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WINDOWED ATTENTION MECHANISMS FOR SPEECH RECOGNITION

Shucong Zhang, Erfan Loweimi, Peter Bell, Steve Renals

Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK

ABSTRACT
The usual attention mechanisms used for encoder-decoder
models do not constrain the relationship between input and
output sequences to be monotonic. To address this we explore
windowed attention mechanisms which restrict attention to a
block of source hidden states. Rule-based windowing restricts
attention to a (typically large) fixed-length window. The per-
formance of such methods is poor if the window size is small.
In this paper, we propose a fully-trainable windowed attention
and provide a detailed analysis on the factors which affect the
performance of such an attention mechanism. Compared to
the rule-based window methods, the learned window size is
significantly smaller yet the model’s performance is compet-
itive. On the TIMIT corpus this approach has resulted in a
17% (relative) performance improvement over the traditional
attention model. Our model also yields comparable accuracies
to the joint CTC-attention model on the Wall Street Journal
corpus.

Index Terms— end-to-end, speech recognition, attention

1. INTRODUCTION

Attention-based encoder-decoder models have offered impres-
sive performance gains in tasks such as image caption and
machine translation [1, 2, 3]. However, for speech recognition,
without a large amount of training data, the attention-based
encoder-decoder model often does not outperform traditional
models [4].

A weakness of this model for speech recognition is that the
attention mechanism does not guarantee a monotonic align-
ment between the input and output sequences, which usually
follow a left-to-right order. Since the attention mechanism re-
lies heavily on the content of the hidden representations of the
input units, a monotonic alignment is easily corrupted by simi-
lar input speech fragments or noise. Furthermore, the attention
mechanism considers all input frames when calculating the
alignment vector. However, since one output unit usually only
corresponds to a small input time span, it is arguably unneces-
sary to consider the entire input sequence when estimating the
alignment.

Several mechanisms have been proposed for location-
aware or coverage-aware attention. At a decoding time step,
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the attention vector at the previous time step or the alignments
of all previous output units are exploited to generate the cur-
rent attention vector [5, 6]. Thereby, the attention mechanism
has an awareness of the location or the coverage [7]. However,
this approach does not guarantee the best performance [8].

Other methods which add a location constraint to the atten-
tion mechanism include a model in which both connectionist
temporal classification (CTC) and an attention model share
the same encoder – joint CTC-attention [9, 10]. In this case,
CTC provides a soft left-to-right constraint. Windowing meth-
ods put a hard location constraint on the attention mechanism,
restricting attention to a window of inputs [8, 11, 12, 13, 14].
When the method of moving the window is rule-based, it is
necessary to set the window size to be large (typically compa-
rable to the utterance length) for accurate results [8, 11, 12, 13].
When the step size is learned, a short fixed-size window can
yield good results [14]. There is no analysis on why with a
trained step size small window can suffice. Furthermore, the
window size is not trainable in these methods.

Inspired by the local attention mechanism [3], this paper
proposes a novel fully-trainable windowed attention for speech
recognition. Within the window, a Gaussian distribution or a
concatenation of two sigmoid functions are used to predict a
location score. We also employ a model to predict the step
size and window size, consequently make these two window
parameters trainable. To generate content scores, we used
content-based attention. In the proposed approach the final
attention score was the product of the location score and the
content score. Compared to rule-based window methods [8,
11, 12, 13], the learned window size in our method is notably
smaller. In terms of accuracy, the proposed model outperforms
content-based attention on TIMIT and has comparable results
to joint CTC-attention on WSJ.

During our experiments, we found a key aspect in predict-
ing the window size is to prevent it from shrinking to zero. We
also found that even given a rough segmentation, it is still hard
for the content-based attention to generate the best alignment.
We observed that the silence parts in an utterance harm the
performance of the model significantly. To cope with this
issue, we padded the silence part in the beginning of each ut-
terance with some padding characters which led to noticeable
performance improvement of the model.



2. ATTENTION MECHANISMS

The attention based encoder-decoder model computes the prob-
ability P(Y |X) of an output sequence Y = y1, · · · ,yn con-
ditioned on an input sequenceX = x1, · · · ,xt. The encoder
reads the input sequence X and use an RNN to map it to a
sequence of encoder RNN hidden states H = (h1, · · · ,hs).

