

Edinburgh Research Explorer

Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake

Citation for published version:
Kerber, T, Kiayias, A, Kohlweiss, M & Zikas, V 2019, Ouroboros Crypsinous: Privacy-Preserving Proof-of-
Stake. in 2019 IEEE Symposium on Security and Privacy (SP). Institute of Electrical and Electronics
Engineers (IEEE), pp. 157-174, 40th IEEE Symposium on Security and Privacy, San Francisco, California,
United States, 20/05/19. https://doi.org/10.1109/SP.2019.00063

Digital Object Identifier (DOI):
10.1109/SP.2019.00063

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2019 IEEE Symposium on Security and Privacy (SP)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2024

https://doi.org/10.1109/SP.2019.00063
https://doi.org/10.1109/SP.2019.00063
https://www.research.ed.ac.uk/en/publications/c1484e13-88ce-4fe5-8101-414f0a60607a

Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake

Thomas Kerber∗, Markulf Kohlweiss†, Aggelos Kiayias‡, and Vassilis Zikas§

The University of Edinburgh and IOHK

January 5, 2019

Abstract

We present Ouroboros Crypsinous, the first formally analysed privacy-preserving proof-of-
stake (PoS) blockchain protocol. To model its security we give a thorough treatment of private
ledgers in the universal composition (UC) setting that might be of independent interest. To
prove our protocol secure against adaptive attacks, which are particularly critical in the PoS
setting, we introduce a new coin evolution technique that relies on a SNARKs mechanism and
key-private forward secure encryption. The latter primitive—and the associated construction—
can be of independent interest. We stress that existing approaches to private blockchains, such
as the proof-of-work-based Zerocash are analyzed only against static corruptions.

1 Introduction

A significant limitation of traditional blockchain protocols, such as the Bitcoin, is the fact that the
transaction ledger is a public resource and thus information about the way the transaction issuers
operate may be leaked to an adversary. This consideration was acknowledged early on and Bitcoin
itself [25] includes a number of measures to mitigate transaction privacy loss. Namely users produce
a new pseudonymous address for each payment received and addresses from the same wallet can
be selected to be indistinguishable from addresses from different wallets. Still, the information
available in the blockchain itself is susceptible to analysis and it has been demonstrated early on
that significant information can be extracted by clustering the Bitcoin transaction “graph”, see
e.g., [28, 22].

This state of affairs motivated the development of privacy enhancing and privacy-preserving
techniques for distributed ledgers. First, methods such as CoinJoin1 and CoinShuffle [29] were pro-
posed as mechanisms to reduce the effectiveness of de-anonymization techniques based on tracing
and clustering. Subsequently redesigned cryptocurrencies were put forth that attempted to intro-
duce stronger privacy-enhancing techniques by design in the distributed ledger protocol. These
included Zerocash [4] and Monero which is based on Cryptonote [30]. We note that despite their
enhanced privacy characteristics, some leakage still exists in these protocols (even if we exclude
leakage on the network layer, which is an issue orthogonal to what these protocols study includ-
ing the present work). This can be exploited as demonstrated in recent works [21, 24, 18]. The

∗Email: t.kerber@ed.ac.uk
†Email: mkohlwei@ed.ac.uk
‡Email: akiayias@ed.ac.uk
§Email: vzikas@ed.ac.uk
1See the post by gmaxwell https://bitcointalk.org/?topic=279249.

1

t.kerber@ed.ac.uk
mkohlwei@ed.ac.uk
akiayias@ed.ac.uk
vzikas@ed.ac.uk
https://bitcointalk.org/?topic=279249

above privacy-enhancing techniques primarily focused on the transaction processing layer of the
distributed ledger leaving the consensus back-end mechanism largely the same.

Concurrently with these developments however, another line of research works in blockchain
design focused on resolving fundamental issues with the energy consumption requirements of the
underlying proof-of-work (PoW) mechanism of Bitcoin. In particular, this lead to a sequence of
works in proof-of-stake (PoS) blockchain protocols that include Algorand [23], Ouroboros [19],
Ouroboros Praos [13], Ouroboros Genesis [1], Sleepy-Consensus [27], and Snow White [5]. PoS
blockchain protocols alleviate the requirement to perform proof-of-work by solving computationally
hard puzzles. Instead, they refer to the stake that each participant possesses as reported in the
blockchain and, through cryptographic means, elect the next participant to extend the transaction
ledger (who is commonly referred as the next leader or even slot leader when the execution time
is divided in slots.) PoS protocols have been touted as the next important advance in real-world
distributed ledger systems and a number of well-known cryptocurrencies are in the process of
incorporating them into their deployed systems including Ethereum with the Casper protocol [31]
and Cardano with Ouroboros [11].

The above state of affairs raises an important open question: is it possible to build a PoS-based
privacy enhanced distributed ledger? This is the main motivation of this work where we tackle this
problem and answer the question in the affirmative.

Our results. We propose a new formal model for a PoS-based privacy-preserving distributed
ledger in the universal composition (UC) setting, [8], and a new protocol that realizes it, Ouroboros
Crypsinous.2 Our protocol analysis with respect to the basic properties of consistency and liveness
is inspired by Ouroboros Genesis, [1], a recent (non-private) PoS blockchain protocol formally
analyzed in the UC setting. Our protocol provides the first formally analysed PoS-based privacy-
enhanced blockchain protocol. Moreover, for the first time our protocol achieves simulation-based
privacy that is even universally composable, as well as forward-secure, i.e., it ensures that privacy
(as well as consistency and liveness) are preserved independently of any other protocols running
concurrently with our ledger implementation, and even under adaptive corruption.

It is worth noting that PoS and transaction privacy is, seemingly, a contradiction in terms:
issuing a block by proof-of-stake fundamentally leaks information about the issuer and the state of
the ledger. We circumvent the contradiction by designing a new privacy-enhancing PoS operation
that, roughly speaking, extends the SNARK machinery of “transaction pouring” in Zerocash to a
setting where coins evolve without loosing their value, enabling on the way a proof of stake-eligibility
that does not leak any additional information.

The design has several subtleties since a critical consideration in the PoS setting is tolerating
adaptive corruptions: this ensures that even if the adversary can corrupt parties in the course of
the protocol execution in an adaptive manner, it does not gain any non-negligible advantage by
e.g., re-issuing past PoS blocks. In non-private PoS protocols such as Algorand [23] and Ouroboros
Genesis [1] this is captured by employing forward secure signatures. In the context of our pro-
tocol however, a more sophisticated combination of key-private forward-secure encryption—a new
encryption primitive which we formally define and realize—and an evolving coins mechanism is
required to achieve the same level of security. Intuitively, the reason is that we need to ensure
that past coins received provide no significant advantage to the adversary when it corrupts an
active stakeholder. We note that the näıve approach of simply paying oneself with a new coin does
not work here, as the same coin should be able to be elected multiple times in a sequence of PoS
invocations without leaving any evidence in the ledger.

2The word “Crypsinous” is Greek and refers to a person who is mindful of their privacy. We thank Konstantinos
Mitropoulos for suggesting it to us.

2

Our private ledger formalization is also of independent interest since it captures for the first time
the concept of a privacy enhanced transaction ledger in the UC-setting which is generally applicable
to both the PoW and PoS settings. Interestingly, we observe that the latter case requires a slightly
expanded adversarial interface that allows a sampling of the stakeholder distribution per unit of
time (referred to as “slot”). (A similar sampling can be also observed in Bitcoin, but since miner
privacy is not considered a prime requirement this was never formalized.) Adversarial sampling
captures the fact that in the PoS setting traffic analysis is possible based merely on the frequency
one entity issues a PoS block. Our formal model ensures that this is the only privacy leakage
that will be incurred during the execution of the protocol. A secondary formalization contribution
is the concept of UC key-private forward-secure encryption which, even though the two relevant
properties were studied independently, a UC functionality capturing both has never appeared until
our work.

2 The Model

Following the recent line of works proving composable security of blockchain ledgers [2, 1] we
provide our protocol and security proof in Canetti’s universal composition (UC) framework [8].
In this section we discuss the main components of the real-world execution, including the hybrid
functionalities that the protocol uses. We discuss the ideal world, and in particular the private
transaction ledger functionality in Section 4. We assume that the reader is familiar with simulation-
based security and has basic knowledge of the UC framework. We provide all the aspects of the
execution model from [2, 1] that are needed for our protocol and proof, but omit some of the low-
level details and refer the more interested reader to these works wherever appropriate. We note
that for obtaining a better abstraction of reality, some of our hybrids are described as global (GUC)
setups [9]. The main difference of such setups from standard UC functionalities is that the former
are accessible by arbitrary protocols and, therefore, allow the protocols to share their (the setups’)
state. The low-level details of the GUC framework—and the extra points which differentiate it
from UC—are not necessary for understanding our protocols and proofs; we refer the interested
reader to [9] for these details.

Protocol participants are represented as parties—formally Interactive Turing Machine instances
(ITIs)—in a multi-party computation. We assume a central adversary A who corrupts stakeholders
and uses them to attack the protocol. The adversary is adaptive, i.e., can corrupt additional
stakeholders at any point and depending on his current view of the protocol execution. We cast
our protocols in the partially synchronous communication version of UC proposed in [2]: parties
have access to a global clock setup, denoted by Gclock, and can communicate over a network of
authenticated multicast channels with a bounded delay ∆ denoted by F∆

N-MC. Every honest party
can send a message thought F∆

N-MC to all other honest parties but the adversary can delay its
delivery to any honest party by a number of rounds of his choice but no greater than ∆. Honest
receivers cannot tell when a message will arrive as they know neither when the message was sent
nor the delay ∆. As in the case of Bitcoin, cf. [15, 26, 1], our protocol is implicitly aware of an
overestimate ∆max of the actual (unknown) network delay ∆. However, this ∆max is not used in the
message passing; instead the protocol proceeds in an optimistic manner once messages are received
(after at most ∆ rounds from sending) and ∆max is only used in the staking procedure to determine
the leader(s) of each slot.

Similarly to [2, 1], for UC realization in such a globally synchronized setting, the target ideal
functionality, i.e., the ledger, needs to keep track of the number of activations that an honest party
gets—so that it can enforce in the ideal world the same pace of the clock as in the real world.

3

This is achieved by describing the protocol so that it has an (implicit) predictable behavior of clock
interactions for any given activation pattern—which the ideal functionality can (and will) mimic.
We refer to [2] for details.

We adopt the dynamic availability model implicit in [2] which was fleshed out in [1]. We next
sketch its main components: All functionalities, protocols, and global setups have a dynamic party
set, i.e., they all include special instructions allowing parties to register, deregister, and allowing
the adversary to learn the current set of registered parties. Additionally, global setups allow any
other setup (or functionality) to register and deregister with them, and they also allow other setups
to learn their set of registered parties.

Utilizing the full dynamic availability model results in separating the honest parties in the follow-
ing categories: offline parties are honest parties that are deregistered from the network functionality.
Parties which are not offline are separated into two (sub-)categories, called (fully) online—parties
which are registered with all their setups and ideal resources—and (online but) stalled—parties
that are registered with their local network functionality, but are unregistered with at least one
of the global setups. Each of these (non-offline) subclasses is further split into two subcategories
along the lines of the classification of [2]: those that have been in a non-offline state for more that
Delay rounds—where Delay is a ledger parameter—are synchronized, whereas the remainder are
de-synchronized. Our protocol makes use of the following hybrid functionalities from [1]. (The
ideal world execution makes access to the global setups presented below and the private ledger
functionality which is presented in Section 4.)

The global clock functionality Gclock which keeps track of the current (global) round and
reports it to any party that requests it. The round advances whenever all honest (currently
registered) parties and functionalities inform Gclock that they are finished with their current
round’s actions (note that this is not a communication round).

The bounded-delay authenticated channels network F∆
N-MC described above.

The genesis block generation and distribution functionality FINIT, which captures the assump-
tion that all parties (old and new) agree on the first, so-called genesis block. In fact, this
functionality is slightly different from the one in [1] as the blocks in our work have a different
structure to ensure privacy. Concretely, In Ouroboros-Genesis this block includes the keys,
signatures, and original stake distribution of the parties that are around at the beginning of
the protocol. Here, for each stakeholder registered at the beginning of the protocol, FINIT

records his keys and initial coin commitments in the genesis block; this block is distributed to
anyone who requests it in any future round. As in [1] we assume wlog that the global time is
τ = 0 in the genesis round. We refer to Appendix A for a description of our new genesis block
functionality.

A global random oracle GRO for abstracting hash function queries. As typically in cryptographic
proofs the queries to hash function are modeled by assuming access to a random oracle: Upon
receiving a query (eval, sid, x) from a registered party, if x has not been queried before, a
value y is chosen uniformly at random from {0, 1}κ (for security parameter κ) and returned
to the party (and the mapping (x, y) is internally stored). If x has been queried before, the
corresponding y is returned. As in [1] we capture this by a global random oracle (GRO), i.e.,
a global setup that behaves as above.

To ensure privacy of transactions, we need to equip our model with a couple of extra functional-
ities not present in previous works. For instance, the (non-private) Ouroboros protocol-line [13, 1]
relies on verifiable random functions and key-evolving signatures to ensure security of the lottery
which defines slot leaders and prevent double spending in the presence of an adaptive adversary.

In this work we cannot use signatures to authenticate coins/transactions as we need to keep the

4

spent amount and the identities of the receiver private. For this reason we introduce key-private
forward secure encryption and non-interactive zero-knowledge proofs (NIZKs). Our protocol will
be described as having access to hybrid-functionalities for these primitives. These functionalities
along with their implementation from a common reference string (CRS) and their security proofs are
described in Section 3. To our knowledge no definition of key-private forward secure encryption or
an implementation thereof has been suggested. In fact, for reasons discussed below (see Section 3.2)
an implementation of this primitive against fully adaptive adversaries might be impossible without
additional setup assumptions. Instead, here we make an assumption about the (in)ability of the
adversary to quickly read keys of newly corrupted parties and prove the security of our protocols
under this assumption. Proving impossibility of the primitive against a fully adaptive adversary
(or providing a protocol for it) is an interesting future direction.

Finally, our construction will make use of non-interactive equivocal commitments and pseudo-
random functions (PRFs). Construction of both these primitives exists assuming a CRS under
standard hardness assumption, e.g., hardness of the DDH (Decision Diffie Hellman) problem.
Remark 1: (Assumptions on the environment/adversary as functionality wrappers.) The security
statements about implementation of ledgers are typically conditional. E.g., the Bitcoin ledger is
proved secure assuming the majority of the system’s hashing power is honest, and the Ouroboros
(Genesis) ledger is implemented assuming the majority of the stake is held by honest parties.
These assumptions can be easily described by explicitly restricting the class of environments and
adversaries, but this would sacrifice the universal composability of the statement. We follow the
paradigm of [2] to capture these assumptions without compromizing composability: Instead of
explicitly restricting the adversary and environment, we introduce a functionality wrapper that
wraps the functionalities that the protocol accesses and forces the required assumptions on the
adversary/environment. We refer to [2] for a more detailed discussion. As a forward pointer, the
wrapper used in our security statements is sketched in Appendix E. As this wrapper only becomes
relevant for interpreting our main theorems (Theorem 1 and 2) it might be easier for the first-time
reader to postpone parsing it until then.

3 Tools

In this section we describe the main tools used by Ouroboros Crypsinous: non-interactive zero-
knowledge proofs (NIZKs), key-private forward secure encryption, maliciously-unpredictable PRFs
(MUPRFs), and equivocal commitments. We describe ideal functionalities capturing NIZK and
key-private forward-secure encryption, and refer to their UC implementations in the appendix.
Ouroboros Crypsinous is described and proved secure assuming hybrid access to these ideal func-
tionalities and its security when these functionalities are replaced by their implementations will
follow directly from the universal composition theorem.

Further, we define the properties satisfied by MUPRFs and equivocal commitments.

3.1 Non-Interactive Zero Knowledge

We utilize the Non-Interactive Zero Knowledge functionality FNIZK and protocol of [20] , (for
completeness, FNIZK is described in detail in Appendix A). This functionality allows generating
proofs π that a statement x is in a given NP language L, with a witness w. We use the “weak”
functionality suggested, which permits an adversary to generate new proofs for already proven
statements.

We note that while [20] provides a construction, it is only shown to satisfy game-based proper-
ties. We formally prove its security in the UC setting assuming a CRS in Appendix F.

5

NIZKs can be used for signature-like behaviour by embedding the messages that are to be
signed in the statements of simulation-extractable NIZKs, constructing in this way a signature of
knowledge [16] (SoK). In particular, we note that witnesses used to generate proofs in Ouroboros
Crypsinous will contain the party’s secret key, and the proved statement commits to the party’s
public key. As a result, the NIZK used in Ouroboros Crypsinous has similar unforgeability proper-
ties as standard signatures.

3.2 Key-private Forward-Secure Encryption

To guarantee the forward-privacy of transactions, a forward-secure encryption scheme [10] is nec-
essary to hide information sent encrypted to a party’s long-term encryption secret key. Note that
traditional forward-secure encryption is insufficient, as it would leak information about the re-
cipient of a transaction. To preserve the recipient’s anonymity in Crypsinous transactions, we
therefore require key-privacy as well [3]. Furthermore, as the simulator must create simu-
lated ciphertexts, which it may later need to reveal the message of, encryption in the UC setting
needs to be non-committing to withstand adaptive corruptions. Interestingly, however, there are
no existing encryption schemes that simultaneously achieve key-privacy, forward-security, and the
non-commitment property.

