiation
were largely due to changes in model cloud.

We also explored the climatologies for the con�gura-
tions that had a root-mean-square error of less than 1
Wm�2 to either the CERES or ERBE observations. Pa-
rameters varied across a broad range but with correlation
between the parameters. This lead to some equi-�nality
with di�erent parameter combinations leading to similar
climatologies. The main impact on the surface climatolo-
gies was due to the parameter (ct) that controls the rate
at which water cloud droplets are converted to precipita-
tion. When ct was high con�gurations had climatologies
that were warmer but had less precipitation in the tropics
than the standard con�guration.

Earlier evaluation of HadAM3 (Pope et al. 2000) found
that the model was too cool by about 2K and too wet by
about 1 mm/day. We still �nd that the model is too cool
but that model precipitation was about correct. As part
of the development of our con�guration we investigated
if changes in total solar irradiance or �xing the Reyleigh
scattering error could explain this di�erence. We found
these had little impact on land precipitation. Interestingly,
changing the Sea Surface Temperatures used to drive the
atmospheric model from HadISST (Rayner et al. 2003) to
Reynolds et al. (2002) which is a blend of in situ and satel-
lite data reduced the land precipitation by 0.2 mm/day.
However, that does not bring our results into agreement
with that of Pope et al. (2000). Remaining di�erences
might be the use of a di�erent precipitation dataset, a dif-
ferent validation period or the use of Aerosols and non CO2
gases in our experiments.

Looking at the model climatologies we obtained, in

more detail, we found a group of HadAM3 con�gurations
which were warmer (and so less in error) but drier in the
tropics. It might be that some existing GCM errors have
arisen from tuning to a poor minimum and that tuning
from extreme parameter values might lead to better simu-
lation of current climate.

Others have also explored optimisation techniques though
examining di�erent problems to us. Jones et al. (2005)
tuned the low-resolution FAMOUS atmosphere/ocean model
by iteratively adjusting six variables. Each iteration re-
quired thirteen simulations each of 100 years for a grand
total of 6500 simulated years. Jackson et al. (2004) re-
quired an average of 80 model evaluations for estimating
the posterior distribution of four parameters and all the
evaluations ran in serial rather than partially in parallel as
ours do. Ollinaho et al. (2012), like us, used four variables
but, unlike us, carried out a set of 10-day ensemble atmo-
spheric forecasts with each ensemble member perturbing
a parameter. After reweighting these forecasts they had
generated best estimate parameters and a distribution for
them assuming that the parameters were multi-normally
distributed. They also compared their best estimate re-
sults with those of Loeb et al. (2009) and found zero error
in the total outgoing radiation but RMS errors of about
1.6 Wm�2 larger than our convergence criteria. Their ap-
proach used 180 50-member ensembles with each forecast
being of length 10 days for a total of about 250 simulated
years.

Finally, answering the questions we posed in the intro-
duction. It is feasible to use optimisation methods to tune
atmospheric mode to radiation observations. Many facets
of the model climatologies are related to these radiation
observations and there appears to be little di�erence in the
surface climatologies that result when we tuned to the older
ERBE results of Fasullo and Trenberth (2008) rather than
the recent CERES results of Loeb et al. (2009). However,
we did �nd that model con�gurations with similar outgoing
radiation values could have di�erent surface temperature
and precipitation climatologies.
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Trajectories for Optimisation
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Fig. 1. Optimisation trajectories beginning from high and low climate sensitivities to CERES (black lines) and ERBE
(gray lines) targets. Crosses show the observed targets. Small pluses are values from the individual simulations. The
black triangle shows the average values for the default HadAM3 con�guration while the light gray crosses show four other
targets used.
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Table 1. Parameters, their default value, allowed range and step size used in derivative calculations. Bracketed values
are 75% of range used for many of our optimisation experiments.

Parameter Default Value Range Step Size
entcoef 3 0.5{10 (1.1{8.3) 0.5

vf1 1 0.01-2.5 (0.26{2.1) 0.2
ct 1:0 � 10�4 0.5 { 4 (1{3.2) �10�4 2�10�5

rhcrit 0.7 0.6 { 0.9 (0.63{0.85) 0.05

Table 2. Optimisation simulations. Shown are initial and �nal con�gurations from CERES and ERBE targets with both
starting from con�gurations with largest and smallest estimated equilibrium climate sensitivity (see text). Also show are
parameter choices and RMS error (Wm�2 ) for initial choice and �nal state of the optimisation. Error is computed against
the original observed values. Also shown are the number of iterations and the number of simulated years. Parameter
choices are shown in order: entcoef, vf1, ct �10�4 and rhcrit. Also shown is Standard con�guration of HadAM3.

Name Initial Final Iter. (Yrs.)
Parameter Error (Wm�2 ) Parameter Error (Wm�2 )

HadAM3 (3; 1; 1; 0:7) 0.7 - {
CERES Low (9:00; 2:00; 0:50; 0:70) 32.4 (4:16; 2:32; 0:86; 0:89) 0.1 3 (137)
CERES High (0:60; 0:50; 1:28; 0:85) 12.4 (0:95; 0:66; 0:50; 0:65) 4.7 8 (364)
ERBE Low (9:00; 2:00; 0:50; 0:70) 25.4 (4:15; 0:83; 0:66; 0:83) 0.1 9( 410)
ERBE High (0:60; 0:50; 1:28; 0:85) 17.4 (2:05; 0:57; 0:50; 0:60) 0.3 8( 364)

Table 3. Summary of optimisation experiments each one consisting of 16 optimisation cases. All cases except CERES
(100%) were started from parameter values set to 75% of their extreme conditions (see Table 1 for values). Shown is the
name of the optimisation, the target (RSR, OLR) in Wm�2 , how many successfully converged, how many cases there
was a model failure and how many optimisations were terminated because they did not converge. The minimum and
maximum iterations for the convergent cases are shown as a range with the median number of iterations shown bracketed.
Asterisked cases are the \sample" cases (see main text).