At each decoding time step i, the decoder RNN uses the
previous output yi−1, the previous decoder RNN hidden state
qi−1 and the previous context vector ci−1 to generate the cur-
rent decoder hidden state qi. The attention mechanism uses
the current decoder hidden state qi and the sequence of en-
coder hidden states H to compute an alignment vector αi.
Given the alignment vector αi as weights, a context vector ci

is computed as a weighted sum of the source hidden states.
Finally, the decoder uses the context vector ci and the current
decoder hidden state qi to estimate the current label distribu-
tion P(yi|X ,Y1:i−1). The decoder can be described as follows:

qi = RNN(qi−1,yi−1, ci−1) (1)
αi j = Attention(qi,h j) (2)

ci =
∑

j

αi jh j (3)

yi ∼ LabelDistribution(ci, qi) (4)

The attention mechanism estimates the alignment between
the current output yi and all the input units. There are several
approaches to compute the attention vector. The following
equations describe two approaches:

ei j = vT tanh(Wqi + V h j + b) (Content) (5)

ei j = vT tanh(Wqi + V h j +Ufi j + b) (Location) (6)
fi = F ∗αi−1 (7)

where v,W ,V ,U , F, b are trainable parameters. The final
attention vector is:

αi j =
exp(ei j)∑t

k=1 exp(eik)
(8)

2.1. Rule-based windowed attention

A weakness of the attention mechanism for speech recognition
is that it is too flexible and does not guarantee the generation
of a monotonic alignment, since similar input units or noise
can cause misalignment. Furthermore, the above attention
mechanisms consider the entire sequence of encoder hidden
states, which may not be necessary for speech recognition,
since each output label (typically a phoneme or a character)
corresponds to a small span of input signal.

Windowed attention mechanisms, in which the attention is
constrained to consider a window of the input, are proposed to
alleviate these problems. The window moves from left to right
along the input time axis, helping to generate a monotonic

Fig. 1: The windowed attention mechanism. At decoding time
step i, the system uses an MLP to estimate a step size si. The
centre of the window is moved from mi−1 to mi. Only the
encoder hidden states which are within the window will be
exploited to calculate the context vector. The window length
can either be set as a hyperparameter or learned.

alignment. In rule-based windowed attention methods [8, 11,
12, 13], the attention vector αi can be described as:

αi j =


exp(ei j)∑mi+Dr

k=mi−Dl
exp(eik)

, j ∈ [mi − Dl,mi + Dr]

0, otherwise
(9)

where mi is the centre of the window, and Dl and Dr are the
size of the left half and right half of the window respectively.
The method of moving the window and the window length
are pre-defined. The window shift and window length are not
trainable.

Such rule-based window methods have been found to re-
quire a large window size – often close to the length of the
entire utterance – in order to get good performance [8, 13].
However, if the window size is comparable to the utterance
length, then it does not particularly help to generate a mono-
tonic alignment nor to reduce the computational effort.

2.2. Fully-trainable windowed attention

To alleviate these problems, we propose a fully-trainable win-
dowed attention (Figure 1). In this model, allthe window
parameters are trainable and the learned window size is small.
The step size si is predicted by an MLP,

si = N · sigmoid(MLP(qi)) , (10)

where N is the maximum allowed step size and set as a hy-
perparameter. The model records the window centre at the
previous decoding time step.

Within the window, we use content-based attention to com-
pute the content score ei j. We use a differentiable function to
calculate the location score li j. The differentiable function also



makes the step size and window size trainable. We choose two
differentiable functions, the Gaussian distribution,

li j =

 exp(− ( j−mi)2

2(Dil/2)2 ), j ∈ [mi − Dil,mi]

exp(− ( j−mi)2

2(Dir/2)2 ), j ∈ (mi,mi + Dir]
(11)

and the concatenation of two sigmoid functions,

li j =

{
σ(k · ( j − mi) + b), j ∈ [mi − Dil,mi]
σ(k · (mi − j) + b), j ∈ (mi,mi + Dir]

(12)

where Dil and Dir denote the length of the left and the right
half windows respectively while k and b are hyperparameters.
The final weight is defined as:

αi j =
exp(ei j) · li j∑mi+Dir

k=mi−Dil
exp(eik) · lik

. (13)

The Gaussian distribution makes the final weight tend to
be large near the centre of the window. Thus, it provides
a strong location constraint. The sigmoid functions, when
the hyperparameter b is set large, has large values within the
window. Thus, they nearly only provide the indices of the most
related encoder hidden states and the content-based attention
almost solely determines the final weight.