We overcome the above limitation by introducing a slightly weakening the above security re-
quirements and only requiring forward-security with a time-sensitive non-committing property:
Informally, only messages addressed to a time window of size ∆max into the future are protected.
As it turns out, this weaker notion is sufficient for our purposes. Even for this notion, however, it
is not evident how to efficiently realise such an encryption in the UC setting. To understand the
issue, it is useful to recall how we can realize non-interactive non-committing encryption via era-
sures. The idea is to have parties update their keys once the message is received. More concretely,
a message is encrypted at round τ and sent over to the receiver so that it can be decrypted with
key skenc

τ . Upon receiving it, the receiver can decrypt it (using skenc
τ), and immediately update

the key to skenc
τ ′ for the next round (and erase skenc

τ). This way the link between the ciphertext
and the key is eliminated by the time the adversary corrupts the receiver.

The above approach clearly fails if the channel has any delay, as in out setting, as this gives
the adversary a window of opportunity of size ∆, and bounded only by ∆max, to attack during
which the message is already being transmitted but has not yet been received by the recipient.
This makes erasures useless in this window (if correctness is to be maintained).

To bypass the above issue, we make an assumption on the adversary’s adaptiveness which,
roughly, implies that the adversary cannot immediately access the secret key of a newly corrupted
party. Specifically, we assume that the adversary corrupting a party with key skenc

τ at time τ does
not receive skenc

τ , but rather the key skenc
τ+∆max

, which this party would hold in time τ + ∆max, if
it were allowed to properly update its key. We emphasize that this is a milder assumption than
that of delayed party-corruption which underlines the security of [19, 5]. Indeed, in these works the
adversary is forbidden from accessing the entire state of a corrupted party for a certain number of
rounds after corruption; instead, here we only restrict his access to the present keys, and we even
give the adversary an outlook, already upon corruption, of how the key will look in the near future.

To enforce the above restriction without affecting the universal composability of our statements,
we use a technical trick inspired by [2, 14] (related to the wrappers used in Remark 1.): Concretely,
we introduce an ideal functionality which captures this restriction/assumption. This functionality,
denoted by FKeyMem, stores keys upon request from parties, and updates them every round using
a one-way function Update; when an honest party requests a key it has submitted in the past, the
functionality sends it the current key. However, when the adversary asks for a key (on behalf of

6

a corrupted party) FKeyMem first applies Update ∆max times, and returns the updated key to the
adversary.

Note that the direct way of enforcing the assumption would be to limit all our statements to
only apply to a restricted class of adversaries. For reasons similar to the discussion in Remark
1 above, this would immediately imply that universal composition no longer holds.3 As an
added bonus from using the above functionality-based approach for restricting the adversary, our
treatment ensures that the restriction is localized to the encryption functionality; thus, if someone
comes up with an instantiation of the encryption functionality against a fully adaptive adversary,
or protocol would immediately be secure against such an adversary. The FKeyMem functionality is
specified below.

FKeyMem is parameterized by its corruption delay ∆max, and a memory update function
Update. It maintains a memory Mp for each party Up, initialized to ε, as well as a flag isInitp for
each party Up, initialized to ⊥. We write Update∆

max to mean “apply Update ∆max times.”

On receiving a message (Init, sid,M ′) from Up: If isInitp = ⊥, let Mp ←M ′; isInitp ← >.

On receiving a message (Get, sid) from Up: If isInitp = >, return Mp if Up is honest, otherwise
return Update∆

max(Mp).

On receiving a message (Update, sid) from Up: If isInitp = >, update Mp ← Update(Mp).

Functionality FKeyMem

The UC functionality for key-private and forward-secure encryption, FFwEnc, is described in detail
in Appendix A, and the accompanying construction is described below.

We extend the notion of forward-secure encryption (FSE) with a notion of key privacy, described
in detail in Definition 1 below. While this definition itself is novel, it is possible to combine
existing schemes to satisfy it. In particular, [10] constructs FSE from hierarchical identity-based
encryption (HIBE). Their scheme, paired with the anonymous HIBE construction of [7] satisfies
our requirements of key-privacy as we will argue below.

For the argument of key privacy, the FSE from HIBE construction in [10] is straightforward,
with the ciphertexts simply being the underlying HIBE scheme’s ciphertexts. The core argument
of the anonymity of [7], is the indistinguishability of ciphertexts from random group elements –
and therefore their independence of the encrypting identity (cf. [7, Lemmas 8& 9]. We note that
the ciphertexts’ pseudo-randomness implies a stronger notion than just anonymity – the ciphertext
also does not reveal any information about the HIBE public key. In particular, as ciphertexts are
indistinguishable, our enhanced security game given in Definition 1 is satisfied. The game, as well
as the subsequent UC construction, can be found in Appendix G.

This construction’s time and space complexity is logarithmic to the number of time slots. As
the number of slots is by necessity less than 2κ, the use of this forward-secure encryption has a
linear increase in cost with respect to the security parameter compared to standard encryption.

Key-Private Forward-Security Against Chosen Ciphertext Attacks

3One could attempt to prove a tailored, weaker, and non-universal composition theorem that would apply only to
the restricted class of adversaries considered in our encryption-scheme’s security proof. But this is not in the spirit
of our treatment which explicitly aims at fully-composable (UC) protocols, and it is also rendered unnecessary using
our trick above.

7

Definition 1. A key-evolving public-key encryption scheme is key-privately forward-secure against
chosen ciphertext attacks (kp-fs-CCA) if any PPT adversary has only negligible advantage |2·Pr[b′ =
b]− 1| in the following game:

Setup: For each party Up ∈ P, run (pkp, sk0
p)

$← Gen(1κ, N). The adversary receives all public
keys pkp. Further, a bit b← {0, 1} is selected, but not revealed to the adversary.
Attack: The adversary issues multiple challenge(j, (U0,m0), (U1,m1)) queries, multiple corrupt(i, Up)
queries, and multiple decrypt(k, c, Up) queries, where Up, U0, U1 ∈ P, and 0 ≤ i ≤ N ; 0 ≤ j ≤ N ; k ≤
N . Further, if a corrupt query is made for some party a challenge query is also made for, then the
corresponding i must be greater than the corresponding j. corrupt queries may be issued only once
for each party.

• corrupt(i, Up) is answered with sk ip , Upd(. . .Upd(sk0
p, 1), . . . , i).

• challenge(j, (U0,m0), (U1,m1)) is answered by responding with c = EncpkUb
(j,mb), and (j, c, U0)

and (j, c, U1) are recorded as challenges.

• decrypt(k, c, Up) is answered with ⊥ if (k, c, Up) is recorded as a challenge. Otherwise, it is
answered with Decskkp(k, c∗).

Guess: The adversary outputs a guess b′ ∈ {0, 1}, and wins the game iff b′ = b.

3.3 PRFs with unpredictability under malicious keys

Consider a PRF family {fk}k∈K such that fk : X → Y for all k ∈ K. The usual PRF security
requires that any PPT distinguisher D with an oracle cannot tell the difference between an oracle
fk(·), for a randomly selected k and a truly random function over X → Y . The definition can
be ported to the random oracle setting where both the function fk as well as the distinguisher
D have access to a random oracle H(·). Unpredictability under malicious key generation, is an
additional property that, intuitively, suggests the function does not have any “bad keys” that can
eliminate the entropy of the input, a concept introduced in [13]. In the random oracle model, the
property can be expressed as follows: for any PPT A and x ∈ X,T ∈ N, the probability of the
event Pr[fk(x) < T |x 6∈ QH] equals T/2κ where A(1κ) = k, and QH is the set of queries of A to H.

We will employ the following construction. Let H : {0, 1}∗ → 〈g〉 be a function mapping to a
cyclic group generated by g with a compact representation. We use an elliptic curve group based on
the “elligator” curves [6] that have the property that a uniform element over 〈g〉 is indistinguishable
from a random κ-bit string. We then define fk(m) 7→ H(m)k for k 6= 0 and we show that it is a
PRF with unpredictability under malicious key generation from X to {0, 1}κ. Indeed observe first
that 〈gk, H(m), H(m)k〉 is a DDH triple over the group 〈g〉. Thus, by the DDH assumption and the
random oracle model, we can substitute all queries to the PRF by random group elements. Now
observe that by the encoding properties of the curve these elements can be substituted by random
strings over {0, 1}κ. Regarding the unpredictability under malicious key generation observe that in
the random oracle model, Pr[H(x)k < T] ≤

∑
y<T Pr[H(x)k = y] = T · Pr[H(x) = y1/k] ≤ T/2κ in

the conditional space x 6∈ QH .

3.4 Equivocal Commitments

We make use of a standard non-interactive equivocal commitment scheme, which is secure in the
CRS model assuming hardness of discrete logarithms (cf. [12]). For self-containment we include a
high-level description, including some notation used in our proofs below.

8

Specifically, we will assume the existence of six algorithms, Initcomm, Comm, DeComm, Înitcomm,

Ĉomm, and Equiv. Initcomm generates a public key pkcomm which is given as an argument to Comm
and DeComm and will be part of the parameterization of the CRS functionality. In addition to
satisfying the traditional commitment properties, of binding, hiding, and correctness, the scheme
also satisfies equivocality. Specifically, Înitcomm provides an equivocation key in addition to pkcomm.

This equivocation key “breaks” the binding property – Ĉomm can generate a commitment without
a message, and Equiv can later create a witness matching any message for this commitment. We
note that we do not require additional common properties, such as extraction or non-malleability,
as these are provided by other components of Ouroboros Crypsinous’ design, in particular the NIZK
functionality.

We write (cm, r)← Comm(m) to create the commitment cm for message m, and DeComm(cm,

m, r) = > if the decommitment to m and r verifies. Likewise, we write cm ← Ĉomm(ek) for
simulating a commitment with equivocation key ek , and r ← Equiv(ek , cm,m) to equivocate, where
DeComm(cm,m, r) = >. In all these, we leave the public key pkcomm implicit, as it is assumed to
be globally known via the CRS.

4 The Private Ledger

We next provide the complete description of the private ledger functionality that, as we prove, is
implemented by Ouroboros Crypsinous. To describe how privacy is captured in the Crypsinous
ledger, we first recall how submitted transactions are stored in the original—non-private—ledger
from [2, 1]: When a transaction tx is submitted, the ledger creates—and stores in the buffer—an
annotated version of the transaction tx, denoted as BTX := (tx, txid, τL, Us), which includes several
useful metadata: txid is a unique identifier for this transaction, τL is the clock value when the
transaction is received, and Us is the ID of the party that submitted the transaction. Note that
this metadata is used for internal bookkeeping and is not necessarily included in the state of the
ledger when (and if) the transaction makes it there. In fact, whether or not this data is included
in the state is mandated by the Blockify function of [2, 1], a parameter to the private ledger.
Nonetheless, in the non-private ledger case, the metadata is handed also to the simulator whenever
a transaction is given to him.

Privacy of Crypsinous is captured by the following modifications: First, transactions returned
from the functionality are blinded by a function BlindTx which is a parameter of a functionality.
This function hides any information a party should not see from the ledger state, while state
validation operates over the entire, non-blinded state. Further, we parameterize the private ledger
with a general purpose leakage algorithm, Lkg, which may additionally leak any function of the
ledger state to the adversary. To facilitate an easy comparison with previous work, in the below
description, differences from the ledger functionality of [2, 1] are highlighted in blue.

As a technicality, as the BlindTx function must be applied to “blockified” states, however
the structure of these is not known in general, an additional “state blinding” algorithm is ac-
cepted as a parameter, which we require to behave equivalently to first blinding all transac-
tions, then passing them to Blockify. Intuitively, for any given state state, Blind(P, ids, state)
returns state with every transaction tx replaced by BlindTx(state,P, ids, tx). In particular, where
β , map(BlindTx(state,P, ids)), we require that:

Blind

P, Blockify(~tx1) ‖
. . . ‖

Blockify(~tx`)

 =
Blockify(β(~tx1)) ‖

. . . ‖
Blockify(β(~tx`))

BlindA is defined the same as Blind, but with calls to BlindTx replaced with calls to BlindTxA .

9

GPL is parameterized by seven algorithms, Validate, ExtendPolicy, Blockify, Lkg, BlindTx, Blind,
and predict-time, along with three parameters: windowSize, Delay ∈ N, and
C1 := {(U1, s1), . . . , (Un, sn)}. These parameters are all publicly known. The functionality
manages variables state, NxtBC, buffer, τL, and ~τstate, as described in [2, 1], as well as a
sequence of generated IDs, ids. The variables are initialized as follows: state := ~τstate :=
NxtBC := ids :=ε, buffer := ∅, τL = 0.

The functionality maintains the set of registered parties P, the (sub-)set of honest parties
H ⊆ P, and the (sub-set) of de-synchronized honest parties PDS ⊂ H (following the definition
of de-synchronized from above). The sets P,H,PDS are all initially set to ∅. When a new
honest party is registered at the ledger, if it is registered with the clock and the global RO
already, then it is added to the party sets H and P and the current time of registration is also
recorded; if the current time is τL > 0, it is also added to PDS . Similarly, when a party is
de-registered, it is removed from P (and therefore also from PDS or H). The ledger maintains
the invariant that it is registered (as a functionality) to the clock whenever H 6= ∅. Finally,
during registration, (generate, sid,coin) is run once, and Up is replaced with the resulting id
in C1. Further, the registration procedure returns id.
For each party Up ∈ P the functionality maintains a pointer ptp (initially set to 1) and a
current-state view statep := ε (initially set to empty). We refer to the vector pt1, . . . , ptn as ~pt.

The functionality also keeps track of the timed honest-input sequence (cf. [2]) in a vector ~ITH
(initially ~ITH := ε).

Handling initial stakeholders: If during round τ = 0, the ledger did not received a
registration from each initial stakeholder, i.e., (Up, sp) ∈ C1, the functionality halts.

Upon receiving any input I from any party or from the adversary, send
(clock-read, sidC) to Gclock; upon receiving response (clock-read, sidC , τ) set τL := τ and
do the following if τ > 0 (otherwise, ignore input):

1. Let P̂ ⊆ PDS denote the set of de-synchronized honest parties that have been registered
(continuously) since time τ ′ < τL − Delay. Set PDS := PDS \ P̂.

2. If I was received from an honest party Up ∈ P:

(a) If I = (submit, sid, tx), set ~ITH := ~ITH ‖ ((submit, sid,BlindTxA(state,P \ H, ids, tx)),

Up, τL); else set ~ITH := ~ITH ‖ (I, Up, τL)

(b) Compute ~N = (~N1, . . . , ~N`) := ExtendPolicy(~ITH , state,NxtBC, buffer, ~τstate) and if ~N 6= ε

set state := state ‖Blockify(~N1) ‖ . . . ‖Blockify(~N`) and ~τstate := ~τstate ‖ τ `L, where
τ `L := τL ‖ . . . ‖ τL.

(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer, ~pt,H, ids) = 0 then delete BTX from
buffer. Also, reset NxtBC := ε.

(d) If there exists Uj ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |, then
set ptk := |state| for all Uk ∈ H \ PDS .

3. If the calling party Up is stalled (according to the definition above), then no further actions

Functionality GPL

10

are taken. Otherwise, depending on the above input I and its sender’s ID, GPL executes the
corresponding code from the following list:

– Submitting a transaction:
If I = (submit, sid, tx) and is received from a party Up ∈ P or from A (on behalf of a
corrupted party Up) do the following

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, Up).

(b) If Validate(BTX, state, buffer, ~pt,H, ids) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit,BlindTxA(state,P \ H, ids,BTX)) to A.

– Generating IDs:
If I = (generate, sid, tag) is received from a party Up ∈ P, query the adversary with
(generate, sid, Up, tag), denoting the response id. Ensure the response is unique for tag
and not equal to ⊥, and record ids← ids ‖ (Up, tag, id). Return id.

– Reading the state:
If I = (read, sid) is received from a party Up ∈ P then set statep := state|min{ptp,|state|}
and return (read, sid,Blind({Up} , ids, statep)) to the requestor. If the requestor is A then
send (BlindA(P \ H, ids, state),map(BlindTxA(state,P \ H), ids, buffer), Lkg(state, buffer,
τL), ~ITH) to A.

– Maintaining the ledger state:
If I = (maintain-ledger, sid) is received by an honest party Up ∈ P and (after updating
~ITH as above) predict-time(~ITH) = τ̂ > τL then send (clock-update, sidC) to Gclock. Else
send I to A.

– The adversary proposing the next block:
If I = (next-block, hFlag, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC
as follows:

(a) Set listOfTxid← ε

(b) For i = 1, . . . , ` do: if there exists BTX := (x, txid, τL, Uj) ∈ buffer with ID txid = txidi
then set listOfTxid := listOfTxid ‖ txidi.

(c) Finally, set NxtBC := NxtBC ‖ (hFlag, listOfTxid) and output (next-block, ok) to A.

– The adversary setting state-slackness:
If I = (set-slack, (Ui1 , p̂ti1), . . . , (Ui` , p̂ti`)), with {Upi1 , . . . , Upi`} ⊆ H \ PDS is received
from the adversary A do the following:

(a) If for all j ∈ [`] : |state| − p̂tij ≤ windowSize and p̂tij ≥ |stateij |, set pti1 := p̂ti1 for
every j ∈ [`] and return (set-slack, ok) to A.

(b) Otherwise set ptij := |state| for all j ∈ [`].

– The adversary setting the state for desychronized parties:
If I = (desync-state, (Ui1 , state′i1), . . . , (Ui` , state′i`)), with {Ui1 , . . . , Ui`} ⊆ PDS is
received from the adversary A, set stateij := state′ij for each j ∈ [`] and return

(desync-state, ok) to A.

