Developing individual differences in primate behavior

Citation for published version:

Digital Object Identifier (DOI):
10.1007/s00265-019-2633-8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Behavioral Ecology and Sociobiology

Publisher Rights Statement:
This is a post-peer-review, pre-copyedit version of an article published in "Behavioral Ecology and Sociobiology". The final authenticated version is available online at: https://doi.org/10.1007/s00265-019-2633-8

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Developing individual differences in primate behavior: The role of genes, environment and their interplay

Christoph J. von Borell a,b *, Alexander Weiss c,d, Lars Penke a,b

a Institute of Psychology, University of Goettingen, 37073 Göttingen, Germany
b Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
c Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
d Scottish Primate Research Group

*Corresponding author:
Christoph J. von Borell, Department of Biological Personality Psychology,
Georg Elias Müller Institute of Psychology, University of Goettingen,
37073 Göttingen, Germany
Phone: +49-(0)551-3920704
E-Mail: christoph.borell@psych.uni-goettingen.de
Abstract

As is the case for humans, it has long been thought that nonhuman primates can be described in terms of their personality. Scientific observations that support this view include the presence of individual differences in social behavior and that they are relatively stable throughout life. Consequently, individuals are constrained in their behavioral flexibility when dealing with various environmental challenges. Still, the variation among individuals during development suggests that the environment influences how primates behave. Research in fields including psychology, behavior genetics, and behavioral ecology have tried to identify the mechanisms responsible for this interplay of behavioral stability and change. In this review we integrate theories and findings from research on humans and nonhuman primates that highlight how and to what extent genetic and environmental contributions shape the development of social behavior. To do so we first provide an overview and define what is meant by mean level and rank-order change of behavior. We then review explanations of behavioral stability and change, focusing on the role of genetic effects, how environmental circumstances influence behavioral variation throughout development, and how genetic and environmental influences may interact to produce this variation. Finally, we point to future research directions that could help us to further understand the development of social behavior in primates from within a behavior genetics framework.

Keywords

Primate, Personality Development, Behavioral Plasticity, Behavior Genetics, Behavioral Development
Introduction

Teasing, helping, playing, working, learning – within our circle of acquaintances, for many social behaviors, we can think of individuals that fall somewhere between one or the other extreme of variation in any given behavior. Apparently, social behavior and social relationships among humans are influenced by individual characteristics. Research from the last four decades has shown that this applies equally to our closest relatives, the nonhuman primates (henceforth “NHPs”). But how flexible are these individual characteristics? Where do they come from? And can they be changed? In this review we elaborate on the development of individual differences in behavior by comparing findings on humans and NHPs with a focus on the genetic and environmental forces that influence development.

In NHP personality research, the data underlying the quantification of individual differences typically stems either from questionnaires, completed by people with good knowledge of the individual animals, counted behavioral observations, or individuals’ reactions to behavioral tests, where subjects encounter, for example, a setup containing novel objects or food items. Usually a variety of different behaviors are assessed, the correlations among behaviors are calculated and behaviors are grouped into summarizing dimensions using statistical techniques as factor analysis or principal component analysis. In humans, the investigation of such dimensions led to the formulation of the Five-Factor Model of human personality (Digman 1990), where differences among people can be summarized along the dimensions extraversion, agreeableness, conscientiousness, openness to experience, and neuroticism. The Five-Factor Model often serves as a reference point in NHP studies (see e.g. King and Figueredo 1997; Weiss et al. 2015) and analogues or variations of these factors have been found to a varying extent in different NHP species (Weiss 2017a).

The history of animal personality research and the different approaches used, whether by behavioral ecologists or comparative psychologists, have been reviewed elsewhere (Gosling
2001; Réale et al. 2007; Uher 2008; Koski 2011; Carter et al. 2013; Sih et al. 2015; Roche et al. 2016; Weiss 2017b). As such, we will not rehash this literature. Instead, we will focus on the development of behavioral variation among individuals. First, we will review the current knowledge about stability of behavioral differences on a phenotypic level and then proceed to a more detailed overview of the genetic and environmental contributions to behavioral stability and change. We hereby will follow the broad conceptual separation common to research in behavior genetics. Hence by “genetic effects” we refer to behavioral variation due to differences in the sequence of the DNA of individuals and by “environmental effects” we refer to all other influences affecting behavioral variation that are not caused by variation in the individuals’ DNA. Towards the end of our review we will also look at the interplay between genetic and environmental effects. The review will focus on findings from NHPs but will be complemented by findings from the human literature where appropriate, that is, if it provides additional insight.

Phenotypic stability over the lifetime

Do aggressive children grow up to be aggressive adults? To answer this and similar questions, we must distinguish between two types of behavioral stability or change. The first is an age-related metric called mean-level change, which refers to differences in the mean expression of a behavioral phenotype at different points in development. Mean-level change can be quantified with regression analysis where age (or different developmental stages, e.g., being an infant, juvenile, adult, etc.) is included as predictor of behavioral variation. Ideally, mean-level change is studied in a longitudinal design, with repeated measurements taken from the same individuals over time. The second is rank-order change, which is quantified by the magnitude of relative changes in behavior that occur among individuals within a population. It is independent of mean-level changes in absolute behavior. An example of a situation where there is little to no rank-order change would be if children who are highly aggressive relative
to their age peers become adults who are highly aggressive relative to their age peers. Rank-order stability (or change) of behavior may be quantified by two techniques. The first involves conducting a simple correlation among behavioral measurements from two time points. The second involves computing the repeatability coefficient, which is an intraclass correlation that is based on multiple measures per individual and which describes the proportion of total behavioral variance due to differences between individuals (Boake 1989; Nakagawa and Schielzeth 2010). If the variance within individuals (between different measurements) is zero, then repeatability equals one. If the total behavioral variance is solely due to variation within individuals, then repeatability equals zero. We illustrated the difference between mean-level and rank-order stability in Fig. 1.

