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1.  Introduction 

Tropospheric ozone (O3) is a major policy concern because it is an important pollutant that at 

elevated levels damages human health and vegetation (Monks et al. 2015). It is also an important 

radiatively active trace gas that contributes to climate change (IPCC, 2007). As a result, it is the focus 

of much policy-making activity, the aim of which is to reduce O3 levels and exposures to meet air 

quality standards, guidelines or criteria by reducing emissions of its precursors, oxides of nitrogen 

(NOx) and volatile organic compounds (VOCs). Sophisticated atmospheric chemistry models are 
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required to address the complex processes involving O3 and guide policy-making over the urban to 

global scales. 

While many of the policy-makers’ questions on surface ozone can be answered by ozone 

observations, there are many important policy questions that can only be answered by ozone 

models. The application of regional-scale air quality models in policy formulation to answer 

questions concerning reducing ozone levels by reducing precursor emissions, for example, goes back 

several decades. However, the application of global models to provide policy guidance on 

tropospheric ozone as a short-lived climate gas and on intercontinental ozone transport is relatively 

recent (HTAP, 2010). Establishing confidence in global models based on comparison with 

observations is currently hampered by the dearth of ozone observations. 

With the increase in computer power and availability, there has been a tendency to move away from 

searching for the optimum model and defining the uncertainty in the predictions at that optimum, to 

performing ensemble experiments. There are different uses of ensembles that could be envisaged 

within the O3 subject area, following the discussion and examples described by Beven (2007). The 

first is the use of ensembles to represent different scenarios of future conditions and this is the 

approach that has been widely used by the Coupled Model Intercomparison Project (CMIP) (Meehl 

et al., 2000; IPCC, 2007). The second use of ensembles is to explore the propagation of uncertainties 

due to input parameters and initial conditions and this approach is widely employed in numerical 

weather forecasting. The third use of ensembles is to characterise the model response across all 

model space by running a sample of all possible models and all plausible model input parameters as 

exemplified in the field of hydrology by Beven and Freer (2001). Ensembles are thus one way of 

addressing uncertainty, which is a major concern when it comes to O3 models, the subject of this 

study. 

Here we address those uncertainties within O3 models that can be dealt with in terms of random 

variations within model input parameters such as emissions and rate coefficients and their influence 



on the O3 burdens, atmospheric lifetimes and the surface O3 distribution. This inevitably leaves aside 

those uncertainties that result from a lack of process-level understanding. We address uncertainties 

due to model formulation alone by using the results from the Atmospheric Chemistry and Climate 

Model Intercomparison Project (ACCMIP) (Lamarque et al., 2013; Naik et al., 2013; Stevenson et al., 

2013; Young et al., 2013). The aim has been to make a first attempt to quantify the level of 

uncertainty in O3 model predictions. Further work will be required to understand whether or not the 

currently available observational database addressing is adequate enough to assess model 

performance and to give the required level of confidence in these predictions to policy-makers. 

2. Methodology 

The methodology adopted in this study aims at preparing a first assessment of the uncertainties in 

the outputs of current O3 models. We begin by describing the STOCHEM global Lagrangian 

chemistry-transport model to which we apply Monte Carlo (MC) uncertainty analysis to the model 

input parameters that control O3 precursor emissions and sources and sinks. Then we describe the 

ACCMIP model ensemble which we use to describe the uncertainties due to model formulation 

alone. Our focus is on the uncertainties in the tropospheric model estimates of O3 burdens, lifetimes 

and surface distributions. 

2.1 The STOCHEM model 

To address the uncertainties in O3 models due to model input parameter data, we have employed 

the global chemistry-transport Stochastic Chemistry (STOCHEM) model. STOCHEM uses a Lagrangian 

approach in which the atmosphere is divided into a large number (50 000 – 100 000) of air parcels 

which are advected every three hours by fine resolution winds from the Meteorological Office. A full 

description of the advection and dispersion processes in STOCHEM is given by Collins et al. (1997). 