11

4.1 Blinding for Forward-Secure Transactions

In order to define blinding on transactions, we first define transactions as consisting of a vector
of sub-transactions, denoted tx , (stx1, stx2, . . . , stx`). Each sub-transaction consists of a recipient
public key pk r, and an arbitrary message x, that is stx , (pk r, x). In this context, pk r is either a
public key, generated by a party with an generate query, or the special symbol public, denoting
the sub-transaction is publicly readable. We do not leak the entire annotated transaction to the
adversary. Instead, the adversary is shown a modified vector tx, with sub-transactions addressed
to honest parties replaced with ⊥. While we do not go into the detail of transfer transactions here,
we also replace components referring to already spent coins – for honest parties or adversarial –
with ⊥. This guarantees forward privacy of past transactions, as even on corruption, the adversary
cannot retrieve this information. Concretely, we define blinding functions BlindSTx and BlindTx,
described below, which hide parts of the ledger from read requests.

BlindTx takes as input the full ledger state state, an annotated transaction BTX = (tx, txid, τL,
Us), a set of parties P, and the set of generated ids ids. It returns a vector consisting only of the
components of the transaction that are readable by some party Up ∈ P. An adversarial version of
BlindTx, BlindTxA , additionally returns the time of submission, τL, and the submitter Us

4. Below,
we make use of the commonly used higher-order function map, which applies a function to a list
element-wise.

BlindSTx(state,P, ids, (pk , stx)) ,

If stx is not a change subtransaction, or a receipt subtransaction
of an already spent coin, and the pk the subtrasaction is for is
either the symbol public, or owned by one of the transaction in
P, then return (pk , stx), else, if stx is a receipt subtransaction,
and the coin was adversarially generated, then return (pk , stx),
else return (⊥, |stx|).

BlindTx(state,P, ids, (tx, txid, ·, ·)) , map(BlindSTx(state,P, ids), tx),

txid)

BlindTxA(state,P, ids, (tx, txid, τL, Us)) , (map(BlindSTx(state,P, ids),

tx), txid, τL, Us)

4.2 Leakage for Leader-Based Protocols

In our system, we permit the leakage Lkglead, which effectively simulates the protocols leadership
election, and leaks the winning party. Specifically, for each time τ , the adversary receives a set of
parties that won the leadership election. This set is selected by sampling a random coin for each
party, weighted by their stake using the same algorithm as in Ouroboros Praos [13]. While this
leakage is protocol-specific, it follows the general principle of leaking the elected leaders in a POS
blockchain protocol, which is inevitable given the lack of sender-anonymous communication. We
note that similar leakage of the leaders exists in proof-of-work based protocols, however this does
not leak anything about the distribution of stake.

4If we assumed an anonymous broadcast, the submitter would not be needed to be leaked, i.e., the requirement
of leaking the submitter is strictly due to network leakage.

12

The Lkglead algorithm maintains a record of past leaks, Lτ for each past time τ . This is to
ensure the adversary is limited in accessing the leakage function for past slots.

procedure Lkglead(state, buffer, τ)
if Lτ is recorded then return Lτ
Determine ep, the epoch for the time slot τ .
Determine τep, the time at which the stakeholder distribution for the epoch ep was frozen.
Let L← ∅
for each party Up do

Determine the valid coins of Up in stateτep .
Determine Up’s relative stake αUp .
With probability of φf (αUp), add Up to L.

end for
Record Lτ ← L, and return L

end procedure

Algorithm Lkglead for GPL

In a preliminary step of our analysis we also utilize a leakage function leaking all information,
Lkgid. This is effectively the identity function, simply returning the parameters state, buffer, and τ
passed to it. With this leakage the private ledger effectively becomes a standard ledger from [2, 1],
with a stricter interface to the environment, as the simulator still receives all information it would
with the standard non-private ledger.

5 The Ouroboros-Crypsinous Protocol

In this section we provide a detailed description of our protocol Ouroboros-Crypsinous as a (G)UC
protocol. The protocol has a similar structure as Ouroboros-Genesis [1], but differs considerably in
the leaderelection, and the processing of transactions. As already discussed, the protocol assumes
access to a global random oracle and clock, and functionalities for network, encryption, and NIZK.

5.1 Ideal-World Transactions

Before we delve into the protocol details, unlike many other ledger protocols, we assign mean-
ing to transactions, and this meaning, while more precisely defined later on, is helpful to un-
derstand the high-level design. Specifically, we consider ideal-world transactions starting with
(public,transfer) to be transfer transactions. While it may appear sufficient to have ideal-
world transfers appear as something like “give 0.05 of Alice’s stake to Bob”, our realization of
transfers using a Zerocash([4])-like design introduces some subtleties that need to be reflected in
the ideal world. Specifically, we will require parties to specify which coins they are attempting to
spend. In any transfer two coins are burned, and two are created. As a special case, due to our
protocol having no other minting functionality, we allow a zero-value coin to be burned in place
of the second coin, to allow for coins to be split. Formally, the transactions have the following
form: ((public,transfer), (pk r, c4), (pks, c1, c2, c3)), where ci are ID/value pairs. This can be
interpreted as “transfer the coins c1 and c2 to coins c3 and c4.” The validation predicate ensures
the total value is preserved across the transfer, and that each ID can be used only once, and that an
ID is only spent by its generating party. IDs must originate from the ledger’s generate interface,
with the tag coin, otherwise they are treated as invalid by the ideal-world validation predicate.
We note in particular, that preventing the reuse of serial numbers, as we will do in the validation

13

predicate, prevents double spends.

5.2 Protocol overview

In the real world, the design looks slightly different, following the approach of Zerocash [4]. Specif-
ically, parties locally maintain nonces and commitment openings to their coins. In order to spend
a coin, they reveal the deterministically derived serial number, as well as prove the existence of
a valid commitment somewhere in a Merkle tree of coin commitments. Newly created coins are
encrypted with the recipient party’s public key, and the sending party is unable to spend them as
it would require the recipient’s private key to correctly generate the coin’s serial number. Parties
can receive and send coins to and from a long-term public key pkcoin, which is the hash of a Merkle
tree root of a tree of corresponding secret keys, one for each time slot5. To spend a coin at time τ ,
parties will need to prove knowledge of the secret key residing as the τth leaf of the Merkle tree.
As this leaf is erased after the slot ends, an adversary cannot claim to spend a parties coins for a
slot prior to the time a party was corrupted.

The protocol will take ideal transactions as an input, and construct a corresponding real-world
transaction. This transaction is then broadcast as usual in a blockchain protocol. On a read
request, the irrelevant information is not returned, and only the information corresponding to the
original ideal-world transaction is returned back to the requestor. In addition to transfers, other
types of transaction are accepted in the ideal world. These are not validated, however, making the
real-world equivalent far simpler to construct. Specifically, we encrypt each subtransaction with the
public key of the party it is addressed to. On a read request, the ciphertexts that the requesting
party can decrypt are decrypted, and all others are replaced with ⊥. Plaintexts are decrypted and
remembered until their subtransaction is no longer revealed in the ideal world.

The protocol Ouroboros-Crypsinous assumes as hybrids a network F∆
N-MC, a non-interactive-

zero-knowledge scheme FNIZK, a forward-secure encryption scheme FFwEnc, a global clock Gclock,
a global random oracle GRO, a non-interactive equivocal commitment scheme, and a CRS func-
tionality, denoted by FCRS, used by the commitment protocol to supply the commitment public
key.

The protocol execution proceeds in disjoint, consecutive time intervals called slots. As in
Ouroboros Genesis, slots correspond directly to rounds given by Gclock. In each slot sl, the par-
ties execute a staking procedure to extend the blockchain. This proceeds similarly to Ouroboros
Genesis, electing leaders to slots, with modifications to avoid revealing more information about
the leader than necessary. Due to network-level attacks, the adversary is able to guess with good
probability which party is the leader. We do not, however, reveal information beyond this. Similar
to Ouroboros-Genesis, time is also divided into larger units, called epochs, with the distribution of
stake considered for leadership purposes being frozen for each epoch.

Parties hold coins with a fixed total value across the system. The Ouroboros Genesis leadership
election is performed on a per-coin basis, with each coin competing separately. If any of a party’s
coins win the election, the party proceeds to generate a new block, extending their current chain.
The block itself is generated as in Ouroboros-Genesis, although the validity of it is proved differently.
Specifically, FNIZK is used to produce a signature of knowledge of a coin that won the leadership
election during a given slot. This proof is done in similarly to that of transactions, and involves
renewing the coin in question. Specifically, the serial number of the leading coin is revealed, and
a new coin of the same value is minted. We also refer to this proof, together with its auxiliary
information such as the spent serial number and newly created coin commitment, as a leadership
transaction.

5This can easily be reduced to constant space complexity, by deriving each each from the previous one.

14

Ouroboros-Genesis requires the stakeholder distribution to be frozen to limit grinding attacks.
Since every coin competes for leadership of every slot, it is possible that the same coin wins

multiple slots in an epoch. Although this even is quite infrequent, when it occurs if the same coin
is used in both slots then the this will be detectable, leaking the information that the two slots
correspond to the same coin. In order to allow a coin to be used for leadership proofs multiple
times in an epoch without leaking this information, we introduce a new resistance mechanism
against attacks of this type: The newly generated coins in leadership transactions have their nonce
deterministically derived from the nonce of the old coin. The leadership test itself utilizes only this
nonce from the coin as a seed – it follows that the leadership test for the derived coin is fixed along
with the randomness of the epoch.

Once a block is created, the party broadcasts the new chain, extended with this block. Further,
the party broadcasts the leadership transaction separately, in order to ensure the newly created
coin will eventually be valid, even if the consensus does not adopt the broadcast chain.

A chain proposed by any party might be adopted only if it satisfies the following two conditions:
(1) it is valid according to a well defined validation procedure, and (2) the block corresponding to
each slot has a signature of knowledge from a coin winning the corresponding slot.

To ensure the second property we need the implicit slot-leader lottery to provide its winners
(slot leaders) with a certificate/proof of slot-leadership. For this reason, we implement the slot-
leader election as follows: Each party Up checks, for each of their coins c, whether or not it is a
slot leader, by locally evaluating a maliciously-unpredictable pseudo-random function, as described
in Section 3.3, with entropy supplied by the epoch randomness η; the MUPRF is evaluated at the
slot index sl and η, and is seeded with the “winning coin’s secret key” skcoin

τ ‖ ρc.
Specifically, we will use the MUPRF construction of Section 3.3. If the MUPRF output y—

decoded as an integer—is below a certain threshold Tc—which depends on c’s stake—then Up is
an eligible slot leader; furthermore, he can generate a signature of knowledge of a valid coin which
satisfies these conditions. In particular, each new block broadcast by a slot leader contains a NIZK
proof π, signing the rest of the block content, with the knowledge of the nonce ρc, and skcoin

sl ,
for the slot the leadership transaction is for, proving that the nonce and secret key correspond to
some unspent coin commitment cmc. The leadership transaction also evolves the coin that wins
leadership – this is done in order to establish adaptive security, and is done by updating the coin
secret key and nonce used: ρc′ = PRFevl

skcoin
c

(ρc). A new coin of the same value with this updated –
and, crucially, deterministically determined – nonce is created, and commited in the transaction.
In particular, parties erase ρc (and after the slot, skcoin

sl), and only maintain ρc′ after the leadership
proof is generated.

As in Ouroboros-Genesis, it is possible for multiple parties, or no party at all to be a leader of
any given slot. Our protocol behaves identically to Genesis in this regard, and we utilize the same
chain selection rule in our protocol.

We next turn to the formal specification of the protocol Ouroboros-Crypsinous. Our party
management is identical to that of Ouroboros Genesis, and our protocol description follows the
same modular design as Ouroboros Genesis. For brevity we will not re-state parts of the Genesis
protocol which remain unmodified, and we will refer to Appendix C for a formal UC specification
of protocol components to the appendix.

15

5.3 Real-world Transactions

Before giving the formal specification we introduce some necessary terminology and notation. Each
party U stores a local blockchain CUploc—Up’s local view of the blockchain.6 Such a local blockchain is
a sequence of blocks Bi (i > 0) where each B ∈ Cloc has the following format: B = (txlead, st); where
txlead = (lead, ~stxref, stxproof), and stxproof = (cmc′ , snc, ep, sl, ρ, h, ptr, π). Here, st is the encoded
data of this block, h is the hash of the same data, sl and ep are the slot and epoch the block is for,
respectively, (cmc′ , rc′) = Comm(pkcoin ‖ τ ‖ vc ‖ ρc′) is the commitment of the newly-created coin,
and snc = PRFsn

rootcoinsk
(ρc) is the serial number of the coin c, which is revealed to demonstrate the

coin has not been spent. We define ρ = µsk
coin
sl , where µ is GRO evaluated at nonce ‖ ηep ‖ sl; ρ is the

randomness contribution to the next epoch’s randomness, ptr is the hash of the previous block, and
π is a NIZK proof of the statement lead (defined in Appendix D). The component ~stxref consists
of a (typically empty) vector of reference leadership transactions. These are processed before the
leadership transaction itself is processed, and serve to allow successive leadership proofs with the
same coin, even when the selected chain switches.

Ouroboros Crypsinous handles three kinds of transactions: Leadership transactions, such as the
above txlead, transfer transactions txxfer, and general-purpose transactions. Each of these is handled
separately. The transfer transactions and general-purpose transactions correspond directly to
ideal-world transactions with the same behaviour. Leadership transactions by contrast exist only
in the real world.

General-purpose transactions in the ideal world consist of a vector of subtransactions, addressed
either to everyone (public), or a specific party. The corresponding real-world transaction is a vector
of the same subtransactions, which are either directly the content of the ideal world transaction, in
the case of a transaction addressed to public, or an encryption of the content using FFwEnc, to the
party specified as the recipient. Upon reading the state, parties attempt to decrypt ciphertexts,
and failing that, replace it with ⊥. To disambiguate transactions, we prefix generic transactions
with the label generic.

The implementation of transfer transactions is more involved, as we not only want to guar-
antee their privacy, but also their validity. To achieve this, we replace transaction which
fall into the permissible ideal-world format – which we recall, is txidealxfer = ((public,transfer),
(pk r, (id4, v4)), (pks, (id1, v1), (id2, v2), (id3, v3))) – with a cryptographic construction hiding the re-
spective information. We define a real transfer transaction to be: txrealxfer = (transfer, stxproof, cr),
where stxproof = ({cmc3 , cmc4} , {snc1 , snc2} , τ, root, π), and cr is a FFwEnc-encryption for the slot
the transaction was submitted of stxrcpt = (ρc3 , rc3 , vc3) to pk r. Similar to leadership transactions,
(cmc3 , rc3) = Comm(pkcoin

pks
‖ τ ‖ vc3 ‖ ρc3), and (cmc4 , rc4) = Comm(pkcoin

pkr
‖ τ ‖ vc4 ‖ ρc4); snc1 and

snc2 are revealed to spend the coins c1 and c2 respectively, and π proves the statement xfer (de-
fined in Appendix D), specifically proving the existence of cmc1 and cmc2 , in the Merkle tree of
coin commitments with the root root, as well as various consistency properties. The use of FFwEnc

implies that parties will not be able to decrypt ciphertexts addressed to them indefinitely, however
they are still required to respond with the corresponding ideal-world information to read requests.
As a result, when a transfer transaction is first seen and decrypted, the corresponding ideal world
transaction is locally stored. Further, parties maintain locally the information needed to spend
coins they own – specifically (pkcoin

c , ρc, rc, vc).

6For brevity, wherever clear from the context we omit the party ID from the local chain notation, i.e., write Cloc

instead of CUloc.

16

5.4 Interacting with the Ledger

At the core of the Ouroboros Crypsinous protocol is the process that allows parties to maintain the
ledger. There are three types of processes that are triggered by three different commands provided
that the party is already registered to all its local and global functionalities.

The command (submit, sid, tx) is used for sending a new transaction to the ledger. The party
maps tx to a corresponding txreal, which is stored in the parties’ local transaction buffer, and
multicast to the network.

The command (generate, sid) is used for creating a new address, which can be used by other
parties to transfer funds to this current party.

The command (read, sid) is used for the environment to ask for a read of the current ledger

state. On receipt, the party maps each transaction ~st
dk

to its ideal-world equivalent, and returns
this ideal-world chain.

The command (maintain-ledger, sid) triggers the main ledger update. A party receiving this
command first fetches from its network all information relevant for the current round, then it
uses the received information to update its local info—i.e., asks the clock for the current time
τ , updates its epoch counter ep, its slot counter sl, and its (local view of) stake distribution
parameters, accordingly; finally it invokes the staking procedure unless it has already done so
in the current round. If this is the first time that the party processes a (maintain-ledger, sid)
message then before doing anything else, the party invokes an initialization protocol to receive
the initial information it needs to start executing the protocol—in particular the genesis block.

The relevant sub-processes involved in handling these queries are detailed in the following sections.
After introducing each of these basic ingredients, we conclude with a technical overview of the main
ledger maintenance protocol LedgerMaintenance, a detailed specification of the protocol ReadState
for answering requests to read the ledger’s state, and a detailed specification of the protocols
SubmitXfer and SubmitGeneric.

Party Initialization A party that has been registered with all its resources and setups becomes
operational by invoking the initialization protocol Initialization-Crypsinous upon processing its first
command. As a first step the party receives its encryption key from FFwEnc. It receives any initial
stake it may have as a single coin from FINIT. Subsequently, protocol Initialization-Crypsinous
proceeds as in Ouroboros-Genesis, although it does not register any keys. This is managed instead
by the ledgers generate interface. The precise description of the initialization can be found in
Appendix C.