Mean-Level Change

Knowledge of lifetime age effects on mean-level change in NHP personality stems especially from a study by King and colleagues (2008). They used cross-sectional data from chimpanzees that were divided into five age groups and found age-related differences in terms of lower extraversion and openness to experience scores, and higher agreeableness and conscientiousness scores, in older individuals. These results are corroborated by behavioral measurements from chimpanzees, where boldness and exploration tendency, which are related in their content to extraversion and openness, respectively, also appear to decline with age (Massen et al. 2013). Such a pattern could also be partly replicated in and transferred to orangutans by Weiss and King (2015), with the exception that in this species agreeableness is lower in older subjects. In common marmosets, females also tend to become less agreeable with increasing age, while both males and females become less inquisitive (Koski et al. 2017). The same pattern applies to older white-faced capuchin monkeys who are less agreeable and less open to new experiences as well (Manson and Perry 2013). So, although individuals are
rather stable in their average behavioral propensities in relation to each other, age-related
mean-level differences of behavior occur at the level of the population. Some age-related
patterns seem to be similar across species (e.g., declines in openness / inquisitiveness /
exploration tendency), while the development of agreeableness (indicating pro-social and
tolerant behavior) differs among them. The reasons for developmental differences among
species need to be clarified by future studies. Possible reasons for inter-species differences are
the differing content and structure of the personality dimensions or varying selection
pressures between species (Weiss and King 2015). In a sample of adult rhesus macaques
(Brent et al. 2013), age was largely unrelated to personality dimensions, indicating that mean-
level changes could be especially evident when changes over the lifetime or during early
development are considered. Concerning the latter, strong changes in age-specific behavior
have been reported that are tied to sex-specific life histories (Kulik et al. 2015a, b; von Borell
et al. 2016).

Rank-Order Stability

In adult NHPs, the rank-order stability of behavioral differences ranges from being moderate
(above r=0.3) to high (above r=0.5), and is statistically significant (e.g. King et al. 2008;
Weiss et al. 2011; Brent et al. 2013; Weiss 2015). High levels of stability are found most
often in studies that use ratings on questionnaires. Here, estimates of rank-order stability may
be as high or higher than 0.7 (e.g., Stevenson-Hinde and Zunz 1978; King et al. 2008; Weiss
et al. 2011). These estimates reflect the relative stability of average behavior of individuals,
that is, the consistency of displaying certain behavioral phenotypes accumulated across
situations (Weiss et al. 2009). If rank-order stability is calculated as repeatability of
behavioral measurements, the resulting repeatability coefficient is typically lower than in
studies using questionnaire ratings (e.g. Brent et al. 2013; Neumann et al. 2013; von Borell et
al. 2016), aligning closer to the meta-analytical mean repeatability of 0.37 measured across species (Bell et al. 2009). It must be noted though that differences in repeatability among non-aggregated behavioral measurements and aggregated questionnaire ratings could occur because averaging single ratings into broader dimensions, that is, into personality “factors”, “domains”, “dimensions”, or “components”, contributes to the stability of these measures (Rushton et al. 1983). During early ontogeny, the stability of individual differences is typically lower than in adults (von Borell et al. 2016) and may show substantial variation from year to year, which may in turn differ across personality domains (Stevenson-Hinde et al. 1980).

What do our measurements tell us about stability? And what do they not tell us?

The studies presented so far used questionnaire ratings or counted behavioral observations to assess the personalities of the individuals under study. They showed patterns of mean-level change in behavior and rank-order stability of individual differences in behavior that predominantly reflect variation on a year-wise or season-wise timescale. However, these approaches may not be sensitive to short-termed effects of the environment. As indicated above, questionnaire ratings accumulate impressions of an animal’s behavior across situations and therefore do not capture short-term interactions of behavior with environmental fluctuations. Some of the studies also rely on animals kept in captivity (e.g., living in zoos, as in King et al. 2008), which may limit the naturally occurring environmental variation for some species.