Name Target Successful Model Failed Converge Failed Iterations
CERES (100%) (99.5, 239.6) 4 12 0 3-6 (4)
CERES (75%)� (99.5, 239.6) 15 0 1 1-8 (4)

ERBE� (106.5, 234.4) 12 4 0 3-7 (3)
Near ERBE (105.5, 234.4) 13 2 1 2-8 (4)

TGT#1� (97, 245) 4 1 11 2-9 (5)
TGT#2� (98, 237) 13 2 1 1-6 (3)
TGT#3� (101, 243) 12 2 1 2-8 (4)

Table 4. Summary of tuned simulations. Shown is name, number of simulations, RSR (Wm�2 ), OLR (Wm�2 ), land
precipitation (mm/day), land temperature, area Cloud (%), clear sky OLR (Wm�2 ) and 250 hPa relative Humidity (%).

Name No. RSR OLR Land Temp. Land Precip Cloud OLRC UTH
Standard 19 100.6 238.8 285.1 2.3 46.9 259.9 49.3
CERES Cold 17 99.5 239.6 284.9 2.4 47.1 259.1 50.0
CERES Warm 20 99.8 239.5 285.7 2.3 45.1 259.9 47.7
ERBE Cold 23 106.4 234.4 285.2 2.2 52.4 259.3 51.2
ERBE Warm 18 106.8 234.3 286.0 2.2 51.7 259.9 49.5
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Failure Cases
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Fig. 2. OLR and RSR values for 1999 from all model con�gurations. Large asterisks are from model con�guration that
failed at some point. Dots are values from con�gurations that did not fail and have RSR and OLR values within 10
Wm�2 of the CERES values while small pluses are the remaining successful con�gurations. The failure cases are about
1% of the total cases. Large pluses show the CERES (upper-left-hand value) and ERBE (lower-right-hand value) while
box shows the region shown in Fig. 1.
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Fractional Cloud
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250 hPa Temperature (K)
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Fig. 3. Total cloud fraction (a), Clear Sky OLR (a), 250 hPa temperature (c) and relative humidity wrt Ice (d) as
interpolated functions of RSR and OLR. Contour intervals vary between sub-plots and are 2%, 1 Wm�2 , 1K and 4% in
plots (a), (b), (c) and (d) respectively. Only values within 10 Wm�2 of the CERES observations (white cross) are shown.
Dashed diagonal line shows total outgoing radiation agreeing with observed near radiative balance.
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Fig. 4. a) RSR vs Clear Sky RSR. Small crosses are samples from 4-parameter tuning simulations and gray diamonds
are from random parameter simulations. b) as a) but for OLR and clear sky OLR. c) as a) but for RSR vs Cloud fraction
(%). d) as c) but OLR vs Cloud fraction (%).
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Fig. 5. Scatter (black asterisks) between simulated values (x-axis) and that predicted from regression coe�cients of RSR & OLR
(y-axis) for average land temperature (a), global-average precipitation (b), average land precipitation (c), global-average fractional
cloud (d), global-average clear sky OLR (e) and global-average 250 hPa relative humidity wrt ice(f). Thick vertical thick dot-dashed
lines show the mean values from the standard con�guration of HadAM3 while the thin dot-dashed lines show the minimum and
maximum values from the initial condition ensemble. Dashed lines in plots a) and c) show observed estimates. Title shows variance
explained by linear regression on OLR and RSR with bracketed values showing the variance explained by average land-temperature.
Red (light green) triangles show the CERES (ERBE) cold group, magenta triangles (dark green) show the CERES (ERBE) warm
group { see text for details.
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Fig. 6. % Variance explained in zonal-mean Temperature (a) and Relative Humidity (b) explained by global-mean RSR
and OLR. Grey shades/contours are at 0, 25, 50, 75 & 90 % of the variance.
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Fig. 7. % Variance explaned at each grid-point by global-mean RSR & OLR for RSR (a), OLR (b), clear sky OLR (c),
land near-surface temperature (d), Precipitation (e) and MSL Pressure (f). Colours are at 0, 25, 50, 75 & 90 % of the
variance.
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Fig. 8. Scatter plots showing parameters for groups. Values from �nal iteration of successful \extremes" optimisation
experiments (crosses) are coloured according to group they are (see main text) with red (light green) for CERES (ERBE)
cold group, magenta (dark green) for CERES (ERBE) warm group. Small coloured squares show values for all simulations
with a root-mean-square error of less than 1 Wm�2 relative to the particular target. Black triangle shows standard values
for HadAM3.
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Fig. 9. (a): Zonal-mean 2000{2004 average of land-temperatures (K) from standard HadAM3 con�guration (black),
CRUTS3.1 observations (blue) and average of CERES cold group (red); CERES warm group (magenta); ERBE cold
group (light green); ERBE warm group (dark green). (b): Di�erence from observations. Horizontal dashed line is zero
di�erence from observations. c) & d) as a) & b) but for land-precipitation (mm/day).
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Fig. 10. Di�erence of 5-year (2000-2004) average between CERES warm and cold groups for temperature(a), precipitation
(b), mean sea level pressure (c) and percentage cloud (d). Contours for plot a) are at �2;�1;�0:5 and � 0:2K. For plot
b) they are at �5;�2:5;�1;�0:5 and � 0:2 mm/day. For plot c) they are at �2;�1 and � 0:5 hPa while in plot d) they
are at �50, �20, �10, �5 %.
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