The Staking Procedure The next part of the ledger-maintenance protocol is the staking pro-
cedure which is used for the slot leader to compute and send the next block. A party Up is an
eligible slot leader for a particular slot sl in an epoch ep if, one of Up’s coins, c, is both eligible for
leadership in ep, and a PRF-value depending on sl and the coin nonce ρc and secret key skcoin

τ ,
is smaller than a threshold value Tc. We discuss when a coin is considered eligible for leadership,
and how its threshold is determined. A coin is eligible for leadership depending on when, and how,
its corresponding commitment entered the chain. Specifically, if its corresponding commitment
was created in a transfer transaction, it is valid in a similar way as transactions are considered for
leadership in an epoch: If it is sufficiently old by the time the epoch starts, it is taken as part of the
snapshot fixing the stake distribution for ep. Commitments originating from leadership transactions
are always immediately eligible for leadership, as their nonce and secret key are deterministically
derived. It is possible, although unusual, for the leadership transaction a coin originates from to

17

not be present in the chain the party is currently attempting to extend. In this case, the coin is
still eligible, as the originating leadership transaction will be added to ~stxref.

Each coin c’s value vc induces a relative stake for the coin, αc. We use the same function
φf (αc) to determine the probability of a coin winning the leadership election, with the corresponding
threshold, Tc = ord(G)φf (αc). Due to the independent aggregation property of φf , the probability
of a party winning the leadership election in Crypsinous and in Genesis is initially the same,
regardless of how it is split between coins. One key difference, however, is that when a coin is
transferred in Crypsinous, it is no longer eligible for leadership. As a direct consequence, any stake
transferred during an epoch must be considered adversarial for the given epoch.

The technical description of the staking procedure can be found in Appendix C.2. It evaluates
two district MUPRFs for each eligible coin. If the output of one of these is under the target for
some coin, the party is a slot leader, and continues to create a new block B from their current
transaction buffer. Aside of the main contents, the party assembles a leadership transaction and
assigns it to the block. This transaction includes a NIZK proof of leadership – specifically of the
statement lead – and acts as a signature of knowledge over the block content, as well as the pointer
to the previous block. An updated blockchain Cloc containing the new block B is finally multicast
over the network.

From the staking procedure we construct the ledger maintenance protocol, which in addition to
attempting to stake on each block, monitors incoming transactions and chains, decrypts ciphertexts
where possible, updates the parties local state by adding received coins, records received messages,
and performs the chain selection of [1]. The full description can be found in Appendix C.3

Submitting Transactions Transactions submitted to the Ouroboros Crypsinous protocols are, as
previously discussed, first mapped to corresponding real-world transactions, which then get handled
as standard ledger transactions by being broadcast over a multicast network, and assembled into
blocks. Specifically, transfer transactions are mapped to Zerocash-like transactions, where only the
first coin received to a given address it spent, and other transactions are mapped into encrypted
components. The submitting procedure for transfer transactions is described in Appendix C.4, and
that for generic transaction in Appendix C.5.

Reading the State The last command related to the interaction with the ledger is the read
command (read, sid) that is used to read the current contents of the state. Note that in the ideal
world, the result of issuing such a command is for the ledger to output a (long enough prefix) of
the ideal-world state of the ledger, with parts the party does not have access to being hidden. As
the format of real-world transactions differs, we need to invert the map from real transactions to
the corresponding ideal transactions. For generic transactions, this is a little tricky, as the use of
forward-secure encryption implies that the information associated with the transaction in the ideal
world is erased in the real world. To circumvent this, parties maintain a log, recording information
necessary to reconstruct the ideal-world representation of the transaction. The full description of
this reconstruction can be found in Appendix C.6.

5.5 Transaction Validity

Transaction validity again differs in the real and ideal world, as the transactions themselves differ.

Ideal World Validation The ideal world validation predicate validates only transfer transactions.
It is parameterized by the initial distribution of coins C1. It maintains, for each ID, an ordered
sequence of received values, the ID’s owner, and a flag marking whether the ID has already been
used for spending. For each transfer transaction validated, first its format is enforced. Next, it

18

asserts that v1 + v2 = v3 + v4. It checks that the IDs of c1 and c2 have indeed received transfer
of value v1 and v2 respectively (and, if the IDs and value are equal, have received at least two
transfers of that value). If there is ambiguity as to which coins to spend, those received first are
spent. As a special case, if the ID of c2 is ⊥, and v2 = 0, it is always valid.7 It is further checked
that the coins the party is trying to spend are “old enough”, specifically, they must be in the parties
local view of the ledger state. (The validation predicate has access to the parties state pointer). If
the sending party is honest, we further restrict it to only spending coins to which it owns the ID.
Further, honest parties must address stxchng to their own public key – i.e. the first value generated
by (generate, sid, id) by the party. If the sending party is corrupted, it may spend the coins of
other corrupted parties, as well as arbitrary received values. If other transactions in the buffer
attempt to spend the same coins, and the transaction is honest, it is also rejected – as in this case
the party is attempting to double spend and de-anonymize themselves.

Finally, if the transaction is valid, a new receipt of a value of v3 is recorded for c3, and respec-
tively with v4, and c4. The values spent are erased from the values lists of c1 and c2’s IDs, and
their “spent” flags are set (with the exception of the id ⊥).

Real-world Validation The real-world validation predicate maintains three sets, the sets of coin
commitments Cspend, Clead for spending and leadership respectively, initialized to the initial set of
coin commitments C1, and the set of spent serial numbers S, initialized to ∅. A chain is validated
transaction by transaction. Leadership transactions and transfer transactions are both validated,
other transactions are ignored. A leadership transaction is valid iff all leadership transactions in
~stxref are valid adopted leadership transactions, and the NIZK proof is valid with respect to the

Merkle root of the current tree, with these adopted transactions inserted, as well as ηep, and it has
a greater slot number than the previous slot. Further, the serial number sn revealed in it must
not be in the current S. The root used must either be the root of the predecessor block, or the
root of a past leadership transaction’s Merkle tree, with only this transactions commitment added
to the tree. Finally, ptr must be the hash of the previous block, and h must be the hash of the
remaining transactions. After it is successfully validated, S ← S ∪ {sn}, Clead ← Clead ∪ {cm},
Cspend ← Cspend ∪ {cm}.

Transfer transactions are likewise validated by checking the NIZK proof with respect to the
public transaction component. Further, it is checked that root was at some point the root of Cspend,
and that {sn1, sn2} ∩ S = ∅. If so, the effect is updating S ← S ∪ {sn1, sn2}, and Cspend ←
Cspend ∪ {cm, cm3}. Finally, at the start of an epoch, old enough spending coins are allowed for

leadership proofs: Clead ← Clead ∪ Cspend
t−k , where Cspend

t−k is the set of spending coin commitments k
slots before the start of the epoch.

If a leadership transaction is included normally in a block, or included in ~stxref (i.e. it is not
this block’s leadership transaction), it is considered an adopted leadership transaction. The validity
criteria for these are different, requiring only that the proof is valid, the serial numbers are unspent,
and the Merkle root was a valid root for Clead at some point. The effects of the transaction remain
the same, although is is no longer the leader of a block. A block’s transactions are validated prior
to the leadership transaction, as this may depend on adopted leadership transactions. The Merkle
tree root of Clead of any adopted leadership transactions chain’s is saved and preserved. These are
valid for other leadership transactions in the same epoch. Specifically, they are also valid for the
leadership transaction of the block it is contained in.

Generic transactions are valid if and only if they do not start with the symbol (public,
transfer).

7This permits parties with only one coin to spend it.

19

6 Security Analysis

We split our security analysis of Ouroboros-Crypsinous into two parts: In a first, warm-up part, we
show that Ouroboros-Crypsinous realizes a “non-private” version of GPL – specifically, we show that
it realizes GPL with Lkg set to the identity function Lkgid; i.e. the ledger leaks its entire content
to the simulator, described in detail in Appendix B. We argue that the simulator S1 can simulate
any real-world attacks on Ouroboros-Crypsinous against a non-private GPL. This first part already
proves that our protocol satisfies all the properties of the public ledger, including chain quality,
common prefix, and chain growth. In a second part, we argue that in addition to the above, it
also satisfied privacy. This is done by instantiating Lkg to Lkglead, in which only the leaders of a
given slot are leaked. For this case we provide a simulator S2 who is able, with access only to this
restricted leakage to simulate the outputs of S1. generate a view which is indistinguishable from
S1.

Theorem 1. Ouroboros-Crypsinous, in the (WPoS
OC (FLleadNIZK,F

Lxfer
NIZK,FFwEnc,F∆

N-MC),GRO,Gclock)-
hybrid world, UC-emulates GPL with Lkg = Lkgid, under the DDH assumption.8

Proof (sketch). The backbone of the proof of Theorem 1 is similar to the security proof of Ouroboros
Genesis [1] with some surgical modifications; in particular, in Step 1 we argue that the usage of
NIZKs, nonces, and key-private forward-secure encryption, can replace the usage of forward secure
signatures, and in Step 2 we argue that the usage of NIZKs and MUPRFs can replace the usage of
VRFs in Genesis. In a nutshell, this allows us to argue in Step 3 argue that leadership transactions
in Crypsinous can be used to replace leadership proofs in Genesis. This allows us to leverage the
security analysis from Ouroboros Genesis [1] in Step 4 for proving that Crypsinous implements, at
the very least, a non-private version of the ledger.

Transactions submitted to Crypsinous are pre-processed, before being handled as a Genesis
transaction would be, and on reading from the ledger, this pre-processing is partially inverted.
This inversion being only partial is what will later be used to establish the privacy properties
of Crypsinous. In Step 5, we establish that this pre- and post-processing has the same effect as
blinding a transaction in the ideal world, and that the validation predicate of Ouroboros-Crypsinous
– which is run only against pre-processed transactions – is equivalent to its ideal-world counterpart.
Finally, in Step 6, we argue that combined, these properties demonstrate realisation of GPL with
Lkg = Lkgid.

Step 1. The security properties guaranteed by FKES, and used in [1], are those of forward-secure
unforgeability, correctness, and authenticity. A proof of lead gives the former two properties, and
a notion of authenticity that is different to FKES, but sufficient for how it is used in [1]. Non-
malleable NIZKs, such as the ones used in our construction, can be interpreted as “signing” their
public inputs with the knowledge of a witness [16]. In particular, if the witness itself contains a
secret key known only to one party, a NIZK over such a witness effectively acts as a signature. In
Ouroboros Crypsinous, the usage of skcoin in the witness for leadership proof effectively acts as a
signature over the rest of the block, providing unforgeability, and correctness guarantees. Further,
as the statement lead has the same conditions as a leadership proof in [1], the desired authenticity
property is also satisfied. This is not sufficient to emulate FKES, however using skcoin

s l and ρc in
the witness rectifies this. As honest parties update both skcoin

s l and ρc after the proof, and skcoin
s l

and ρc are necessary to generate a new proof for the same slot, the adversary will be unable to

8We will be working under this assumption throughout the rest of the security analysis, and will typically leave
it implicit. We will also be assuming the binding (under discrete log, which is implied by DDH), and hiding of our
commitments, and the pseudo-randomness of our PRFs implicitly.

20

create leadership proof for past slots. While this is effective only so long as skcoin
s l and ρc cannot

be retrieved from elsewhere. skcoin
s l is generated locally by an honest party, is never communicated

by it (except to FNIZK, which guarantees its secrecy), and is erased by the honest party in the same
slot.

Step 2. The property of VRF provability is directly captured by the correctness of NIZKs, and
that of uniqueness is directly captured by non-malleability. Pseudorandomness is directly supplied
by the security under malicious key generation of MUPRFs. Two VRF calls are embedded in the
NIZK; the VRF used to generate the randomness contribution ρ, and the VRF used to check the
target. While in Ouroboros Crypsinous the latter is not publicly revealed, it is still present, and is
verified by a verification of the NIZK. The NIZK is not as flexible as the VRF, in that it cannot
be used to generate arbitrary VRF proofs at any time, however this is simply as the verification
is stricter. The NIZK inputs in Ouroboros Crypsinous depend on the coin secret key, while in
Ouroboros Genesis, they depend on the party’s secret key. As Ouroboros Genesis anticipates
parties acting as multiple parties in the protocol, we can simply consider each Crypsinous coin as
one Genesis party.

Step 3. A leadership transaction in Ouroboros-Crypsinous can be made only if a coin passes the
same threshold check as in Ouroboros-Genesis. Due to the independent aggregation property of
the threshold function, the probability of this happening for a party holding a specific value of
(honest) stake is equal in Crypsinous and Genesis. Furthermore, the NIZK ensures the impossibility
of creating a leadership transaction without winning this election in Crypsinous, while the VRF
validation, and block validity check enforce the same property in Genesis. The mechanism of
“adopted” leadership transaction ensures this property is preserved, even by a party selecting a
new local chain.

Due to the equivalent output distribution of VRFs and PRFs in Genesis and Crypsinous re-
spectively, the randomness contribution ρ is also equivalent.

Step 4. Given we can replace leadership proofs with leadership transactions in the Gledger proof
of [1], the rest of the proof can be carried out the same for Ouroboros-Crypsinous. This establishes
that, Ouroboros-Crypsinous effectively runs an internal ledger. While the transactions posted to
this ledger are not directly those posted to Ouroboros-Crypsinous itself, we will establish their
relationship, and that this corresponds directly to the difference between the public and private
ledger.

Step 5. Submitted transactions are pre-processed before being sent to the network, and transac-
tions from the network are post-processed on a read request in Ouroboros-Crypsinous. For brevity,
we will refer to the former mapping as f , and the latter as f−1

Up
. We define consistency of this

mapping to be two the following two properties things: First, a validation predicate – specifi-
cally instantiated to that of Ouroboros-Crypsinous – over the mapped transactions must exists that
holds if and only if the ideal-world validation predicate over the original transactions holds. Sec-
ond, f−1

Up
◦ f = BlindTx({Up}) – i.e. read requests return the same as f−1

Up
of the read in the

mapped ledger. Specifically, as the real-world validation predicate already operates on the mapped
transactions, this predicate should behave the same as the ideal-world predicate over the original
transactions.

For generic transactions, this is straightforward: subtransactions addressed to public are pre-
served, and not affected by the mapping. Subtransactions addressed to a party Up are encrypted
with pkenc

p in the real world, and each party attempts to decrypt them on the inverse mapping.
Specifically, subtransactions addressed to any other party will fail to decrypt, and be replaced with
⊥, while subtransactions which are correctly encrypted, will be replaced with (pkp,M), where M

21

is the originally encrypted plaintext. This matches the behaviour of BlindTx exactly. Finally, the
validation predicate is always true for generic transactions in the ideal world, and is only false
for generic transactions that start with transfer in the real world – which have no ideal world
equivalent, and should cannot be created by honest parties.

Transfer transactions This leaves us with the consistency of mappings for transfer and leadership
transactions. In addition to being standard transactions, transfer transactions induce a stakeholder
distribution. They are intrinsically linked with leadership transactions in the real world, so we will
consider these as well. The ledgers, both real and ideal, can be read as a sequence of transfer-, and
in the real world leadership- transactions. We will prove by induction that validity is equivalent in
the real and ideal world, as well as that the inverse mapping of the real-world transaction is the
ideal transaction. First, we note the induction hypothesis: For every vector of transfer and (in the
real world) leadership transactions in the real and ideal worlds, two sets of valid coins are induced:
a) The set of valid ideal-world coins, where each coin has a party, ID (which the simulator sets
to be the coin public key pkcoin

c), and value, and b) The set of valid real-world coins, which have
the same attributes, as well as an associated coin secret key skcoin, a nonce ρc, and a commitment
randomness rc. The induction hypothesis is that these sets are equivalent, i.e. the ideal set is equal
to the real set without the secret key, nonce and randomness, and that in the vector of transactions,
the same transfer transactions were considered valid in both worlds.

As a base case, this is guaranteed by FINIT, which creates the same distribution of coins in the
real world as was given in the ideal world, selecting random ρc and rc values. In the induction step,
we increase the real-world transaction vector by one transaction. There are four cases, depending
on whether the transaction is honest or adversarial, and whether it is a transfer, or leadership
transaction. We will consider the honest cases first.

Honest leadership In the case of an honest leadership transaction, the transaction is valid in the
real world, as honest parties would not post an invalid transaction. It spends a coin, and recreates
a coin of the same value. This is reflected by updating the set of real-world coins by replacing ρc
and, rc with new values ρc′ , and rc′ . Trivially, this maintains the induction hypothesis.

Honest transfers In the case of an honest transfer transaction, the ideal world transaction is
valid iff the two spent coins were the first coins received at an ID owned by the sending party, the
transaction is zero-sum, and the address of the “change” coin is also owned by the same party. If
these conditions do not hold, the honest party would ignore the request in the real world. If they
do, the honest party is, by induction hypothesis, guaranteed to know the corresponding skcoin

τ , ρc
and rc-values of the coins that are spent, so it is able to generate a valid transaction and NIZK
proof. Afterwards, in the real and ideal world, the coin is removed from the set of valid coins,
and the newly created coins are not yet added, but will be added once the transaction has been
confirmed. We conclude the induction hypothesis is maintained.