One possible means by which the influence of the environment on behavior could be tested is by continuously sampling behavioral observations in free ranging animals (von Borell et al. 2016). Yet, the fallacy of behavioral sampling is that observations, for example single
incidents of displaying aggressive behavior, are typically also aggregated over time to form a reliable estimate of individual propensities. Otherwise, rare coincidences, like a generally unaggressive individual showing a sign of aggression, could lead to unwarranted conclusions about a general behavioral tendency. Because naturally occurring observations of certain behaviors may be scarce, aggregation operates usually on relatively large time scales (e.g., year-wise or season-wise). Such aggregation limits the possibility of analyzing behavioral plasticity in response to the environment to long-term fluctuations, stable population differences, or permanent changes within populations (such environmental effects will be discussed in the following section). Whether there are developmental influences on short-term plasticity (i.e., reaction norms; Dingemanse et al. 2010) is thus often not assessed. This is despite the fact that it might be hypothesized that NHPs become, for example, less flexible in their behavior with increasing age. Examples from other species show that individuals may vary in their seasonal plasticity, that they are repeatable in such plasticity (i.e., temporally consistent in their rank-order of shown plasticity) and that the mean plasticity across individuals may decrease with age (e.g., in great tits; Araya-Ajoy and Dingemanse 2017). These findings of differences in plasticity are likely due to frequency-dependent costs or benefits leading to individually different behavioral strategies. Furthermore, such costs or benefits are likely to change with experience, leading to mean level changes in plasticity during ontogenic development (Wolf et al. 2008). The question of age-related variability in behavioral plasticity appears to be somewhat of a blind spot in the study of NHP behavioral development. To address this question requires studies that obtain repeated measurements of behavior-situation interactions within and across time intervals or that can calculate the effect of age on behavioral reaction norms in cross-sectional data. One way to gather these kinds of data is by means of behavioral tests that involve simulating situations that an animal may encounter in the wild (e.g., encountering a novel environment or object, confrontation with the vocalization of a predator). For NHPs in captivity behavioral tests have been developed to
assess behavioral variation among individuals (e.g., Uher et al. 2013; Staes et al. 2016). If such behavioral tests are conducted with environmental variation or transferred to the natural habitats of NHPs, this approach allows for a controlled collection of data that may be linked to short-term environmental fluctuations. For example, tests of social facilitation that compare behavioral responses to novelty when individuals are alone to when they are in a social context show short-term environmental effects on behavior (reviewed in Forss et al. 2017). In common marmosets, the latency to eat novel food is reduced in a social context, but only in juveniles, suggesting that individual age affects the strength of social facilitation (Yamamoto and Lopes 2004). Following these results, behavioral reaction norms of neophobia or exploration tendency with varying social contexts could be further tested in a longitudinal setting to assess the degree to which individual differences in reaction norms are stable throughout development, i.e., their rank-order stability. There are also examples of behavioral tests conducted with NHPs in the wild (e.g., playback experiments in Neumann et al. 2013; novel-object and novel-food tests in Arnaud et al. 2017). These could be paired with environmental information (e.g., current group composition, time elapsed since among-group conflict, etc.) to form behavioral reaction norms and tested for hypothesized age effects, preferably in a longitudinal design. Other possibilities would be to use data from continuous observations in a non-aggregated way or aggregating observations according to relatively short-term environmental fluctuations and analyze them via linear mixed effects models that can account for zero-inflated observations in the case of rarely observed behaviors (Zuur et al. 2009; Dingemanse and Dochtermann 2013; Brooks et al. 2017). Such an approach would be informative about relationships between behaviors, between individuals, (correlated) changes in behavior within individuals, and whether the interaction among behavior and environmental factors (plasticity) changes with age (Dingemanse and Dochtermann 2013).

For a “how-to” example of using the full potential of linear mixed models when analyzing behavioral observations of NHPs see Martin and Suarez (2017).
What do we know from humans?

Findings from research on human personality development are largely consistent with findings from NHPs. In terms of rank-order stability, humans become more stable throughout their lives, developing from moderate stability (approx. r=0.35) in behavioral differences during childhood to high stability (approx. r=0.70) during late adulthood (Roberts and DelVecchio 2000; Terracciano et al. 2006). Mean-level changes occur primarily during early adulthood, a time often marked by major changes in an individual’s environment and increased control over life-history decisions: After a period of decreased psychological “maturity” during early puberty (Denissen et al. 2013), humans typically develop towards a more mature and functional personality in that they become more agreeable, conscientious and show more emotional stability (Roberts et al. 2006; Donnellan et al. 2007). However, they also tend to become less flexible (Roberts et al. 2002).

Determinants of Plasticity and Stability in Behavior

Now that we know that behavioral variation among individuals is not fixed and that rank-order and mean-level changes occur in particular during childhood, adolescence, and young adulthood, the question remains how these changes can be explained. We propose to approach questions about behavioral stability and change using a behavior genetics framework, because it helps us to disentangle whether and how behavioral development is caused by environmental influences, genetic effects, or their interplay.
The rationale behind genetic effects on behavior is that variation in DNA sequences among individuals will lead to variation in their behavioral propensities. The extent to which genes influence a behavioral phenotype is measured with a population statistic “heritability”.

Heritability (or h^2) is the ratio of genetically influenced variance in a trait to the total variance of the trait in a population (Plomin et al. 2012; Johnson 2014). Heritability may also be calculated as the ratio of genetically influenced variance to the repeatable variance (as this “error-free” variance poses an upper limit to the heritability; Adams et al. 2012). A trait’s heritability may reflect additive genetic effects whereby the effects of variants of genes (polymorphisms) independently add up to shape the trait into a specific direction. This is known as narrow-sense heritability. A trait’s heritability may also reflect non-additive genetic effects whereby the interactions among different gene variants affect the expression of the trait. An example of this would be a dominant genetic variant (allele) that suppresses the effect of a recessive genetic variant at the same or different loci. The combined influence of additive and non-additive genetic variance is referred to as broad-sense heritability, which is denoted H^2.

To provide a general impression of how heritable personality traits are in NHPs, we calculated the median and range of published estimates of narrow-sense heritability across NHP species and studies (see Tables S1, S2 in the supplement). For personality factors we calculated a median heritability of $h^2=0.25$ and a range from 0.00 to 0.63 (based on the studies from Weiss et al. 2000; Fairbanks et al. 2004; Adams et al. 2012; Brent et al. 2013; Johnson et al. 2015; Latzman et al. 2015; Staes et al. 2016; Wilson et al. 2017; Inoue-Murayama et al. 2018). The heritability of single behaviors appears to be very similar, with a median $h^2=0.25$ and range of 0.11 to 0.91 (based on studies by Rogers et al. 2008; Fawcett et al. 2014; Hopkins et al. 2014, 2015; Johnson et al. 2015; Watson et al. 2015). Non-additive genetic effects may contribute a significant proportion to genetically influenced variance, leading to higher broad-sense
heritability estimates (H^2). Based on a study on orangutans we calculated a median H^2 of 0.69 (Adams et al. 2012). Published estimates of broad-sense heritability are, however, an exception, as this requires extended study designs including twins or a large number of full- and half-siblings (ibid.). Unfortunately for a developmental perspective, we do not know of longitudinal studies that published heritability estimates for a birth cohort across time. Nor do we know of cross-sectional estimates of heritability along different developmental stages. Hence, we cannot say whether the heritability estimates of personality traits, and thus influences relating to environmental factors, increase or decrease throughout development.