The chemical mechanism in the original STOCHEM model named STOCHEM-OC was replaced with an 

extended chemistry (Common Representative Intermediates CRI v2-R5) and this version is named 

STOCHEM-CRI (Utembe et al., 2010; 2011). The original fine resolution meteorological data 



employed in the offline STOCHEM-OC and STOCHEM-CRI models were replaced in STOC-HadAM3 

(Stevenson et al., 2004) by multiple meteorological fields passed from the Meteorological Office 

Hadley Centre atmospheric climate model HadAM3 (Pope et al., 2000). The STOC-HadAM3 chemistry 

– general circulation model contributed to the ACCMIP model study. STOCHEM-OC was employed in 

the MC uncertainty analyses because of its faster run time. It utilised meteorological fields for 1995 

– 1998, close to the year 2000 of the ACCMIP simulations. 

Details of STOCHEM-OC are given elsewhere in Derwent et al., (2008) and the references therein. 

The chemical scheme includes 70 species that take part in 174 thermal chemical and photochemical 

reactions and utilises a time-step of 5 minutes. Emission fields for a wide range of man-made trace 

gases including CH4, CO, NOx and VOCs were taken for the year 2000. Vegetation emissions of 

isoprene (C5H8) were set at 500 Tg yr-1, lightning NOx emissions at 5.0 Tg N yr-1 and aircraft NOx 

emissions at 0.5 Tg N yr-1. The total emissions of methane from wetlands, tundra and rice paddies 

were set at 260 Tg yr-1. To achieve a situation approaching steady state for ozone, we utilised model 

experiments covering two years, with one-year spin-up and one full year to capture accurately the 

seasonal cycles in surface ozone. 

Since STOCHEM is a Lagrangian chemistry-transport model, we have access not only to standard  

gridded output fields of mixing ratios (at coarse resolution 5o x 5o x 9 levels) but also to the 

Lagrangian mixing ratios carried by individual air parcels. In this study, much of the analysis has been 

performed using these air parcel mixing ratios. At the end of each 3-h advection time-step, the trace 

gas mixing ratios held by all air parcels within a region defined by a solid angle of 1o radius around 

each location of interest were stored. When the model experiments were repeated having changed 

only the O3 chemistry, the air parcels took exactly the same paths through the model domain. 

However, each air parcel carried slightly different mixing ratios in response to the chemistry changes 

and these could be followed accurately through the MC uncertainty analysis.  

2.2 Description of the Monte Carlo analysis of uncertainties 



The MC analysis of model input uncertainties has three stages. In the first stage, the uncertainties 

are described in each STOCHEM-OC model input parameter. In the second stage, the uncertainty 

range in each model input parameter is sampled quasi-randomly and input values are assigned for 

all model input parameters for a particular STOCHEM-OC model run. In the third stage, the 

STOCHEM-OC model is run repeatedly a large number of times, with each run having a different and 

randomly selected set of input parameters. In this implementation, 98 runs of STOCHEM-OC have 

been completed, with each model run returning the O3 burden and atmospheric lifetime, together 

with the distribution of surface O3 and its seasonal cycle at three MBL stations. 

Table 1 presents the uncertainty ranges assigned to each model input parameter at the initialisation 

of each model run. Each uncertainty range describes the 1 – 99% (3-σ) confidence range for that 

parameter. The probability distribution within that range is generally taken to be equally distributed 

with parameter value on either side of the ‘best estimate’ (BE), that is to say, it has a ‘top hat’ shape. 

For some input parameters, the probability distribution has been assumed to be ‘Gaussian’ in shape, 

see Table 1. In all cases, the 3-σ confidence ranges and shapes have been assigned subjectively. 

Uncertainties in chemical mechanisms are important sources of uncertainty in global tropospheric 

ozone models. Chemical kinetic data evaluations (JPL, 2015; IUPAC, 2017) are important sources of 

information on the uncertainties in reaction rate coefficients and their pressure and temperature 

dependences, reaction product yields, absorption cross sections and quantum yields. However, they 

offer limited coverage of the many tens to hundreds of chemical processes represented in global 

tropospheric ozone models. In this study, chemical mechanism uncertainty is handled by assigning to 

each thermal rate coefficient and photolysis rate coefficient, an uncertain scaling factor in both the 

‘inorganic’ and ‘organic’ parts of the mechanism. These scaling factors are taken to be independent 

of each other and no attempt has been made to address any interactions between the uncertainties 

in particular rate coefficients that may arise through their laboratory determination or evaluation. 