Adversarial transactions To consider adversarial transactions, the simulator does not imme-
diately add them to the buffer. Instead, the simulator locally stores them, and waits until the
adversary has them sufficiently deep in the chain that they must be added to the ideal world state.
At this stage, the simulator adds them to the ideal-world buffer, and immediately promotes them
to the state. This allows the simulator to manage conflicting adversarial transactions, as it simply
waits for the adversary itself to resolve the conflict. In particular, transactions attempting to spend
the same coin, in either a leadership or transfer transaction, will be conflicting, as they would reveal
the same serial number. Once and adversarial leadership transaction is confirmed in the same way,
the adversary will control the same updated coins as in the honest case, and will be unable to use

22

the old coins again, as the validation predicate will detect and block the reuse of the coins serial
number.

Adversarial transfers As the simulator waits until it enters the state, we need only consider
sufficiently deep, valid transactions in the real world, and ensure the simulator can create a corre-
sponding ideal world transaction. The real-world transaction will need to spend two valid coins,
which can originate only from corrupted parties. It creates two new coins, addressed to any party,
or potentially no party at all, of the same value. This directly corresponds to a legal adversarial
transaction in the ideal world, and by induction hypothesis, all coins spent will be unused. The
adversary cannot spend honest coins, as it does not know their secret key, with which to create
a NIZK proof, cannot spend coins multiple times, as this would invalidly reveal the same serial
number twice. Finally, it cannot spend non-existent coins, as it could not provide a Merkle path
witness.

Equivalence We conclude that real and ideal transactions induce the same set of valid coins, and
are valid in the same cases. The simulator delaying adversarial transactions in the ideal world is
not visible to the environment in any way, as the buffer is only seen by the simulator itself, and
the validation predicate (which does not care about the order of adversarial transaction until they
enter the state). The set of coins induces a stakeholder distribution, as required by the proof of [1].

Finally, the inverse mapping of parties views correspond to their ideal-world views. Specifically,
if the party sees anything in the ideal world, it is the recipient of a coin, in which case it it need
only be able to supply pkcoin

c and vc in the ideal world – provided the coin has not since been spent.
If the transaction was honest, the party will have seen them on decrypting its ciphertext and – iff
the coin has not been spent – can be found recorded in log. If the transaction is dishonest, either
the ciphertext still correctly encrypts the coin, or, if it does not, the ideal transaction would not
have been addressed to the honest party, but to the adversary instead. We conclude that honest
parties response to read requests in the real and ideal worlds match.

Step 6. The private ledger differs primarily from the standard ledger in that it a) applies Blind to
the output of read requests, b) leaks less information to the adversary, and c) provides a mech-
anism for unique ID generation (which are used internally). Difference a) follows directly from
the consistency demonstrated in Step 5. Further, we are considering an overly permissive leakage
predicate, Lkgid, which provides the adversary with the same information it would receive from
the standard ledger satisfying b). Finally, Ouroboros Crypsinous allows ID generation, which are
generated as either PRF outputs of a PRF seeded with a random, secret value, which will lead to
unique IDs for honest parties with overwhelming probability, FFwEnc public keys, which are guar-
anteed uniqueness, or randomly samples values from {0, 1}κ, which have a negligible probability of
collision. We conclude that Ouroboros-Crypsinous realizes GPL with S1, under the leakage predicate
Lkgid.

Theorem 2. Ouroboros-Crypsinous, in the (WPoS
OC (FLleadNIZK,F

Lxfer
NIZK,FFwEnc,F∆

N-MC),GRO,Gclock)-
hybrid world, UC-emulates GPL with Lkg = Lkglead under the DDH assumption.

Proof (sketch). The leakage Lkglead leaks only the leader of any given slot. We utilize a modified
version of S1, which differs only in that it creates simulated transaction instead of real transactions,
and reconstructs a corrupted party’s state when required. The modified simulator, S2 is described in
detail in Section B.2. In Step 1, we argue that the simulated transactions are indistinguishable from
real transactions, and in Step 2, we argue that the reconstructed party state is indistinguishable
from a real party’s state. Finally, in Step 3, we argue that the simulator S2 is indistinguishable
from S1, although requiring less leakage from the private ledger functionality. As a result, the same
security argument as for S1 holds with respect to GPL with restricted leakage.

23

Step 1. There are three primitives that are simulated in simulated transactions: Commitments,
NIZKs, and FFwEnc encryptions. Due to the simulation security of NIZKs, and the equivocal-
ity of the commitments, we know they are indistinguishable from real NIZKs and commitments
respectively. For FFwEnc, the simulator hands the adversary the same information about the plain-
text (namely, the length) as the functionality itself, leaving the adversary with no information to
distinguish. As transactions consist of these primitives, and the simulator accurately knows the
format and originating party of a transaction, it can create a perfect simulated equivalent of the
transaction, and broadcast it on behalf of the same party.

Step 2. While the first simulator was effectively running the protocol for real parties, making cor-
ruption trivial, S2 must reconstruct the parties local state in a way the adversary cannot distinguish
from a real execution. Parties maintain four important state variables: the local chain, Cloc, the
local buffer buffer, the set of coins C (as well as Cfree, and Ccnd), and the log of transfer interactions,
and ciphertext to plaintext mappings, log. Maintaining Cloc, and buffer is straightforward, as the
network interactions directly dictate their content, and the network is not anonymous. This leaves
as the only major issues the reconstruction of C, Cfree, Ccnd, and log. When a real-world party’s
corruption is requested, the simulator corrupts the corresponding ideal-world party. This allows
the simulator to extract when the party received, transfers in the ideal world, all of which are guar-
anteed to be unspent, as well as the plaintexts corresponding to the ciphertext of subtransactions
addressed to the party. At these points, a transfer, or generic transaction will have also been made
in the real world. This transaction is either a real transaction, in which case the simulator can
extract its content from its simulated FFwEnc. The corrupted party can only be the recipient Ur
of such transactions (as this is the only party which may read it). There is one commitment in
the transaction, that is created for a new coin of this party, and one encrypted FFwEnc message
that encrypts the corresponding secret values used to control it. The simulator randomly samples

ρc
$← {0, 1}`PRF, and retrieves pkcoin

c , vc from the corresponding ideal-world transaction. As the
ideal-world transaction is valid, we know pkcoin

c must be a valid ID for the corrupted party, in which
case the simulator provided it, and knows the corresponding secret key skcoin

c . It then opens the
commitment cmc to pkcoin

c ‖ vc ‖ ρc, with the opening randomness rc. This allows the simulator to
populate C, Cfree, and Ccnd with coins generated by transfer transactions, depending on their stage
of confirmation. We further note that the FFwEnc ciphertext can now be opened to the appropriate
encryption if necessary. Finally log is populated, by recording the corresponding log action for each
of these transactions.

This almost completes the simulator, with the exception of how to handle coins that were used
in leadership proofs. Recall that the simulator is aware of which slots the newly-corrupted party
was a leader. It is not, however, aware of which coin won in these slots. For each leadership proof
of the corrupted party, the simulator computes the probability of each of the party’s coins being the
winning coin in the given slot, and samples from this distribution a single coin c. It then ensures
this coin is appropriately updated – computing skcoin

c′ = PRFevl
skcoin

c
(1), and ρc′ = PRFevl

skcoin
c

(ρc),

opening cmc′ , the commitment in the corresponding real-world leadership proof to pkcoin
c′ ‖ vc ‖ ρc′ ,

with the resulting randomness being rc. This is added to C, with the preimage being removed. As
the adversary cannot find the preimage of skcoin

c′ , or ρc′ , the adversary cannot perform consistency
checks involving the previous coin, such as checking serial numbers match what they should.

As the state of the party handed to the simulator is correct, and any sampled value in it are
either purely random, or originates from the equivocal commitment scheme, the adversary cannot
distinguish the corrupted parties state from the real parties state.

Step 3. We conclude from Theorem 1, and our observations in Steps 1 and 2, combined with the
fact that S1 and S2 differ only in simulating transactions and corruption, that Theorem 2 holds.

24

7 Performance Analysis

Coin transfers are modelled after Zerocash’s [4] pour transactions. This enables us to reuse much
of the existing implementation work invested on optimizing the performance critical SNARK op-
erations by the Zcash project, cf. [17].

Like Zerocash, our transfer transactions pour two old coins into two new coins. In contrast, a
leadership transaction only updates a single coin. The additional costs incurred are two evaluations
of a PRF to compute ρc2 and skcoin

c2 for updating the coin in a deterministic manner, two evaluations
of MUPRF, and one range-proof to determine the winners of the leadership election lottery. We
approximate φf using a linear function as in Bitcoin. The PRF is implemented using a SHA256
compression function. The MUPRF requires variable base group exponentiations. As we require
equivocal commitments, we replace the SHA256 coin commitments of Zerocash that require 83,712
constraints with the Pedersen commitments of Sapling [17] which require only approximately 2,542
constraints. Purely for performance reasons, we also replace the original SHA-256 Merkle tree of
Zerocash with the Pedersen hash-based tree used in Sapling.

In total, see Table 2, the multiplication count of a leadership SNARK relation is less than a
transfer relation by about 42K constraints. Furthermore, the number of constraints used by our
transfer relations is within a small margin of those used in an equivalent Sapling transfer relation.

Primitive Approx. constraints

SHA256 27,904
Exponentiation (variable base) 3,252 ([17], page 128)
Hidden range proof 256
Pedersen commitment 1,006 + 2.666 per bit9

Table 1: Number of multiplicative constraints in SNARK relations

Constraint count Lxfer Llead
Check pkcoin

ci 2× 27, 904 27, 904
Check ρc2 , skcoin

c2 2× 27, 904
Path for cmci 2× 43, 808 43, 808
Path for skcoin

τ,ci 2× 43, 808 43, 808

(1 layer of 32) (1, 369) (1, 369)
Check snci 2× 27, 904 27, 904
Check cmci 4× 2, 542 2× 2, 542
Check v1 + v2 = v3 + v4 1
Ensure that v1 + v2 < 264 65
Check y, ρ 2× 3, 252
Check (approx.) y < ord(G)φf (v) 256
Total 297,082 211,076

Table 2: Number of constraints per SNARK statement

We note in passing that the forward-secure encryption scheme is only needed for transfers and
does not affect the SNARK relations we need to prove which is dominating performance. Likewise,

9https://github.com/zcash/zcash/issues/2634

25

https://github.com/zcash/zcash/issues/2634

the usage of a simulation secure NIZK will increase proving time, and proof lengths. Nevertheless,
in both cases, the perfomance penalty is not intrinsic to the POS setting and it would equally affect
a POW-based protocol like Zerocash if one wanted to make it simulation-secure in the adaptive
corruption setting. Based on Sapling’s results, we estimate a proving time of 6 to 13 seconds on a
modern PC for both leadership and transfer transactions with a non-simulation secure NIZK.

References

[1] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros Genesis: Composable proof-of-stake blockchains with dynamic availability. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 913–930, 2018.

[2] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a trans-
action ledger: A composable treatment. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356. Springer, Heidelberg, August
2017.

[3] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in
public-key encryption. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS,
pages 566–582. Springer, Heidelberg, December 2001.

[4] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE Computer Society Press,
May 2014.

[5] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake.
Cryptology ePrint Archive, Report 2016/919, 2016. http://eprint.iacr.org/2016/919.

[6] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator: elliptic-
curve points indistinguishable from uniform random strings. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 967–980.
ACM, 2013.

[7] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without
random oracles). In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
290–307. Springer, Heidelberg, August 2006.

[8] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[9] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable secu-
rity with global setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS, pages
61–85. Springer, Heidelberg, February 2007.

[10] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 255–271. Springer,
Heidelberg, May 2003.

26

http://eprint.iacr.org/2016/919

[11] Cardano Community. Cardano settlement layer documentation.
https://cardanodocs.com/technical/, October 18 2018.

[12] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable commitment
schemes. In 35th ACM STOC, pages 426–437. ACM Press, June 2003.

[13] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98.
Springer, Heidelberg, April / May 2018.

[14] Gregory Demay, Peter Gaži, Martin Hirt, and Ueli Maurer. Resource-restricted indifferentia-
bility. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 664–683. Springer, Heidelberg, May 2013.

[15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part II, volume 9057 of LNCS, pages 281–310. Springer, Heidelberg, April 2015.

[16] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of knowledge
from simulation-extractable SNARKs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part II, volume 10402 of LNCS, pages 581–612. Springer, Heidelberg, Au-
gust 2017.

[17] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol specification.
2018.

[18] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An empirical analysis of
anonymity in zcash. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018., pages 463–477, 2018.

[19] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros: A
provably secure proof-of-stake blockchain protocol. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 357–388. Springer, Heidelberg,
August 2017.

[20] Ahmed E. Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, T.-H. Hubert Chan, Charalampos
Papamanthou, Rafael Pass, Abhi Shelat, and Elaine Shi. How to use snarks in universally
composable protocols. IACR Cryptology ePrint Archive, 2015:1093, 2015.

[21] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A traceability analysis of
monero’s blockchain. In Computer Security - ESORICS 2017 - 22nd European Symposium on
Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II,
pages 153–173, 2017.

[22] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geof-
frey M. Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments among men
with no names. Commun. ACM, 59(4):86–93, 2016.

[23] Silvio Micali. ALGORAND: the efficient and democratic ledger. CoRR, abs/1607.01341, 2016.

27

[24] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat Srivastava,
Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan, and Nicolas Christin. An
empirical analysis of traceability in the monero blockchain. PoPETs, 2018(3):143–163, 2018.

[25] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[26] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 643–673. Springer, Heidelberg, April / May 2017.

[27] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 380–409. Springer,
Heidelberg, December 2017.

[28] Dorit Ron and Adi Shamir. Quantitative analysis of the full bitcoin transaction graph. In
Financial Cryptography and Data Security - 17th International Conference, FC 2013, Okinawa,
Japan, April 1-5, 2013, Revised Selected Papers, pages 6–24, 2013.

[29] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. Coinshuffle: Practical decentralized
coin mixing for bitcoin. In Computer Security - ESORICS 2014 - 19th European Symposium
on Research in Computer Security, Wroclaw, Poland, September 7-11, 2014. Proceedings, Part
II, pages 345–364, 2014.

[30] Nicolas van Saberhagen. Cryptonote v 2.0. https://cryptonote.org/whitepaper.pdf, October
17 2013.

[31] Vlad Zamfir. Casper the friendly ghost: A “correct-by-construction” blockchain consen-
sus protocol. https://github.com/ethereum/research/blob/master/papers/CasperTFG/

CasperTFG.pdf, December 17 2017.

A Hybrid World Functionalities

The functionality FINIT is parameterized by the number of initial stakeholders n and their
respective stakes s1, . . . , sn. FINIT interacts with stakeholders U1, . . . , Un as follows:

• In the first round, upon a request from some stakeholder Ui of the form (claim, sid, Ui), then
FINIT samples skcoin as Ouroboros-Crypsinous does on generate requests, ρci randomly,

computes pkcoin ← PRFpk
rootcoinsk

(1), and commits (cmci , rci) = Comm(pkcoin ‖ si ‖ ρci), and

returns the tuple (pkcoin, ρci , rci , si), along with skcoin. One all parties have registered, it

samples and stores a random value η1
$← {0, 1}λ. It then constructs a genesis block (C1, η1),

where C1 = {cmc1 , . . . , cmcn}.

• If this is not the first round then do the following:

– If any of the n initial stakeholders has not send a request of the above form, i.e., a
(keys, sid, Ui, pkenc

i)-message, to FINIT in the genesis round then FINIT outputs an error
and halts.

Functionality FINIT

28

https://github.com/ethereum/research/blob/master/papers/CasperTFG/CasperTFG.pdf
https://github.com/ethereum/research/blob/master/papers/CasperTFG/CasperTFG.pdf

– Otherwise, if the currently received input is a request of the form (genblock req, sid, Ui)
from any (initial or not) stakeholder U , FINIT sends (genblock, sid, (C1, η1)) to U .

The functionality manages the set P of registered identities, i.e., parties Up = (pid, sid). It also
manages the set F of functionalities (together with their session identifier). Initially, P := ∅
and F := ∅.
For each session sid the clock maintains a variable τsid. For each identity Up := (pid, sid) ∈ P it
manages variable dUp . For each pair (F, sid) ∈ F it manages variable d(F,sid) (all integer
variables are initially 0).

Synchronization:

• Upon receiving (clock-update, sidC) from some party Up ∈ P set dUp := 1; execute
Round-Update and forward (clock-update, sidC , Up) to A.

• Upon receiving (clock-update, sidC) from some functionality F in a session sid such that
(F, sid) ∈ F set d(F,sid) := 1, execute Round-Update and return (clock-update, sidC ,F) to
this instance of F.

• Upon receiving (clock-read, sidC) from any participant (including the environment on
behalf of a party, the adversary, or any ideal—shared or local—functionality) return
(clock-read, sidC , τ) to the requestor.

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and dUp = 1 for
all honest parties Up = (·, sid) ∈ P, then set τsid := τsid + 1 and reset d(F,sid) := 0 and dUp := 0
for all parties Up = (·, sid) ∈ P.

Functionality Gclock

The (proof-malleable) non-interactive zero-knowledge functionality FLNIZK allows proving of
statements in an NP language L. It maintains a set of statement/proof pairs Π, initialized to ∅.
Proving When receiving a message (prove, sid, x, w):

if (x,w) /∈ L then
return (proof, sid, x,⊥)

end if
send (prove, sid, x) to A and receive the reply (proof, sid, x, π)
let Π← Π ∪ {(x, π)}
return (proof, sid, x, π)

Proof Malleability When receiving a message (maul, sid, x, π) from A:

if @π′ : (x, π′) ∈ Π then
return (maul, sid, x, π,⊥)

end if
let Π← Π ∪ {(x, π)}
return (maul, sid, x, π,>)

Proof Verification When receiving a message (verify, sid, x, π):

Functionality FLNIZK

29

if (x, π) /∈ Π then
send (verify, sid, x, π) to A and receive the reply R
if R = (witness, sid, x, π, w) ∧ (x,w) ∈ L then

let Π← Π ∪ (x, π)
end if

end if
return (verify, sid, x, π, (x, π) ∈ Π)

FFwEnc is parameterized by, a security parameter κ, a set of parties P, and a maximum delay
∆max.