In humans the average heritability estimated from meta-analyses is a little higher than in NHPs, accounting for about 40% of variation (Turkheimer et al. 2014; Vukasović and Bratko 2015). Interestingly, estimates coming from family and adoption studies, that include only additive genetic effects, have an average effect size of 0.22 (Vukasović and Bratko 2015), which is close to the median effect size we calculated for narrow-sense heritability in NHPs. This percentage may rise to about 50% when only data from twin studies is considered (van den Berg et al. 2004; Vukasović and Bratko 2015) as these estimates reflect the broad-sense heritability. From a developmental perspective, we know that the heritability of personality tends to decrease with increasing age, dropping from roughly 75% during infancy and early childhood down to the above-mentioned estimate of 40% in later adulthood (Briley and Tucker-Drob 2017). Thus, in the period after birth, individual differences in behavior are largely influenced by genetic effects, with the role of environmental effects increasing with age.

The increasing role of the environment is also reflected in its contribution to the increase in the rank-order stability of personality (from $r=0.35$ in infancy to about $r=0.70$ in adults; see above), which can be explained by genetic or environmental influences. Here twin studies
find that the genetic contribution remains at a steady 35% during the lifespan, while the
environmental contribution increases to account for an additional 35% of rank-order stability
during development. This means that the stable proportion of behavioral variation is almost
entirely genetically influenced during infancy, but that the post-infancy stability increase is
almost entirely influenced by environmental factors (Tucker-Drob and Briley 2019).

Environmental Effects

Given the heritability estimates above, we can expect that environmental effects may
contribute to over 50% of behavioral variation in NHPs and about 50% in humans, varying
with the age of the individual. An important goal of personality and developmental studies
across disciplines has been to identify environmental factors that are capable of altering or
shaping behavioral differences among individuals. Here we review two broad categories of
well-studied environmental factors that influence developing behavioral differences: stressful
life experiences and the influence of maternal care and rearing conditions.

Stressful Life Experiences

Environmental stressors influence behavioral development during prenatal or very early life
stages. For example, low food availability is linked to higher prenatal maternal stress in
Assamese macaques, which leads to increased growth, but decreased motor skill acquisition
and reduced immune function in their offspring (Berghänel et al. 2016). Although this
evidence is circumstantial, life-history trade-offs such as these may extend to the development
of individual differences in related behavioral traits, for example a trade-off between playing
and growth (Berghänel et al. 2015). Fertility is also affected by low-quality early
environments with individual differences being linked to drought years in baboons (Lea et al.
2015). Next to the quality of the environment, effects of the dominance hierarchy have been
documented as a lasting stressor in NHP development. In chimpanzees, for example, maternal rank during pregnancy is not only related to the stress response of the mother, but also to the stress response of her dependent offspring, and especially males thereof (Murray et al. 2018). A relationship between maternal or individual rank and behavioral differences, and especially those relating to aggressive and fearful/bold behavior, has been shown for NHPs of different ages (e.g., French 1981; Bolig et al. 1992; Brent et al. 2013; von Borell et al. 2016). In an experimental manipulation, Kohn and colleagues (2016) showed that climbing up the dominance hierarchy was causally related to changes in social approachability and boldness. We can thus expect changes in the dominance hierarchy as a possible source of environmentally induced variation in personality development. Related evidence stems from a case of severe and selective tuberculosis infection in wild baboons, where the more aggressive individuals of a troop died at once, because they ate from a neighboring troop’s food resource that was infected. These deaths led to an overall more tolerant social style in the troop. While dominance interactions were concentrated among closely ranked individuals, high-ranking individuals were more tolerant of very low-ranking individuals. The latter finding was related to a disproportionately high number of reversals in the direction of dominance among individuals far apart in rank (Sapolsky and Share 2004). This is in line with the argument that high-ranking individuals can typically afford aggressive or displacing behavior due to agonistic support from other individuals (Silk 2002), which was apparently less the case in the newly stratified troop of baboons after the epidemic infection.

Although the quality of the natural environment and dominance hierarchies in social groups affect behavioral differences from early life on, new challenges arise around the time of maturation that drive behavioral variation. A prominent example in NHPs is the migration from the natal group to a new group (natal dispersal). Migration is typically accompanied by increases in mortality or injury rates, decreases in access to resources, and social costs, i.e.,
the loss of social ties or rank (Dittus 1979; Weiß et al. 2016). Following migration, male
rhesus macaques show more fearful and less physically aggressive behavior than before (von
Borell et al. 2016), which is consistent with findings from captive pigtailed macaques, where
individuals that are new to a facility are more cautious (Sussman et al. 2014). Migration may
also trigger rank-order changes in behavior, possibly reflecting different reactions or
strategies following migration. In the study of von Borell et al. (2016) this was reflected in
very low or even negative correlations among fearful behaviors measured in the year before
and after migration, despite their overall lifetime repeatability. In female rhesus macaques, the
birth of the first infant is a similar developmental milestone and is marked by a decreased
frequency of initiating social contacts outside of maternal kin (von Borell et al. 2016).

Maternal Influences and Rearing

Parental care and the quality of mother-offspring interactions are also known to affect the
development of individual differences in NHP behavior. Here we highlight some findings in
this literature. Interested readers are encouraged to refer to a detailed review of this literature
in this topical collection (Maestripieri 2018).