When the half window sizes Dil and Dir are equal, the
location score is symmetrically distributed within the window.
When they are different, the location score makes the model
tend to further rely on the past or the future context. The half
window sizes can either be set as hyperparameters or learned
by one MLP so the window is symmetric or learned by two
MLPs so the window may be asymmetric. The window size
MLP is defined as:

Di = D · sigmoid(MLP(qi)) (14)

where D is the maximum allowed half window size.

3. EXPERIMENTS

We performed two sets of experiments: phoneme recognition
on TIMIT [15] and character recognition on WSJ1 [16] and
subsets of WSJ1. The TIMIT dataset is split into training,
development, and test sets following the Kaldi s5 recipe [17].
We use 80 mel-scale filter-bank features with energy as input
features. The outputs are 39 phonemes with start/end sentence
(sos/eos) and space tokens.

For the WSJ dataset, we use train_si284 as the training set,
dev93 as the development set and eval92 as the test set. The
input features are 40 mel-scale filter-bank features with delta
and delta delta. There are 33 output labels: 26 letters, and the
apostrophe, period, dash, space, noise and sos/eos tokens.

All models are implemented using ESPnet [18]. For the
experiments on TIMIT, the encoder is a bidirectional LSTM
(BLSTM) layer on top of two pyramid BLSTM [19] layers

Function Type N, Dl, Dr PER (Test)
Baseline: content-based attention 20.1%
Gaussian-Fixed window 5, 3, 3 17.0%
Gaussian-Fixed window 5, 4, 2 17.3%
Gaussian-Fixed window 5, 2, 4 17.3%
Gaussian-1 window MLP 5, 12, 12 16.8%
Gaussian-2 window MLPs 4, 6, 6 16.7%
sigmoid(±1.5x + 3) 5, 4, 4 17.8%
sigmoid(±1.5x + 7) 5, 4, 4 23.4%
sigmoid(±1.5x + 7) 5, 7, 7 19.1%
Hierarchical maxout CNN [21] 16.5%
Wavenet [22] 18.8%

Table 1: PER on TIMIT test set. N,Dl,Dr denote the maxi-
mum allowed step size, left window size and right window size.
One unit of the step/window size is 0.04s. If using fMLLR
features and changing the activation function of the step size
MLP and the window size MLP from tanh to LeakyRELU, the
network achieves 14.9% PER on the test set.

with 256 hidden units in each direction. The decoder is a one
layer LSTM with 512 hidden units. For the experiments on
WSJ, the encoder is two BLSTM layers on top of two pyramid
BLSTM layers with 320 hidden units in each direction. The
decoder is a one layer LSTM with 320 hidden units. We use the
AdaDelta [20] learning algorithm with gradient clipping. All
weights are initialized uniformly within the range [−0.1, 0.1].
For decoding, we use a beam search with beam size 20.

3.1. Results and discussion on TIMIT

On the TIMIT data set, the results in Table 1 show our fully-
trainable model outperforms the content-based attention base-
line significantly, reducing the phoneme error rate (PER) by
about 17% relative. Our model yields the best result when the
window size is trained by two separate MLPs,

When the window size is learned, we set a minimum win-
dow size which covers 5 encoder hidden states (0.2s) – this
is key to successfully learning the step size. Without using a
minimum window size, the window sizes for some output units
shrink to zero quickly. Other methods, such as pre-training the
model with a fixed size window, making the window size MLP
share one bottom layer with the step size MLP, or setting both
the maximum step size and window size to a large value also
alleviate this problem. However, these methods do not gener-
ate the best results. Furthermore, if using a fixed size window
length of 0.2s, with the same maximum allowed step size, the
model fails completely and is unable to learn a meaningful
alignment vector, resulting in a very high PER.