• Key Generation. Upon receiving a message (KeyGen, sid) from a party Up, verify that
Up ∈ P, and that this is the first key generation. If so, send (KeyGen, sid, Up) to A, and
receive a value pkp in return. Return pkp to Up, and initialize τp := 0 and add Up to the set
of honest parties H.

• Encryption. Upon receiving a message (Encrypt, sid, pk , τ,m) from some party Up:

– Check that there exists a Uq ∈ P, where pk q = pk and Uq ∈ H, and τ < τq + ∆max. If so,
send (Encrypt, sid, τ, |m|, Up) to A. Otherwise, send (DummyEncrypt, sid, pk , τ,m,Up) to
A.

– Receive a reply c from A, and send (ciphertext, c) to Up. Further, if the conditions in the
previous step were satisfied, record the tuple (Uq,m, τ, c).

• Decryption. Upon receiving a message (Decrypt, sid, τ ′, c) from party Up ∈ P:

– If τ ′ < τp, return ⊥.

– Else, if a tuple (Up,m, τ
′, c) was recorded, return m to Up.

– Otherwise, send (Decrypt, sid, τp, c, Up) to A, receive a reply m, and forward m to Up.

• Update. Upon receiving a message (Update, sid) from party Up ∈ P:

1. Send (Update, sid, Up) to A.

2. Update τp ← τp + 1

• Corruptions. Upon corruption of a party Up ∈ P, remove Up from H.

Functionality FFwEnc

B The Simulator

B.1 The Stage 1 Simulator

Procedures ExtendLedgerState, and AdjustView as in Ouroboros Genesis, and SimulateS-
taking as in Ouroboros Genesis for S1.

30

Overview:

• The simulator internally emulates all local UC functionalities by running the code (and
keeping the state) of FINIT, FNIZK, FENC, Fbc

N-MC, and F tx
N-MC.

• The simulator mimics the execution of Ouroboros-Crypsinous for each honest party Up
(including their state and the interaction with the hybrids).

• The simulator emulates a view towards the adversary A in a black-box way, i.e., by
internally running adversary A and simulating his interaction with the protocol (and
hybrids) as detailed below for each hybrid. To simplify the description, we assume A does
not violate the requirements by the wrapper WPoS

OG (·) as this would imply no interaction
between S1 (i.e., the emulated hybrids) and A.

• For global functionalities, the simulator simply relays the messages sent from A to the global
functionalities (and returns the generated replies). Recall that the ideal world consists of the
dummy parties, the ledger functionality, and the clock.

Party sets:

• As defined in Ouroboros Genesis [1], honest parties are categorized. Salert denote
synchronized parties that are not stalled, SsyncStalled are synchronized parties that are
stalled, and PDS are de-synchronized parties.

• For each registered honest party, the simulator maintains the local state containing in

particular the local chain C(Up)
loc , the time ton it remembers when last being online, spendable

coins C, and the log of transactions, log. For each party Up and clock time τ , the simulator
stores a flag updateUp,τ (initially false) to remember whether this party has updated its state
already in this round. Note that an registered party is registered with all its local hybrids.

• Upon any activation, the simulator will query the current party set from the ledger, and the
clock, to evaluate in which category an honest party belongs to. If a new honest party is
registered to the ledger, it internally runs the initialization procedure of
Ouroboros-Crypsinous.

• We assume that the simulator queries upon any activation for the sequence ~ITH , and the
current time τ from the clock. We note that the simulator is capable of determining
predict-time(·) of GPL.

Messages from the Clock: as in Ouroboros Genesis.

Messages from the Ledger:

• Upon receiving (submit,BTX) from GPL where BTX := (tx, txid, τ, Up), simulate running
(submit,BTX) as Up, interacting with the simulated network FN-MC.

• Upon receiving (generate, Up, tag) from GPL, if tag is id, and this is the first id query for
Up, return pkenc

p , otherwise execute generate as the simulated party Up and tag.

• Upon receiving (maintain-ledger, sid) from GPL, extract from ~ITH the party Up that issued
this query. If Up has already completed its round-task, then ignore this request. Otherwise,
execute SimulateStaking(Up, τ).

Simulator S1 (Part 1 - Main Structure)

31

Simulation of Functionality FINIT towards A:

• The simulator relays back and forth the communication between the (internally emulated)
FINIT functionality and the adversary A acting on behalf of a corrupted party.

• If at time τ = 0, a corrupted party Up ∈ SinitStake registers via (claim, sid, Up) to FINIT, then
input (register, sid) to GPL on behalf of Up. Intercept the keys returned from FINIT,
locally store them, and send the intercepted pkcoin as the id for the coin in GPL.

Simulation of the Functionalities FNIZK and FFwEnc towards A:

• The simulator relays back and forth the communication between the (internally emulated)
hybrids and the adversary A (either direct communication, communication to A caused by
emulating the actions of honest parties, or communication of A on behalf of a corrupted
party). Whenever a witness is supplied for a NIZK proof, the given witness is recorded.

Simulation of the Networks Fbc
N-MC, and F tx

N-MC as in Ouroboros Genesis, with the following
modifications:

• The simulator records transactions originating from A or a corrupted party.

• When an adversarial transaction first enters the confirmed state, the simulator attempts to
extract the witness.

• If the witness does not extract, abort.

• If the witness is successfully extracted, compute the corresponding ideal-world transaction as
follows:

– From the extracted secret keys and nonces, determine the ideal-world coins being spent.
If one does not exist, abort.

– If the public key of the “change” coin is assigned to the adversary, use it directly in the
ideal transaction. If it is assigned to an honest party, generate a new adversarial ID in the
ideal world for it, and record the relationship between the coins. If was not previously
seen, generate it directly as an adversarial ID.

– If the “recipient” coin public key is adversarial, use it directly as the coin ID. If it is
honest, and the transaction’s ciphertext is a correct encryption of the coin to the same
honest party, use it directly as the coin ID as well. If it is otherwise honest, again
generate a new adversarial ID in the ideal world, and record the relationship between the
coins. If it was not previously seen, generate it directly as an adversarial ID.

– Form an ideal-world transaction with the above coin IDs and extracted values.

Simulator S1 (Part 2 - Black-Box Interaction)

B.2 The Stage 2 Simulator

The Simulator S2 behaves like S1, with key differences listed below. The simulator maintains a
record of simulated NIZK proofs. When asked to verify a simulated NIZK proof by the
adversary through FNIZK, return > if the statement provided is the same statement recorded,

Simulator S2

32

otherwise return ⊥. We define `Coin to be the length of coin tuples.

• Upon receiving (submit,BTX) from GPL for honest transactions, if
BTX = (public,transfer) ‖BTX′, run SimulateTransfer(BTX′). Otherwise, run
SimulateGeneric(BTX).

• Upon receiving (maintain-ledger, sid) from GPL, extract from ~ITH the party Up that issued
this query. If Up has already completed its round-task, then ignore this request. Otherwise,
execute SimulateStaking(Up, τ, Lτ), where Lτ is the leadership leakage for time τ . If this
is not yet known, query GPL with read for it.

• Upon the adversary requesting corruption of a party Up, corrupt the corresponding
ideal-world party immediately, and run Corrupt(Up).

procedure SimulateTransfer((stxidealrcpt , stxidealchng))

if stxidealrcpt = ⊥ then

Let cm ← Ĉomm(ek).
Send (Encrypt, sid, τ, `Coin, Up) to A, and denote the response stxrealrcpt.

else
Let (pkenc

q , (pkcoin, v))← stxrcpt

Let ρ
$← {0, 1}`PRF

Let (cm, r)← Comm(pkcoin ‖ ρ ‖ v)
Use FFwEnc to encrypt (pkcoin, τ, ρ, r, v) to pkenc

q , and denote the ciphertext stxrealrcpt.
end if
Let cm2 ← Ĉomm(ek).

Let sn1, sn2
$← {0, 1}`PRF

If either ρ1 or ρ2 were adversarially generated, and can be read from the transaction, use
them directly to compute sn1 or sn2 instead.

Let root be the Merkle tree root of the current state of Up.
Let x← ({cm3, cm4} , {sn1, sn2} , root)
Send (Prove,x, Up) to A, denoting the response π.
Record the pair (x, π).
Let stxproof ← ({cm, cm2} , {sn1, sn2} , root, π).
Broadcast (transfer, stxproof, stxrealrcpt) to F tx

N-MC as Up.
end procedure

procedure SimulateGeneric(txideal)
Let txreal = generic
for stx ∈ txideal in order do

if stx = (pkenc
i ,M) then

Send (Encrypt, sid, pkenc
i , τ,M) to FFwEnc on behalf of Up, and denote the response

c.

Let txreal = txreal ‖ (⊥, c).
else if stx = (public,M) then

Let txreal = txreal ‖ (public,M).
else

33

Send (Encrypt, sid, τ, |M |, Up) to A, and denote the response c.

Let txreal = txreal ‖ (⊥, c).
end if

end for
Broadcast txreal to F tx

N-MC as Up.
end procedure

procedure SimulateStaking(Up, τ, L)
if Up /∈ L then return

Let cm ← Ĉomm(ek); ρ, sn
$← {0, 1}`PRF .

If ρ was adversarially generated, and can be read from the transaction, use it directly to
compute sn instead.

Send (Encrypt, sid, τ, `Coin, Up) to A, and denote the response as c.
Let B, h, ptr, ep, sl, root, ηep, and stxref be defined as in an honest staking protocol
execution by Up.
Let x← (ηep, cm, sn, sl, ρ, h, ptr, root)
Send (prove,x, Up) to A, denoting the response π.
Record (x, π).
Let stxproof ← (cm, sn, ep, sl, ρ, π, h, ptr)
Let tx← (lead, ~stxref, stxproof)
Broadcast tx to F tx

N-MC, and (tx, B) to Fbc
N-MC as Up.

end procedure

procedure Corrupt(Up)
Corrupt Up in the ideal protocol.
Send (Read, sid) to GPL on behalf of Up. From the result, compute log, depending on the
receiving transactions recorded.

Register Up with FFwEnc, and update the party’s key for time τ .
Determine which leadership and transfer transactions were simulated as originating from
Up.

Disambiguate which coins won which leadership transactions.
for each unspent coin c belonging to Up do

if c was created by an honest party then

Let ρc
$← {0, 1}κ

Let τ be the time the coin creating transaction was submitted.
Let rc ← Equiv(ek , cmc, pkcoin

c ‖ τ ‖ ρc ‖ vc).
else

Extract (pkcoin, ρc, rc, vc) by decrypting the corresponding ciphertext.
end if
if c is currently visible to Up then

Add (pkcoin, ρc, rc, vc) to Up’s Ccnd.
end if
Ensure Cfree, Ccnd, and C are consistent with a real execution, by checking which coins
are confirmed, moving them to C, and erasing them from Cfree and Ccnd.

end for
end procedure

34

C UC Specification of Ouroboros Crypsinous

Registration/Deregistration: Intially, as in Ouroboros-Genesis, then call
Initialization-Crypsinous(Up, sid, R), returning the result.

Interacting with the Ledger (cf. Section 5.4):

Upon receiving a ledger-specific input I ∈ {(submit, . . .), (read, . . .), (maintain-ledger, . . .)}
verify first that all resources are available. If not all resources are available, then ignore the
input; else execute one of the following steps depending on the input I:

If I = (submit, sid, (public,transfer) ‖ tx) then set invoke the protocol
SubmitXfer(tx, Cloc, log).

Else if I = (submit, sid, tx) then set invoke the protocol SubmitGeneric(sid).

If I = (maintain-ledger, sid) then invoke protocol
LedgerMaintenance(Cloc,C, Up, sid, k, s, R, f, log); if LedgerMaintenance halts then halt the
protocol execution (all future input is ignored).

If I = (generate, sid, tag) then

• If tag = coin, sample skcoin
0

$← {0, 1}`PRF , and let skcoin
i+1 ← PRFevl

sk i
(1), for i ∈ {1, . . . , R}.

Let rootcoinsk be the root of the Merkle tree over skcoin
0 , . . . , skcoin

R , and

pkcoin ← PRFpk
rootcoinsk

(1). Insert the Merkle tree into Cfree, and return pkcoin.

• If tag = id, and this is the first query for id, send (KeyGen, sid) to FFwEnc. Denote the
response by pkenc. Record pkenc, then return it.

• Otherwise, return a uniformly sampled value from {0, 1}κ.

If I = (read, sid) then invoke protocol ReadState(k, Cloc, Up, sid, R, f, log).

Handling external (protocol-unrelated) calls: as in Ouroboros-Genesis.

Protocol Ouroboros-Crypsinousk(Up, sid)

C.1 Party Initialization

The following steps are executed in an (maintain-ledger, sid)-interruptible manner:

1: Use the clock to update τ, ep← dτ/Re, and sl← τ .
2: if τ = 0 then execute the following steps in an (maintain-ledger, sid)-interruptible

manner:
3: Send (claim, sid, Up) to FINIT to claim stake from the genesis block, receiving the response

(pkcoin, ρc, rc, vc), and skcoin.
4: Let C← {(pkcoin

c , ρc, rc, vc)}, and Cfree ← {skcoin}
5: Send (clock-update, sidC) to Gclock.
6: Use the clock to update τ, ep← dτ/Re, and sl← τ , and give up the activation.
7: while τ = 0 do

Use the clock to update τ, ep, and sl and give up the activation.

Protocol Initialization-Crypsinous(Up, sid, R)

35

end while
8: else

Send (genblock req, sid, Up) to FINIT. If FINIT signals an error then halt. Otherwise,
receive from FINIT the response (genblock, sid,G = (C1, η1)).

9: Set Cloc ← (G).

10: Send (new-party, sid, Up) to Fnew
N-MC.

11: Return pkcoin
c .

end if
12: Set ton ← τ .
13: Return ∅.

Global variables: The protocol stores the list of variables pkenc, τ, ep, sl, Cloc,C,Cfree, ton to
make each of them accessible by all protocol parts.

C.2 The Staking Procedure

The following steps are executed in an (maintain-ledger, sid)-interruptible manner:

1: for (pkcoin
c , ρc, rc, vc) ∈ C do

2: if c is not eligible for leadership then continue
3: Send (eval, sidRO,nonce ‖ ηep ‖ sl)) to GRO, and denote the response µρ.
4: Send (eval, sidRO, lead ‖ ηep ‖ sl)) to GRO, and denote the response µy.
5: Lookup skcoin

c in Cfree corresponding to pkcoin
c .

6: Let ρ← µ
rootskcoinc
ρ ; y ← µ

rootskcoinc
y

7: if y < ord(G)φf (vc) then
8: repeat
9: Parse buffer′ as sequence (tx1, . . . , txn)

10: for i = 1 to n do
11: if ValidTxOP(txi, ~st||st) = 1 then
12: ~N ← ~N ||txi
13: Remove tx from buffer′

14: Set st← blockifyOP(~N)
end if

end for
until ~N does not increase anymore

15: Set ptr ← H(head(Cloc)); h← H(st)

16: Set ρc′ ← PRFevl
rootskcoinc

(ρc); snc ← PRFsn
rootskcoinc

(ρc)

17: Set (cmc′ , rc′) = Comm(pkcoin ‖ vc ‖ ρc′).
18: Let ~stxref be, in order, the list of leadership transactions made by Up not in Cloc.
19: Let root be the root of the Merkle tree Clead in Cloc, after applying all transactions in

~stxref. Let path be the path to cmc in the same Merkle tree.

20: Let x = (cmc′ , snc, ηep, sl, ρ, h, ptr, µρ, µy, root).
21: Let w = (path, rootskcoin , pathskcoin

sl
, ρc, rc, vc, rc′).

22: Send (prove, sid,x,w) to FLleadNIZK, and denote the response π.

Protocol StakingProcedure(k, Up, ep, sl, buffer, Cloc,C)

36

23: Let txlead = (lead, ~stxref, (cmc′ , snc, ep, sl, ρ, h, ptr, π)).
24: Set B ← (txlead, st); Cloc ← Cloc ‖B.
25: Update c: C← (C \ {(pkcoin

c , ρc, rc, vc)}) ∪ {(pkcoin
c , ρc′ , rc′ , vc)}

26: Send (multicast, sid, txlead) to F tx
N-MC and proceed from here upon next activation

of this procedure.

27: Send (multicast, sid, Cloc) to Fbc
N-MC and proceed from here upon next activation of

this procedure.
28: break

end if
end for

29: while A (clock-update, sidC) has not been received during the current round do
Give up activation. Upon next activation of this procedure, proceed from here.

end while

C.3 The Ledger Maintenance Procedure

The following steps are executed in an (maintain-ledger, sid)-interruptible manner:

1: Execute FetchInformation to receive the newest messages for this round; denote the
output by (C1, . . . , CM), (tx1, . . . , txk), and read the flag welcome.