Differences in maternal style are typically described along the two dimensions protectiveness
and rejection, but may vary a little between NHP species, that is, maternal behaviors may also
load on three different factors in a factor analysis (De Lathouwers and Van Elsacker 2004).
Protectiveness and rejection have been linked to individual differences in behavior across
various age-stages in NHP development. For example, in an observational study of Japanese
macaques, infants of highly protective mothers showed lower levels of exploratory behavior
and interacted less with their group members. On the other hand, infants of mothers who
rejected them interacted more than average with other group members. These effects
diminished, however, over the course of development and were present mostly during early
infancy (Bardi and Huffman 2002). A stable effect of maternal style was reported by Bardi and colleagues (2015) who found that juvenile baboons that experienced more stress-related interactions with their mother during early life showed higher locomotor activity and cortisol levels during a stress test than individuals that experienced more affiliative mother-offspring interactions.

Such effects of parental care or mother-offspring interaction were further supported by experimental studies. An effect of maternal protectiveness on offspring caution was shown in vervet monkeys (Fairbanks and McGuire 1993). In this study maternal protectiveness was experimentally increased by introducing new males to some housing groups. Infants and juveniles of mothers from the “protective” condition showed higher latencies to approach a novel object, indicating increased caution. Approach latencies were highly correlated among mothers and infants but not among mothers and juveniles. These results indicate that a mixture of environmental and genetic effects contributed to the development of behavioral differences. Maestripieri and colleagues (2006) could not find an effect of maternal protectiveness on offspring behavior in rhesus macaques, but they did find that higher maternal rejection led to more solitary play in offspring. This effect did not differ between mother-reared and cross-fostered individuals, ruling out the possibility that this observation is simply driven by genetic similarity between mothers and their offspring.

A special case of maternal influence on behavioral differences is maternal deprivation or the disruption of maternal care. Rhesus macaques that spent their first year of life in total isolation showed hardly any positive social responses or activities afterwards and were also consistently fearful. Individuals who spent shorter periods of time in isolation showed a behavioral pattern similar to that of monkeys who spent a year in isolation, followed by highly individualized (adequate and non-adequate) adaptations to social situations,
presumably based on inherited individual differences and unique learning experiences (Harlow et al. 1965). Similar differences in the social response to short periods of isolation have been documented in free-ranging rhesus macaque infants (Berman et al. 1994). Here, increased short-term separations of mothers and their infants, which occurred when the mothers resumed mating, led to increased distress in the infants. Like the captive infants, described by Harlow and colleagues (1965), who were isolated for short periods, the free-ranging infants developed differing social responses to and after the separation events. Specifically, some infants reacted with social withdrawal and decrease of social play and others rather increased their social behavior like grooming. Differential responses to maternal separation or maternal style, whether marked by decreased or increased social behavior, have been linked with genetically inherited differences in stress responsivity (Clarke and Boinski 1995; Suomi 2004). Further studies of maternal separation in captivity, typically on hand-raised and later on peer-reared individuals, suggest temporally consistent increases in anxious, shy, and impulsive behavior in comparison with their mother-reared counterparts. These behavioral differences may extend to neglectful or abusive maternal behavior, when peer-reared females become mothers themselves (reviewed in Soumi 1997). More recent studies, albeit in a different species, show mixed results: while nursery-reared chimpanzees were reported to be less agreeable and more extraverted than their mother-reared counterparts (Latzman et al. 2015), a similar study of chimpanzees found no such differences between these groups (Martin 2005).

The effects of differential care appear to extend to scenarios were the intensity of human care varies. Young chimpanzees who experienced enhanced responsive care were less distressed and showed less disorganized attachment than chimpanzees who only received a minimal standard of care from human caregivers (van IJzendoorn et al. 2008). In addition to maternal style, maternal separation, and the amount of care, the time infants spend with conspecifics...
seems to affect personality development. For example, chimpanzees who as infants spent less
time with conspecifics were rated as being less extraverted later in life than individuals who
spent more time with conspecifics (Freeman et al. 2016).

Issues of causality

From a behavior genetics standpoint, non-experimental studies and non-genetically-informed
quasi-experimental studies cannot establish causal relationships between environmental and
behavioral variation. Although environmental effects can be separated in a controlled
randomized experiment (at the cost of decreased ecological validity), all other behavior-
environment correlations are likely influenced by genetic variation. As Johnson (2014) put it:

“The situation and the individual’s environmental history may set the stage and limit
the range of choice of action, but the individual’s genotype is involved both in the
actions taken and the individual’s presence in this situation in the first place. We
cannot understand development without taking this into consideration.”

Among the findings on stressful life events or rearing experience reviewed above,
experimentally separated environmental effects rely largely on captive NHPs, while in studies
conducted in the wild, environmental and genetic effects can be confounded. There are
several mechanisms of such confounding. Prominent examples include gene-environment
correlations (rGE) and gene-environment interactions (G x E), both of which will be
discussed below. The main message at this point is, that a neglect of genetic information can
lead to premature causal interpretations of the role the environment may play in behavioral
development (Briley et al. 2018). For example, the association between early adversity and a
faster life-history strategy that has been reported in NHPs, has received theoretical and
empirical support from the human literature as well, leading, for example, to earlier puberty
and marriage (see reviews by Belsky 2012; Del Guidice 2014). However, findings of life-
history embedded behavioral differences related to early adversity did not hold up in a study
design that included information of genetic relatedness based on pedigrees to control for genetic confounding. Mendle and colleagues (2009) found that the association among father absence and timing of first intercourse in humans was best explained by genetic risk factors that correlate both with father absence and early sexual activity, diminishing the role of the mere experience of an absent father. Likewise, decisions involving changes in the social environment, such as NHP dispersal, are known to carry a genetic component (Trefilov et al. 2000; Krawczak et al. 2005) that could also be correlated to behavioral differences. Also, relationships between rank and behavior may partly be affected by feedback processes entailing a genetic component, for example the interplays of aggressive behavior, which has a heritable component, and changes in the dominance hierarchy in male NHPs (Koyama 1970; Bernstein 1976). In humans, some studies on personality development try to test whether environmental effects are causal by including a control group. Examples can be found in studies on personality development during periods of spatial and social transformation in human adolescents or young adults: events like a high-school student exchange (Hutteman et al. 2015), studying abroad as college student (Zimmermann and Neyer 2013), graduation from high school (Bleidorn 2012), or forming a partner relationship (Neyer and Lehnart 2007) mostly trigger a development towards personality maturation compared to the control group, i.e., increases in conscientiousness, agreeableness and self-esteem, and a decrease in neuroticism. Going abroad was also related to increases in openness to new experiences. The inclusion of a control group is certainly an improvement over not including a control group, as it can be the case in related studies of NHP migration in the wild, where it is often difficult to gather a control group with similar characteristics and a similar sample size as the migrating individuals. Yet, in naturally occurring control group designs, such as the above-described human studies, the decision of whether to participate and the behavioral differences among individuals of the control and quasi-experimental groups may be influenced by common genetic effects. Even if both groups have been matched to be similar in their
behavioral characteristics prior to the environmental change, this change may only activate or amplify a genetic predisposition of a behavioral tendency, for example, being open to new experience that was already entailed in the decision of participating in this event.