As shown in Figure 2, the concatenation of two sigmoid
functions can predict the proper position of the window. How-
ever, this approach is worse than the baseline when the sigmoid
functions are flat within the window. Thus, if only provided
with the small window, and without a strong location con-



(a) Gaussian (b) Sigmoid

Fig. 2: Attention vectors generated by different constraint func-
tions. The utterance is fgjd0_sx279 in the TIMIT development
set (/sil ae l s ih z ah sil b ih l ah sil t iy sil t ah w er sil k w ih
th aw sil s uw sil p er v ih sh ih n ih z n ow sil w er dh iy sil/ ).

Fig. 3: The average learned step size for each phoneme and
its standard deviation. The data is collected on TIMIT devel-
opment set and test set.

straint, content-based attention alone cannot generate the best
alignment.

We summarize the average step size and its standard devi-
ation in Figure 3. Based on the statistics and our experiments
using sigmoid window functions, we hypothesize two reasons
for why a large window size is required when using a rule-
based step size [8, 13]. First, the standard deviation is large.
Thus, if the step size is fixed or rule-based, it will be often
that the step size is smaller or bigger than the best step size. If
the window size is small, then the most related source hidden
states may not be included in the window. Second, even given
the proper step size, our experiments indicate that without
a strong location constraint within the window the attention
mechanism is unable to generate the best alignment when the
window size is small.

3.2. Results and discussion on WSJ

On the WSJ dataset our model again outperforms the baseline
but does not surpass the CTC-attention model (Table 2). We
believe a major reason for this is that long pauses often occur
in WSJ utterances. Thus, the maximum allowed step size and
window size have to be relatively large so the model can jump
over the silence part. However, large maximum window and
step sizes are not optimal for non-silence parts.

For WSJ, we set both the maximum window size and step

Model(train) CER(dev) CER(eval)
train_si284 dev93 eval92
Baseline: content-based attention 11.1% 8.9%
location-based attention 9.6% 6.9%
Gaussian-2 window MLPs 9.0% 6.5%
CTC-attention 7.7% 5.9%
CTC-Gaussian 7.8% 5.8%
Previous results [9] (no padding):

content-based attention 13.7% 11.1%
location-based attention 12.0% 8.2%
CTC-attention 11.3% 7.4%

train_si284 subset (30K) dev93 eval92
Baseline: content-based attention 9.9% 7.9%
Gaussian-2 window MLPs 9.5% 7.2%
CTC-attention 9.1% 6.9%
train_si284 subset (15K) dev93 eval92
Baseline: content-based attention 15.7% 13.7%
Gaussian-2 window MLPs 13.2% 9.6%
CTC-attention 10.8% 8.3%

Table 2: Character error rate (CER) on WSJ. Settings of the
encoder-decoder and the optimizer are similar to [9]. After
removing the padding characters in the decoding text generated
by the baseline, the CER on eval92 is 7.5%, similar to CTC-
attention without silence padding.

size to 1.32s, which is small compared to the window size
(8.0s) in the rule-based method with a fixed step size [13].
Furthermore, except for the silence part, the learned step size
and window size are much smaller than the maximum size.
When combined with CTC, our model yields almost identical
results to CTC-attention, but the computational requirements
of the CTC-Gaussian attention approach are noticeably lower.

Since the utterances in WSJ begin with silence of vary-
ing lengths, and the silence part makes our model difficult to
train, we pad the beginning of the text for each utterance with
a padding word which is made of eight padding characters.
This approach improves the performance of the content-based
attention significantly. The lower part of Table 2 gives results
for reduced subsets of the train_si284 training data, using 15k
and 30k utterances.

4. CONCLUSION

We have proposed a fully-trainable windowed attention mech-
anism. Compared to windowed attention approaches using a
rule-based step size, our method learns a very small window
and has competitive results. The proposed model outperforms
the content-based attention on TIMIT and WSJ and has com-
parable results to CTC-attention on WSJ. We also find padding
the silence part in the beginning of the utterances improves the
performance of content-based models significantly. Our future
work includes investigating our model on noisy data.
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