2: if welcome = 1 then
3: Send (multicast, sid, Cloc) to Fbc

N-MC.
4: for each tx ∈ buffer do

Send (multicast, sid, tx) to F tx
N-MC.

end for
end if

5: for transaction tx ∈ (tx1, . . . , txk) do
6: if tx is a transfer transaction then
7: Attempt to decrypt each new ciphertext c by sending (Decrypt, sid, c) to FFwEnc.

Receive the response m.
8: if m = (pkcoin, τ, ρc, rc, vc) ∧ cmc ∈ tx then
9: if @skcoin

τ ∈ Cfree corresponding to pkcoin

10: then continue
11: Let Ccnd ← Ccnd ∪ {(pkcoin, ρc, rc, vc)}.
12: Let log← log ‖ (tx,receive, (pkcoin, vc)).
13: end if
14: else if tx is a generic transaction then
15: Attempt to decrypt each subtransaction ciphertext c by sending (Decrypt, sid, c) to

FFwEnc. Receive the response m.
16: if m 6= ⊥ then log← log ‖ (plaintext, c,m)
17: end if
18: end for
19: for coin skcoin ∈ Cfree do
20: if ∃ a coin for pkcoin in Ccnd whose transaction ∈ Cdkloc then

Protocol LedgerMaintenance(. . .)

37

21: Move such candidates to C.
22: end if
23: Erase skcoin

τ (and for any time before τ) from Cfree.
24: end for
25: Use the clock to update τ, ep← dτ/Re, and sl← τ .
26: Set buffer← buffer||(tx1, . . . , txk), ton ← τ , N ← {C1, . . . , and CM}
27: Invoke Protocol SelectChain(Cloc,N , k, s, R, f).
28: Update FFwEnc as many times as necessary for its time to be a least τ − k.
29: if twork < τ then
30: Invoke protocol StakingProcedure(k, Up, ep, sl, buffer, Cloc,C) (in a (maintain-ledger,

sid)-interruptible manner).

31: Set twork ← τ and send (clock-update, sidC) to Gclock.
end if

C.4 Submitting Transfer Transactions

1: Let ((pkenc
r , (pkcoin

c4 , v4)), (pkenc
s , (pkcoin

c1 , v1), (pkcoin
c2 , v2), (pkcoin

c3 , v3)))← txxfer.
2: if pkenc

s 6= pkenc or v1 + v2 6= v3 + v4 or pkcoin
c3 /∈ Cfree then return

3: Check C for the first coin received at ID pkcoin
c1 , pkcoin

c2 . Ensure they have value v1 and v2

respectively, and denote their (potentially evolved) variant as c1 and c2. Ensure these are

in Cdkloc.
4: As a special case, allow pkcoin

c2 = ⊥, and v2 = 0.
5: if these do not exist, or are not in C then return
6: Retrieve the corresponding (pkcoin

ci , ρci , rci , vci) from C.
7: Lookup skcoin

ci in Cfree for i ∈ {1, 2}, corresponding to pkcoin
ci .

8: if pkcoin
c2 = ⊥, and v2 = 0 then snc2 ← PRFzdrv

rootskcoin
c1

(ρc1) and all other values for c2 are

zeroed.
9: Sample ρc3 , ρc4

$← {0, 1}`PRF .
10: Commit (cmci , rci)← Comm(pkcoin

ci ‖ vi ‖ ρci), for i ∈ {3, 4}.
11: Let snc1 ← PRFsn

rootskcoinc1

(ρc1); snc2 ← PRFsn
rootskcoinc2

(ρc2)

12: Extract the state ~st from Cloc.
13: Let root be the transfer Merkle tree root in Cdkloc.
14: Let path1 and path2 be paths to cmc1 , and cmc2 in the same Merkle tree, respectively, or, if

pkcoin
c2 = ⊥, and v2 = 0, let path2 be empty.

15: if either are not found in the Merkle tree then return
16: Let x← ({cmc3 , cmc4} , {snc1 , snc2} , τ, root).
17: Let w ← (rootskcoin

c1
, pathskcoin

τ,c1
, rootskcoin

c2
, pathskcoin

τ,c2
, pkcoin

c3 , pkcoin
c4 , (ρc1 , rc1 , v1, path1),

(ρc2 , rc2 , v2, path2), (ρc3 , rc3 , v3), (ρc4 , rc4 , v4)).

18: Send (prove, sid,x,w) to FLxferNIZK, and receive π.
19: Send (encrypt, sid, τ, pkenc

r , (pkcoin
c4 , τ, ρc4 , rc4 , vc4)) to FFwEnc, and receive crcpt.

20: Let stxproof ← ({cmc3 , cmc4} , {snc1 , snc2} , root, π).
21: Let txrealxfer ← (transfer, stxproof, crcpt).
22: Let log← log \

{
(pkcoin

c1 , vc1), (pkcoin
c2 , vc2)

}
.

Protocol SubmitXfer(txxfer, Cloc,C, log)

38

23: Erase c1,2: C← C \ {(pkcoin
ci , ρci , rci , vci) | i ∈ {1, 2}}.

24: Record c3: Ccnd ← Ccnd ∪
{

(pkcoin
c3 , ρc3 , rc3 , vc3)

}
25: Send (multicast, sid, txrealxfer) to F tx

N-MC.

C.5 Submitting Generic Transactions

1: Let txreal = generic.
2: for each stx ∈ tx in order do
3: if stx = (>,M) then
4: Let txreal ← txreal ‖ stx.
5: else if stx = (pkenc

r ,M) then
6: Send (Encrypt, sid, τ, pkenc

r ,M) to FFwEnc, and denote the response c.

7: Let txreal ← txreal ‖ (⊥, c).
end if

end for
8: Send (multicast, sid, txreal) to F tx

N-MC.

Protocol SubmitGeneric(tx)

C.6 Reading the Ledger State

1: Execute FetchInformation to receive the newest messages for this round; denote the
output chains by (C1, . . . , CM) (the list of transactions (tx1, . . . , txk) and the flag welcome
can be ignored).

2: Invoke protocol UpdateTime(k, Up, R, f) and denote the output as τ, ep, sl,Sep, αepp , T epp ,
and ηep.

3: Use the clock to update τ, ep← dτ/Re, and sl← τ .
4: Set ton ← τ , N ← {C1, . . . , CM}.
5: Invoke Protocol SelectChain(Cloc,N , k, s, R, f).
6: Extract the state ~st from the current local chain Cloc.
7: Let ~st

ideal
= ε.

8: for each tx ∈ ~st
dk

in order do
9: if tx = (transfer, stxproof, stxrcpt) then

10: Let stxchng ← stxrcpt ← ⊥.
11: if ∃v : (tx,receive, v) ∈ log then
12: Let stxrcpt ← (Up, v).
13: end if
14: Let ~st

ideal ← ~st
ideal ‖ ((>,transfer), stxrcpt, stxchng).

15: else if tx = (generic, stx1, . . . , stxn) then
16: Let txideal ← ε.
17: for each subtransactions stx ∈ tx in order do
18: if stx = (>,m) then
19: Let txideal ← txideal ‖ (>,m)
20: else if stx = (⊥, c) then

Protocol ReadState(k, Cloc, Up, sid, R, f)

39

21: if ∃m : (plaintext, c,m) ∈ log then
22: Let txideal ← txideal ‖ (Up,m)
23: else
24: Let txideal ← txideal ‖⊥
25: end if
26: end if
27: end for
28: end if
29: Let ~st

ideal ← ~st
ideal ‖ (txideal).

30: end for
31: Output (read, sid, ~st

ideal
).

D NIZK Statements

Recall that we use two NIZK statements: lead, and xfer. xfer is very close to the statement
used in Zerocash [4], while lead is a mixture between a Zerocash proof, and an Ouroboros Praos
[13] leadership proof. We define the statements by their corresponding NP languages:
A tuple (x,w) ∈ Llead iff all of the following hold:

• x = (cmc2 , snc1 , η, sl, ρ, h, ptr, µρ, µy, root)

• w = (path, rootskcoin , pathskcoin , ρc, rc1 , v, rc2)

• pkcoin = PRFpk
rootskcoin

(1)

• ρc2 = PRFevl
rootskcoinc1

(ρc1)

• ∀i ∈ {1, 2} : DeComm(cmci , pkcoin ‖ v ‖ ρci , rci) = >

• path is a valid Merkle tree path to cmc1 in a tree with root root.

• pathskcoin is a valid path to a leaf at position sl in a tree with root rootskcoin .

• snc1 = PRFsn
rootskcoin

(ρc1)

• y = µ
rootskcoinc1
y ; ρ = µ

rootskcoinc1
ρ

• y < ord(G)φf (v)

Note that x of lead contains values sl, h, ptr that seemingly nothing is proven about. As a UC
proof system is non-malleable, this makes them part of the signature of knowledge message.
A tuple (x,w) ∈ Lxfer iff all of the following hold:

• x = ({cmc3 , cmc4} , {snc1 , snc2} , τ, root)

• w = (rootskcoin
c1
, pathskcoin

c1
, rootskcoin

c2
, pathskcoin

c2
, pkcoin

c3 , pkcoin
c4 , (ρc1 , rc1 , v1, path1), (ρc2 , rc2 ,

v2, path2), (ρc3 , rc3 , v3), (ρc4 , rc4 , v4))

• ∀i ∈ {1, 2} : pkcoin
ci = PRFpk

rootskcoinci

(1) (or, if v2 = 0, this check may be skipped for i = 2)

40

• ∀i ∈ {1, ..., 4} : DeComm(cmci , pkcoin
ci ‖ vi ‖ ρci , rci) = > (or, if v2 = 0, this check may be

skipped for i = 2)

• v1 + v2 = v3 + v4

• path1 is a valid path to cmc1 in a tree with root root.

• path2 is a valid path to cmc2 in a tree with root root, or v2 = 0 and snc2 = PRFzdrv
rootskcoinc1

(ρc1).

• pathskcoin
ci

is a valid path to a leaf at position τ in rootskcoin
ci

, for i ∈ {1, 2}.

• ∀i ∈ {1, 2} : snci = PRFsn
rootskcoinci

(ρci) (or, if v2 = 0, this check may be skipped for i = 2)

E Protocol Assumptions Encoded as a Wrapper

This section includes complementary material for the main body. We sketch below the wrapper
functionality that is applied to the hybrid functionalities used by Ouroboros-Crypsinous. It is a
slight adaptation of the same wrapper used in Ouroboros Genesis [1], with the modification that
calls to FNIZK are restricted, not FVRF. In a nutshell, the wrapper observes the advancement
of the entire system and checks whether the proportional stake of alert parties, of corrupted or
de-synchronized parties, and of stalled parties are within the allowed range specified as required by
our main theorems.

The wrapper functionality is parameterized by the bounds α,β on the alert and participating
stake ratio, as defined in Ouroboros Genesis [1], respectively, the network delay and a value
ε > 0 (the parameter that describes the gap between the honest and adversarial stake). The
wrapper is assumed to be registered with the global clock Gclock and is aware of sets of
registered parties, and the set of corrupted parties.
We note that the wrapper makes checks about the distribution of stake. While this is trivial in
Ouroboros Genesis, it is not immediately obvious that the wrapper knows this information in
Crypsinous. The wrapper does, however, observe all network traffic, as well as all NIZK
witnesses. From this, it can reconstruct exactly which party transfers stake when, and to
whom. We will not describe this extraction in full detail, but note that effectively, as the
wrapper is around all privacy-preserving functionalities, it has a clear view of the state. We can
therefore make assertions about the stake distribution despite the addition of privacy.

General:

• Upon receiving any request I from any party Up or from A (possibly on behalf of a party Up
which is corrupted) to a wrapped hybrid functionality, record the request I together with its
source and the current time.

• The wrapper keeps track of the active parties and their relative share to the stake
distribution.

Restrictions on obtaining NIZK proofs:

Functionality WPoS
OC (·)

41

• Upon receiving (Prove, sid, ·, ·) to FNIZK from A on behalf of a party Up which is corrupted
or registered but de-synchronized do the following:

1. If the fraction of alert stake relative to all active stake in this round τ so far does not
satisfy the honest majority, as in Ouroboros Genesis [1] then ignore the request.

2. Otherwise, forward the request to FNIZK and return to A whatever FNIZK returns.

• Upon receiving (Prove, sid, ·, ·) to FNIZK from an alert party Up do the following:

1. Forward the request to FNIZK and return to A whatever FNIZK returns.

2. If the minimal fraction (in stake) of participation (of alert parties and in total) as
required by Ouroboros Genesis [1] is reached in round τ , send (clock-update, sidC) to
Gclock to release the clock for this round.

• Any other request is relayed to the underlying functionality (and recorded by the wrapper)
and the corresponding output is given to the destination specified by the underlying
functionality.

F Construction NIZKs via SNARKs

We will utilise, and prove the UC-security of the lifted SNARK system presented in [20]. Specifically,
we will focus on the version presented allowing for proof-malleability, i.e. allowing the adversary
to re-prove statements with a different proof object. For our purposes, this weak version is suffi-
cient. We note that asimulation secure NIZK, as presented in [20] is a tuple (K,P,V, K̂, P̂). This
fairly directly corresponds to a UC protocol for FNIZK, in the FDCRS-hybrid world, where D is the
output distribution of K(1λ,L), and proving and verification are implemented as expected with the
provided algorithms. We will refer to this protocol as NIZK-SNARK. We are also guaranteed the
existance of an algorithm E which can extract proofs, and although that may not be well-known, we
note that both the environment and simulator may be assumed to have access to E . For a security
parameter κ, we are guaranteed the properties in Figures 1-4 hold. Where we use ≈, we mean that
the statistical distance between the distributions is less than some negligible function µ of λ.

∀L, (x,w) ∈ L, crs ∈ K(1κ,L), π ∈ P(crs, x, w) :

Pr [V(crs, x, π) = >] = 1

Figure 1: Perfect completeness.

Determinism We will assume that V and E are deterministic algorithms. If we are given a non-
deterministic verification algorithm V ′, E ′, we note that we can construct deterministic algorithms
V, and E by fixing the random tape. V necessarily satisfies completeness and zero-knowledge, and
with overwhelming probability will still satisfy soundness and simulation sound extractability. Like-
wise, E necessarily satisfies completeness, zero-knowledge, and soundness, and with overwhelming

42

∀L,A : Pr
[
crs

$← K(1κ,L);AP(crs,·,·)(crs) = >
]

≈Pr
[
(ĉrs, τ, ek)

$← K̂(1κ,L);AP̂1(ĉrs,τ,·,·)(ĉrs) = >
]

Where P̂1 acts as P̂, but aborts if it is asked to simulate a proof for (x,w) /∈ L.

Figure 2: Computational zero-knowledge.

∀L,A : Pr

 crs
$← K(1κ,L);

(x, π)
$← A(crs);

(V(crs, x, π) = >) ∧ (@w : (x,w) ∈ L)

 ≈ 0

Figure 3: Computational soundness.

∀L,A : Pr


(ĉrs, τ, ek)

$← K̂(1κ,L);

(x, π)
$← AP̂(ĉrs,τ,·,·)(ĉrs, ek);

w
$← E(ĉrs, ek, x, π);

x /∈ Q ∧ (x,w) /∈ L ∧ V(ĉrs, x, π) = >

 ≈ 0

Where Q is set set of statements x that A queried using oracle access to P̂.

Figure 4: Simulation sound extractability.

probability satisfies simulation sound extractability. If α is the fraction of random tapes for which
V or E can break some property of the NIZK with a non-negligible probability of at least β, then
since the sampling of the random tape and the other inputs in the security games is independant,
V ′ or E ′ respectively has a probability of at least αβ of breaking the same property. As β is non-
negligible, and αβ negligible, by assumption, α must be negligible. Therefore, with overwhelming
probability, all properties hold for V.

F.1 Proof of UC-Emulation

The protocol F ′′LNIZK slightly idealises NIZK-SNARK(L), by ensuring that previously proved
statements always verify. It is built in the FDCRS hybrid model, and keeps crs, and Π as
variables. Π is initialized to ∅.

Initialisation On first activation:

send (query, sid) to FDCRS and receive the reply (query, sid, crs)

Proving When receiving a message (prove, sid, x, w):

if (x,w) ∈ L then
let π ← P(crs, x, w); Π← Π ∪ {(x, π)}
return (proof, sid, x, π)

else

Functionality F ′LNIZK

43

return (proof, sid, x,⊥)
end if

Proof Verification When receiving a message (verify, sid, x, π):

if (x, π) ∈ Π then
return (verify, sid, x, π,>)

else if V(crs, x, π) = > then
let Π← Π ∪ {(x, π)}
return (verify, sid, x, π,>)

else
return (verify, sid, x, π,⊥)

end if

Lemma 1. NIZK-SNARK(L) perfectly UC-emulates F ′LNIZK in the FDCRS-hybrid model.

Proof. We note that (prove) queries, and CRS have identical output in NIZK-SNARK(L) and F ′LNIZK.
For previously unseen statement/proof pairs, verification queries are also identical. For previously
seen statement/proof pairs (x, π), NIZK-SNARK(L) would output V(crs, x, π), while F ′LNIZK outputs
>. There are two types of “previously seen” statement/proof pairs. π may be generated by
P(crs, x, w) for some w where (x,w) ∈ L. In this case, by Figure 1, we know that V(crs, x, π) = >,
therefore the outputs are identical. Alternatively, the statement/proof pair was previously seen in
verification, and V(crs, x, π) = >. Since V is deterministic, it will return >, the same as F ′LNIZK.

The protocol F ′′LNIZK is a further idealisation of F ′LNIZK, which utilises simulated proofs instead
of real proofs. It is built in the FD′CRS hybrid model, where D′ is the output distribution of

K̂(1κ,L). It keeps ĉrs, τ , and Π as variables, where Π is initialized to ∅.