In the human literature, the impact of individuals’ genetic background on behavior or (life-history) decisions (e.g., student exchange, marriage, etc.) led to the “first law of behavior genetics” that all traits are heritable (Turkheimer 2000). It follows that behavior-environment correlations cannot be interpreted as prima facie evidence of a causal environmental influence without considering that such associations are probably genetically mediated (Johnson et al. 2011; Johnson and Penke 2014; Turkheimer et al. 2014). Accordingly, calls for genetically informed designs in the study of behavior-environment associations have been pointed out in primatology (e.g. Adams 2014; Brent and Melin 2014) and psychology (Turkheimer and Harden 2014), that could control for a genetic basis of differences in the environment that individuals experience. For example, studies looking at the effects of migration on behavioral differences among individuals could control for the possibility that both share a common genetic basis. Briley and colleagues (2018) reviewed techniques that are capable of tackling questions of causality in longitudinal, and even cross-sectional, genetically informative data (i.e., data where behavioral outcomes and measurements of the environment are paired with information about relatedness or molecular genetic similarity among individuals). For example, in a quantitative genetic design, direction-of-causation modeling (DOC modeling) can be used to estimate the plausibility of a causal direction among an environmental and a behavioral measure. This approach involves comparing the proportion of variance attributable to genetic, shared, and nonshared environmental effects in the possible cause and outcome. If, for example, differences in maternal style have a large genetic component and causally explain behavioral differences among children, then a genetic component should be represented in the children’s behavioral differences as well. Comparing the fit of different
models with alternative directions of causality can help to assess the likelihood of a hypothesized cause-outcome-relationship (for details see Briley et al. 2018). In human female twins, DOC modeling showed that parental behavior was more likely the cause of psychological distress than psychological distress being the cause of parental behavior (i.e., the model specifying a causal relationship from parental behavior to distress had a better fit than the other way around; Gillespie et al. 2003).

Gene-environment interplay

As pointed out above, in observational studies, whenever a complex interplay among genes and the environment is present during development, separating the environmental and genetic sources of variance can be difficult (but still see Briley et al. 2018). In the case of gene-environment correlations (rGE), individuals evoke, pick, or create environmental experiences based on genetically influenced needs or preferences, or grow up in an environment that is influenced by genes they share with their parents (see, e.g., Scarr and McCartney 1983; Bleidorn et al. 2014; Weiss 2017b). Another possibility is that the impact of environmental experiences differs depending on individuals’ genetic backgrounds (e.g., a genetic risk or vulnerability; Moffitt 2005), which is termed gene-environment interaction (G x E). While heritability estimates tell us that the biological underpinnings of behavior cannot be ignored in developmental studies, they are less useful in helping us to understand the developmental mechanisms or processes behind emerging behavioral differences, as variance is here partitioned into being genetic or environmental, and so does not account for gene-environment interplay (Plomin and Bergeman 1991).

In some species, it is possible to conduct controlled experiments on developmental psychobiology that allow for a separation of genetic and environmental effects (e.g., by
breeding genetically identical individuals in identical conditions; Kain et al. 2012; Bierbach et al. 2017), but ethical and practical reasons mostly prevent scientists from applying these methods to humans or NHPs (Turkheimer 2000; but see experimental manipulations of rearing conditions presented above). Yet, there is no need for primatologists or psychologists to stop searching for the causes of development. Although we may not be able to causally reconstruct complex developmental pathways, we can test how genes and the environment correlate and interact in specific scenarios and how likely they are to shape behavioral development within the limits of such scenarios.

An example of NHP rGEs is the above-cited genetic influence on dispersal where genetic variation leads to different ages of migration from the natal group, that is, the encounter of a novel environment (Trefilov et al. 2000). Correlations among genes (or genetically influenced traits) and the environment are often referred to as “niche picking” or “niche specialization” (Johnson et al. 2009; Penke 2010; Stamps and Groothuis 2010; for evolutionary and mathematical formalization, see Montiglio et al. 2013). If we consider a developmental pathway where having more of some trait leads to a higher propensity to seek out a specific environment, which in turn affects the manifestation of that trait, then cross-sectional studies cannot distinguish between such bidirectional influences of genetic background and the environment (Kandler et al. 2012). If not explicitly modeled, the variation due to rGE will be confounded with genetic variance, although an environmental influence is entailed as well (Bleidorn et al. 2014). Genetically informed longitudinal studies, however, make it possible to test instantiations of rGE. In humans, Kandler and colleagues (2012) showed that genetic effects on personality traits, such as neuroticism or agreeableness, can explain variation in the likelihood of experiencing negative life events and that negative life events, in turn, have a (small) effect on personality development.
G x E effects on personality development can be detected by quantitative or molecular genetics methods. Quantitative genetic studies test whether differences in a phenotype between individuals are associated with information on their genetic relatedness (for example based on known pedigrees), while molecular genetic studies try to associate differences in a phenotype with a specific pattern of variation in DNA sequence among individuals. In behavioral genetic research, the latter’s emphasis is on trying to find associations between genetic variants at specific genetic loci and behavioral traits (candidate gene association study) or trying to associate a large number of variants that are spread across the genome with a behavioral trait (genome-wide association study, GWAS). In a quantitative genetics framework, Latzman and colleagues (2015) have shown that heritability estimates of personality dimensions vary among mother- and nursery-reared chimpanzees. Specifically, they found lower heritability estimates in nursery-reared individuals indicating that their atypical environmental circumstances at an early age led to a higher proportion of environmentally influenced behavioral variation among their traits. Results from humans also support interaction effects of rearing quality and genes. For example, Krueger and colleagues (2008) showed that the genetic influence on adolescent personality varied with the levels of regard they received from their parents. In particular, low levels of regard were associated with an increased environmental contribution to phenotypic variance. On a molecular level, many NHP studies have examined the interplay of environmental variation and candidate genes in their contribution to behavioral differences. These studies analyzed for example polymorphisms in genes such as 5-HTTLPR (Barr et al. 2004; Madrid et al. 2018), MAOA (Newman et al. 2005), and COMT (Gutleb et al. 2017), which often, but not exclusively, were reported to interact with differences in rearing condition (for a review see Rogers 2018).

In the molecular genetics area, studies of NHPs and humans used to be closely linked and shared a desire to identify the genetic underpinnings of behavioral or pathological variation by
testing the effects of candidate genes (see, e.g., Caspi et al. 2002, 2003 on G x E in humans, including MAOA and 5-HTTLPR variation affecting violence and depression, respectively).

However, meta-analyses and recent studies in humans that use samples that are several magnitudes larger in size and extensive genome-wide genetic information led to the conclusion that complex behavioral traits are unlikely to be substantially influenced by single genes (Munafò and Flint 2004; Plomin and von Stumm 2018; Sallis et al. 2018). That does not mean that genetic polymorphisms in single genes do not matter, but that their effects are usually too small to be detected with the sample sizes of earlier studies, and this is especially the case when they are modeled in interactions with environmental gradients. Reviews of human candidate gene studies show that many associations cannot be replicated across studies and in meta-analyses, and that the effect sizes of statistically significant associations in earlier studies were often inflated (e.g. Sanchez-Roige et al. 2018). These findings led researchers to conclude that the literature on associations among common variants in candidate genes and behavior, for both main effects and G x E interactions, is awash with false positive results (Sallis et al. 2018). Genome-wide association studies that explore associations of common genetic variants and behavior throughout the whole genome show that a large number of genetic variants (single nucleotide polymorphisms; SNPs) contribute to the heritability of complex traits, however with small effect sizes. Replicated SNPs typically explain less than 0.1% of the phenotypic variance (Munafò et al. 2014; Sallis et al. 2018). While many SNPs reported in candidate gene studies did not replicate in sufficiently powered GWAS (e.g., Chabris et al. 2012), many variants that met genome-wide significance levels that have been identified in GWAS could be replicated in large independent samples (>100,000 individuals; e.g., Okbay et al. 2016). These variants are spread broadly across the genome, including intragenic regions that do not code for proteins (Boyle et al. 2017; Sanchez-Roige et al. 2018). Additionally, extended study designs show that rare genetic variants that are not tagged in GWAS can contribute to individual variation in complex traits (Hill et al. 2018). While these
findings and conclusions stem from human studies, they are likely to apply to NHP studies as well (Munafò et al. 2014). That is not to say that all statistically significant results stemming from NHP candidate-gene or GxE studies are false positives. Some gene-behavior associations have replicated across populations, species, and behavioral measures (reviewed in Weiss 2017a; Rogers 2018). For example, variants in the arginine vasopressin receptor 1A gene (AVPR1A) appear to replicate across different samples of chimpanzees (Anestis et al. 2014; Hopkins et al. 2014; Staes et al. 2015; Wilson et al. 2017), bonobos (Staes et al. 2016) and common marmosets (Inoue-Murayama et al. 2018). However, the combination of small sample sizes and relatively large effects of reported genetic variants is similar to the early wave of human studies in the field of behavior genetics. It is thus probably worth retaining one’s skepticism about this literature. Reported effect sizes of replicated genetic variants in NHPs (e.g. given in Staes et al. 2015 and Wilson et al. 2017 for AVPR1A) are several magnitudes larger than most of the extensively studied candidate-gene variants and GWAS results in humans (see Sanchez-Roige et al. 2018 for a review). It is possible that the development and the social influences on behavioral variation among humans are more complex and thus less influenced by single genetic variants. Also, studies on captive NHPs provide a more restricted and controlled environment (e.g., controlled diet, less habitat variation), which might lead to stronger genetic effects. A recent study on the effects of variants in OXTR and AVP receptor genes (AVPR1A, AVPR1B) on behavior in rhesus macaques, however, failed to replicate previous results and showed only very small effects of the 12 SNPs that were examined (Madlon-Kay et al. 2018). Alongside the emerging consistency of findings that single genetic variants have only small effects on complex traits, Madlon-Kay and colleagues (2018) discuss other methodological difficulties, including missing control of genetic relatedness within the population and/or missing adjustment of p-values, that raise doubt about earlier positive results.
A promising avenue for matching smaller sample sizes with genetic information appears to be the use of polygenic scores, where genetic variants accounting for small effects are weighted and summed, creating a score for each subject that is a more powerful estimator of behavioral differences. Given a robust knowledge of genetic variants that contribute to behavioral differences in a species, polygenic scores can help relatively small samples to reach sufficient power to detect molecular genetic effects on behavior and be paired with environmental measures to assess G x E (Plomin and von Stumm 2018). For example, a polygenic score that predicts 10% of the variance in a trait only needs a sample size of 60 individuals to detect its effect with 80% power (ibid.). The problem for NHP studies is that, depending on the species, it might be impossible to gather a sufficiently large initial sample to identify genetic variants that are worth including in a polygenic score in the first place.