Initialisation On first activation:

send (query, sid) to FD′CRS and receive the reply (query, sid, (ĉrs, τ, ek))

Proving When receiving a message (prove, sid, x, w):

if (x,w) ∈ L then
let π ← P̂(ĉrs, τ, x); Π← Π ∪ {(x, π)}
return (proof, sid, x, π)

else
return (proof, sid, x,⊥)

end if

Proof Verification When receiving a message (verify, sid, x, π):

if (x, π) ∈ Π then
return (verify, sid, x, π,>)

else if V(ĉrs, x, π) = > then
let Π← Π ∪ {(x, π)}
return (verify, sid, x, π,>)

Functionality F ′′LNIZK

44

else
return (verify, sid, x, π,⊥)

end if

let (ĉrs, τ, ek)
$← K̂(1λ,L)

program FDCRS to return ĉrs
simulate A

Simulator S ′′LSNARK

Lemma 2. F ′LNIZK in the FDCRS-hybrid model UC-emulates F ′LNIZK in the FD′CRS-hybrid model.

Proof. We note that it is sufficient to prove that there exists a simulator for the dummy adversary.
We will use S ′′LSNARK for this purpose. We note that the difference between FDCRS and FD′CRS is
precicely the difference in the sampled key generation parameters of Figure 2. Further, we note
that the environment can query FDCRS through the dummy adversary, which corresponds precicely
to the input parameter of crs or ĉrs in Figure 2.

Aside from extracting the CRS from the adversary, the environment can only make honest
interactions with F ′LNIZK. We note that for verification queries, these are identical, given crs/ĉrs. We
can therefore assume without loss of generality that the environment computes them entirely locally,
issuing only (prove, sid, x, w) queries. We note that if (x,w) /∈ L the queries are also identical, so
we assume that the adversary only makes a sequence of (prove) queries where (x,w) ∈ L. Then
we note that if Z can distinguish between (D,F ′LNIZK) and (S ′′LSNARK,F ′′LNIZK) with a non-negligible
advantage, then Z is a distinguisher for Figure 2 with a non-negligible advantage. More precisely,
we can reframe the access to F ′LNIZK and D as access to a proving oracle and crs, and reframe access
to F ′′LNIZK and S ′′LSNARK as access to a (simulated) proving oracle and ĉrs.

The protocol F ′′′LNIZK further idealises F ′′LNIZK, by ensuring that not-previously seen, verifying
proofs are extractable. It is built in the FD′CRS hybrid model, and keeps ĉrs, τ , ek, and Π as
variables. Π is initialized to ∅.

Initialisation On first activation:

send (query, sid) to FD′CRS and receive the reply (query, sid, (ĉrs, τ, ek))

Proving When receiving a message (prove, sid, x, w):

if (x,w) ∈ L then
let π ← P̂(ĉrs, τ, x); Π← Π ∪ {(x, π)}
return (proof, sid, x, π)

else
return (proof, sid, x,⊥)

end if

Proof Verification When receiving a message (verify, sid, x, π):

Functionality F ′′′LNIZK

45

if (x, π) ∈ Π then
return (verify, sid, x, π,>)

else if V(ĉrs, x, π) = > then
if ∃π′ : (x, π′) ∈ Π then

let Π← Π ∪ {(x, π)}
return (verify, sid, x, π,>)

else
let w ← E(ĉrs, ek, x, π)
if (x,w) ∈ L then

let Π← Π ∪ {(x, π)}
end if
return (verify, sid, x, π, (x,w) ∈ L)

end if
else

return (verify, sid, x, π,⊥)
end if

Lemma 3. F ′′LNIZK UC-emulates F ′′′LNIZK in the FD′CRS-hybrid model.

Proof. We note that F ′′LNIZK and F ′′′LNIZK differ only in the verification of statement/proof pairs
(x, π), where V(ĉrs, x, π) = >, and x was not previously proved. We note that any distinguishing
environment will make some number k of such queries, which must be polynomial in the security
parameter.

We construct an adversary, that using Z breaks simulation sound extractability (Figure 4).
A simulates Z interacting with F ′′′LNIZK (and D), with FD′CRS programmed to return (ĉrs, τ, ek). It
records all returns w of E , as well as the corresponding x, π inputs in a vector ~e. If Z has advantage
α, then with at least probability α, there must exist at least one query Z made where F ′′LNIZK and
F ′′′LNIZK differed in their output. Specifically, this means that there exists a query to E such that the
extraction failed, and (x,w) /∈ L. By the conditions that must be met before E is called, we also
know that V(ĉrs, x, π), and @π′ : (x, π′) ∈ Π.
A can test all queries made, and determine which one(s) fail extraction. It then returns (x, π)

for which the extraction fails. We note that this directly breaks the extractability property given in
Figure 4, with probability at least α. Therefore, if there is no adversary that can break simulation
sound extractability except with negligible probability, there exists no environment that has a
greater advantage and can distinguish F ′′LNIZK and F ′′′LNIZK.

Initialisation On first activation:
send (query, sid) to FD′CRS and receive the reply (query, sid, (ĉrs, τ, ek))
simulate A

Simulating Proofs On receiving a messsage (prove, sid, x) from FLNIZK:

let Q← Q ∪ {x}
return (proof, sid, P̂(ĉrs, τ, x))

Simulator SLSNARK

46

Proof Verification On receiving a message (verify, sid, x, π) from FLNIZK:

if V(ĉrs, x, π) = > then
if x ∈ Q then

send (maul, sid, x, π) to FLNIZK

return (ok, sid, x, π)
else

return (witness, sid, E(ĉrs, ek, x, π))
end if

else
return (reject, sid, x, π)

end if

Lemma 4. F ′′′LNIZK in the FD′CRS-hybrid model perfectly UC-emulates FLNIZK.

Proof. We will show that SLSNARK interacting with FLNIZK perfectly simulates D interacting with
F ′′′LNIZK. The environment is presented with three types of actions it can do, as before. It can verify
proofs, prove statements, and query FD′CRS through D. We note that as SLSNARK perfectly simulates
the interactions between D and Z, the interaction with FD′CRS through D and through SLSNARK is
identical.

We note that when receiving a (prove, sid, x, w) query, F ′′′LNIZK and FLNIZK both return (proof, sid, x,⊥)

if (x,w) /∈ L. Otherwise, F ′′′LNIZK selects π
$← P̂(ĉrs, τ, x), while FLNIZK queries SLSNARK, which re-

turns a value from the same distribution (note that ĉrs, and τ come from the same distribution D′.
Further, both F ′′′LNIZK and FLNIZK add (x, π) to the set Π. In the query, SLSNARK adds x to the set Q.
At each update of Π, we note that the relation Q = { x | (x, π) ∈ Π } is preserved, and Π is equal
in F ′′′LNIZK and FLNIZK. We will revisit this invariant at each point Π is modified. Both FLNIZK and
F ′′′LNIZK return (proof, sid, x, π).

For (verify, sid, x, π) queries, we note that Π is identical in F ′′′LNIZK and FLNIZK, and that if
(x, π) ∈ Π, both return (verify, sid, x, π,>). Otherwise, FLNIZK queries SLSNARK. If V(ĉrs, x, π) = ⊥,
SLSNARK will return (reject, sid, x, π), and FLNIZK will return (verify, sid, x, π,⊥), as will F ′′′LNIZK. We
note that ∃π′ : (x, π) ∈ Π⇔ x ∈ Q. Therefore, if we consider the remaining cases, where (x, π) /∈ Π,
and V(ĉrs, x, π) = >, we have the cases that x ∈ Q and x /∈ Q in both functionalities. If x /∈ Q,
SLSNARK returns the witness E(ĉrs, ek, x, π), and if (x,w) ∈ L, adds (x, π) to Π. This still preserves
the relation between Q and Π. Both functionalities return (verify, sid, x, π, (x,w) ∈ L), and add
(x, π) to Π iff (x,w) ∈ L. If x ∈ Q, SLSNARK sends (maul, sid, x, π) to FLNIZK, which (since x ∈ Q),
permits the malleability and adds (x, π) to Π. Both will return (verify, sid, x, π,>).

Theorem 3. NIZK-SNARK(L) in the FDCRS-hybrid model UC-emulates FLNIZK.

Proof. By the transitivity of UC-emulation.

G Key-Private Forward-Secure Encryption

Lifting to a UC-Protocol A kp-fs-CCA-secure key-evolving encryption scheme induces the fol-
lowing protocol for realizing FFwEnc in the FKeyMem-hybrid model:

47

kp-fs-Enc is parameterized by ∆max, κ, and N , and operates in the FKeyMem-hybrid world,
where FKeyMem is parameterized by ∆max, and the following Update function:

function Update((sk , τ))
return (Upd(sk , τ + 1), τ + 1)

end function

On receiving a message (KeyGen, sid) for the first time:

Let (pk , sk0)
$← Gen(1κ, N).

Send (Init, sid, (sk0, 0)) to FKeyMem.
Erase sk0.
Record τ ← 0
return pk

On receiving a message (Encrypt, sid, pk , τ ′,m):

return Encpk (τ ′,m)

On receiving a message (Decrypt, sid, τ ′, c):

if τ ′ < τ then
return ⊥

else
Send (Get, sid) to FKeyMem, denoting the response as (sk τ , ·).
Compute sk τ

′
from sk τ .

Let m← Dec
skτ
′ (τ ′, c).

Erase sk τ
′

and sk τ .
return m

end if

On receiving a message (Update, sid):

Record τ ← τ + 1.
Send (Update, sid) to FKeyMem.

Protocol kp-fs-Enc

The Simulator We now give the simulator for which we will show UC emulation.

In addition to responding to FFwEnc, the simulator SFwEnc maintains a simulated FKeyMem,
through which it provides the adversary with (delayed) access to secret keys.
On initialization:

Let (pkdummy, ·)
$← Gen(1κ, N)

Record pkdummy

On receiving a message (KeyGen, sid, Up):

Let (pkp, sk0
p)

$← Gen(1κ, N)

Record pkp, sk0
p, and τp ← 0

Simulate sending (Init, sid, (sk0
p, 0)) to FKeyMem as Up.

return pkp
On receiving a message (Encrypt, sid, τ, Up, l):

Simulator SFwEnc

48

Let m
$← 0l

Let c
$← Encpkdummy

(τ,m)
return c

On receiving a message (DummyEncrypt, sid, pk , τ,m,Up):

Let c
$← Encpk (τ,m)

return c

On receiving a message (Decrypt, sid, τ, c, Up):

if Up’s secret key sk0
p is recorded then

Use Upd to derive sk τp .
Let m← Decskτp (τ, c)
Return m

else
return ⊥

end if

On receiving a message (Update, sid, Up):

Record τp ← τp + 1
Simulate sending (Update, sid) to FKeyMem as Up.

On receiving messages to FKeyMem from A: Forward these messages to the simulated FKeyMem.

UC Emulation

Theorem 4. If the underlying key-evolving PKE scheme is kp-fs-CCA secure then kp-fs-Enc UC-
emulates FFwEnc in the FKeyMem-hybrid world.

Proof. The points in which the simulator SFwEnc, combined with FFwEnc can behave differently
from kp-fs-Enc are in how they respond to various queries, and the internal state they maintain.
kp-fs-Enc maintains a public/private key pair for each party, which the simulator selects from exactly
the same distribution, and both return the public key, while storing sk0

p. Further, both initialize τp
to zero. As a result, for KeyGen-queries, the simulation is perfect. For update, while the simulator
does not call Upd on the secret key, this is merely because the call is deferred to the point where
it is used, in Decrypt. In both worlds however, τp is updating the same way, and matches the ideal
functionality’s τp value.

What remains is showing the correctness of encryption, decryption, and corruption queries. We
will reduce this to kp-fs-CCA security, by showing that if the environment can distinguish, we can
extract a kp-fs-CCA adversary with black-box access to the distinguishing environment, which wins
the kp-fs-CCA game with a non-negligible advantage. In both the real and ideal worlds, the public
and secret keys for U1, . . . , Un are sampled from Gen(1κ, N) – with in the real-world parties holding
their own keys, and in the ideal world, the simulator holding all. We note that while the dummy
key pkdummy exists only in the ideal world, and it’s corresponding secret key is never used, we
can assume it also exists in the real world, however remains entirely unused. Therefore as all (not
adversarially generated) key pairs are sampled the same in both worlds, we can extract this sampling
from the UC security definition – if all key pairs (pk1, sk1), . . . , (pkn, skn), (pkdummy, skdummy) are
sampled from the same distribution, and fixed in both the real and ideal executions, the real and
ideal distributions are indistinguishable with overwhelming probability. Given an environment Z
which can distinguish between the real and ideal world with non-negligible advantage, we can
therefore assume that it can distinguish between the real and ideal world, with fixed keys, with a
non-negligible advantage. We use Z to construct an adversary A in kp-fs-CCA game, and prove

49

that A has a non-negligible advantage. Specifically, A simulates running Z against the ideal world,
with the following modifications:

• The public/secret key pairs used by the simulator are supplied by A by programming the
random tape.

• A monitors all messages sent in the simulation, in particular messages to the ideal function-
ality from all parties.

• Since A does not hold parties secret keys, on a Decrypt query to the simulator, it posts a
decrypt(τ, c, Up) query, and return the response.

• We note secret keys are only used for decryption, as well as being handed to the (UC)
adversary upon corruption. When the simulator hands the keys to the (UC) adversary,

the (kp-fs-CCA) adversary posts a corrupt(τp + ∆max, Up) query to obtain sk
τp+∆max
p . While

FKeyMem at the time of corruption stores sk
τp
p , by assumption it will first apply ∆max updates.

• When the ideal functionality receives an (Encrypt, sid, pkp, τ,m) query, iff it does not reveal

m to the simulator, A queries challenge(τ, (Udummy, 0
|m|), (Up,m)), and returns c.

We begin by observing that this adversary does obey the rules of the kp-fs-CCA game. Specif-
ically, the conditions for the game are as follows: a) A challenge ciphertext is not queried for
decryption, and b) A party is not challenged after it has been corrupted. For a) challenge queries
are performed when an Encrypt message is seen, and due to the structure of FFwEnc, the challenges
will be for, at latest, the time τp + ∆max − 1. On corruption, the corrupt(k, Up) query is make with
k = τp + ∆max. As τp is monotonically increasing, and Encrypt is not called after corruption – and
therefore no further challenge queries are issued – the corruption is after all challenges. For b),
we note that on corruption, FFwEnc will no longer query the simulator with Encrypt queries for
this party, but only with DummyEncrypt queries. As challenge queries are only issued on Encrypt
queries, this party will not longer receive challenge queries.

Next, if b = 0, the execution perfectly matches a random ideal world execution with SFwEnc.
Specifically, if b = 0 the result of challenge(τ, (Udummy, 0

|m|), (Up,m)) = Encpkdummy
(τ, 0|m|). Further,

decrypt(τ, c, Up) = Decskτp (τ, c), i.e. all points in which A intervenes in the UC execution, the
execution is identical for b = 0.

Finally, we will argue that if b = 1, the statistical distance between the simulated UC execution,
and the UC execution of kp-fs-Enc is negligible. Honest parties perform four operations in kp-fs-Enc:
A one-time key-generation, encryption, decryption, and update. The keys are supplied in kp-fs-
CCA, and sampled from the same distribution as in the protocol. τ is initialized to 0 for Up upon
key generation in both the protocol and the simulator. In both cases, pk is returned, sampled from
the Gen algorithm. For encryption, regardless of whether Encrypt or DummyEncrypt is called by the
functionality, as challenge(τ, (Udummy, 0

|m|), (Up,m)) = encpkp(τ,m), the ciphertext will be sampled
from encpkp(τ,m), the same as in the protocol. For decryption queries, if it lies in the past, both
the protocol and functionality will return ⊥. The functionality will, if it supplied the ciphertext
itself, and the party is the intended recipient, return the corresponding plaintext. Otherwise it asks
the simulator for decryption, which in turn makes a decrypt query. We note that by contrast, the
protocol will always run Decskτp (τ, c). If a decrypt query is made, we know that – since the ciphertext
was not previously challenged (at least not with the same party and time slot) – the behaviour is
identical. Otherwise, we no by the correctness of the underlying key-evolving encryption scheme,
that with overwhelming probability, the decryption must return the same plaintext. For update,

50

τp is kept the same in the protocol and the simulated execution, by incrementing it. While the
secret key is not updated in the simulated execution, this update serves only to erase information
– something the simulator does not care about.

51

	Introduction
	The Model
	Tools
	Non-Interactive Zero Knowledge
	Key-private Forward-Secure Encryption
	PRFs with unpredictability under malicious keys
	Equivocal Commitments

	The Private Ledger
	Blinding for Forward-Secure Transactions
	Leakage for Leader-Based Protocols

	The Ouroboros-Crypsinous Protocol
	Ideal-World Transactions
	Protocol overview
	Real-world Transactions
	Interacting with the Ledger
	Transaction Validity

	Security Analysis
	Performance Analysis
	Hybrid World Functionalities
	The Simulator
	The Stage 1 Simulator
	The Stage 2 Simulator

	UC Specification of Ouroboros Crypsinous
	Party Initialization
	The Staking Procedure
	The Ledger Maintenance Procedure
	Submitting Transfer Transactions
	Submitting Generic Transactions
	Reading the Ledger State

	NIZK Statements
	Protocol Assumptions Encoded as a Wrapper
	Construction NIZKs via SNARKs
	Proof of UC-Emulation

	Key-Private Forward-Secure Encryption