In the concluding lines of this section we want to provide a glimpse into the emerging field of epigenetics. Epigenetics refers to processes whereby environmental signals affect genetic variation by mechanisms such as DNA methylation or histone modification. Briefly, these environmentally induced mechanisms can lead to individual differences in gene transcription and expression, which can result in behavioral differences (Kaminsky et al. 2008). In baboons, for example, Runcie and colleagues (2013) found that different aspects of the social environment and social behavior (social connectedness, group size, and maternal dominance rank) interacted with the genotype by means of differences in gene expression along these environmental or behavioral gradients. This suggests that social behaviors, like grooming, are not only influenced by genetic variation, but also influence genetic variation. From an ontogenetic perspective, this means that genes are not destiny for the development of personality, but rather that the environment can alter the genetic tracks individuals are set on. The precise way in which epigenetic mechanisms function in relation to complex traits, as social behavior, is under current investigation (Hu and Barrett 2017). First evidence on the behavioral
level indicates, for example, the potential role of epigenetics in the stress response system and associated behavioral differences such as risk-taking or novelty-seeking (Laviola et al. 2003; Kaminsky et al. 2008; Canestrelli et al. 2016). Also epigenetic mechanisms in the domain of memory formation and learning (Duke et al. 2017) may transfer to behavioral differences among individuals. But until we have replicated evidence of epigenetic effects on behavioral traits, a degree of humility about these findings would seem appropriate (see also Cobben and van Oers 2016). In particular, epigenetic explanations centering on specific genes should be interpreted carefully, as associations among single genes and behaviors often do not replicate in studies of humans and NHPs (see above). Given the increasing general understanding of genome-wide DNA methylation patterns in humans and NHPs (Lea et al. 2016, 2018), the role of epigenetics in personality development could become an interesting area of future research (Trillmich et al. 2018).

Summary and Outlook

We can infer that behavioral differences among individual NHPs develop towards increasing rank-order stability and a pattern indicative of what has been described as a “mature” personality in humans (but see exceptions in Manson and Perry 2013; Weiss and King 2015; Koski et al. 2017). Whereas environmental influences on behavioral variation among individuals act in humans especially around the time of adolescence and young adulthood, behavioral variation in NHPs seems to already be affected early in life. Among these early environmental influences are stress-related variation in the natural environment, parenting style or rearing conditions. Later in life, migration or maternity during young adulthood may also affect personality development. As a complex interplay among genotype and the environment is likely, and the statistical power to detect even two-way interactions is low, current research is still far from disentangling the causal pathways that lead to behavioral differences. We propose that one possible way to peek inside this “black box” is to conduct
genetically informed longitudinal studies or to use cross-sectional DOC modeling (Turkheimer and Harden 2014; Briley et al. 2018). That said, studies have to be adequately powered if they wish to use these tools. Since statistical power often turns out to be a problem in NHP studies, one possible direction might be to identify polygenic scores for behavioral differences in relatively large samples of a species, for example in breeding facilities, and then to apply this knowledge to the typically smaller populations in the wild or in other captive settings, such as zoos or sanctuaries. This could enable one to conduct genetically informative studies without the need for pedigree data or could supplement studies with (partly) existing pedigree data. Furthermore, testing evolutionary hypotheses stating under which conditions correlations among behavioral differences will occur and how stable these correlations are under changing environments or selection regimes (see Sih et al. 2004; Dochtermann and Dingemanse 2013) could be a fruitful direction for primate personality research. An example would be to test whether environmental variation affecting food resources favors different behavioral strategies or correlations among behaviors that form behavioral syndromes (Dingemanse et al. 2004). Human studies could also be informed, or inspired by, the increasing knowledge of dominance rank and hierarchy effects on behavioral variation in NHPs.

Compliance with Ethical Standards

Conflict of interest

We do not have any potential conflicts of interest to report.

References

33

Fawcett GL, Dettmer AM, Kay D, Raveendran M, Higley JD, Ryan ND, Cameron JL, Rogers J (2014) Quantitative genetics of response to novelty and other stimuli by infant rhesus

Gosling SD (2001) From mice to men: what can we learn about personality from animal research? Psychol Bull 127:45–86

Harlow HF, Dodsworth RO, Harlow MK (1965) Total social isolation in monkeys. P Natl Acad Sci USA 54:90–97

macaques is influenced by the 5HTTLPR promoter polymorphism of the serotonin transporter gene 1. Biol Reprod 72:1109–1113.

https://doi.org/10.1095/biolreprod.104.038059

https://doi.org/10.1007/s10764-015-9853-1

https://doi.org/10.1007/s10764-015-9826-4

https://doi.org/10.1037/pspp0000040

Am Nat 185:809–821. https://doi.org/10.1086/681016

https://doi.org/10.1111/mec.13436

Figure Captions

Fig. 1 The difference between mean-level and rank-order stability

Scenario a): The rank-order of differences in aggressiveness stays stable between all four individuals throughout development, while the mean-level aggressiveness in the population increases with age.

Scenario b): The mean-level aggressiveness in the population stays stable throughout development, while the rank-order of aggressiveness changes between the four individuals over the years.
Figure 1