We have assumed that each rate coefficient and photolysis rate coefficient has a 3-σ uncertainty 



range of ± 35% about their BEs (that is, nominally a factor of two uncertainty range). We based this 

subjective uncertainty range of close to a factor of two on the recommendation of the IUPAC 

Subcommittee (Atkinson et al., 2006) for poorly studied reactions. We have also chosen to represent 

the uncertainty in the rate coefficients only at 298 K and 1 atmosphere pressure and not separately 

treated uncertainties in temperature and pressure dependences. The IUPAC Subcommittee 

(Atkinson et al., 2006) recognised that rate coefficients become more uncertain under conditions far 

removed from 1 atmosphere pressure and 298 K but we were concerned not to make this initial 

study too complicated. We have chosen not to utilise the uncertainty estimates assigned by the 

IUPAC Subcommittee because these assignments do not provide comprehensive coverage of the 174 

thermal chemical and photochemical rate coefficients in our chemical mechanism. We have also not 

chosen to treat separately, over and above the factor of two uncertainty range, any dependence of 

uncertainty in solar zenith angle or stratospheric ozone column.  

It is widely accepted that there are important uncertainties associated with global emission 

inventories of tropospheric ozone precursors from both natural and man-made sources (see for 

example: Royal Society, 2008 and the references therein). In this initial study, it was not practical to 

quantify them in detail and so a highly simplistic approach was taken. A scaling factor was applied to 

each of the global gridded emission fields of NOx, CO, H2, CH4, HCHO, CH3OH, C2H4, C2H6, CH3CHO, 

C3H6, C3H8, CH3COCH3, C4H10, C5H8, C7H8, o-C8H10, SO2, CH3SCH3, CH3Br and NH3 at each point across 

the globe. These scaling factors were applied at the initialisation of each model run to the BE 

emission fields taken from Derwent et al. (2008) and were held constant throughout the model run. 

In this way, uncertainties were assumed to be constant throughout the model domain and 

independent of time of day and season, although the BE fields themselves were highly spatially and 

temporally variable. Uncertaintieis were also assumed to be independent of source category, 

whether man-made, biomass burning, from soils, from oceans or from natural sources.  The scaling 

factors were assigned a 3–σ uncertainty range of ± 30% about their BEs, see Table 1. Our 



representation of the emission uncertainties is necessarily rudimentary and merely provides a first 

rough approximation and guide to further more detailed studies in the future. 

At the global scale, O3 production and loss is controlled by two important meteorological 

parameters: temperature and water vapour concentrations and by surface deposition. A scaling 

factor was applied representing bias in the global gridded field of water vapour concentrations. We 

have assumed that water vapour bias concentrations have a 3–σ uncertainty range of ± 30% about 

the value calculated from the Met Office meteorological analyses. These scaling factors were 

assumed to be independent of location, time of day and season. Uncertainties in air temperature 

were handled by adding a fixed offset or bias term to the temperatures calculated from the Met 

Office meteorological analyses. This fixed bias had a 3–σ uncertainty range of ± 5 K and ‘Gaussian’ in 

shape and was again assumed to be independent of location, time of day and season. Uncertainties 

in deposition velocities for O3 and HNO3 were similarly treated using scaling factors which covered a 

3–σ range from 0.65 to 1.35 about the BE. 

Having described quantitatively the uncertainty ranges in each of the STOCHEM-OC model input 

parameters that control the O3 precursor emissions and the sources and sinks for O3, then each 

uncertainty range was sampled quasi-randomly and input parameters were chosen for each 

STOCHEM-OC model run. STOCHEM-OC was then run with this particular set of model inputs and the 

output results were stored. In this way, 98 runs of STOCHEM-OC have been completed, each with a 

different set of inputs, with each model run returning different O3 burdens, atmospheric lifetimes 

and surface distributions. Because the only changes made between the 98 runs were to the O3 

sources and sinks, the air parcels took exactly the same paths through the model domain and                                                                   

differences in the model results could be accurately discerned. 

2.3 ACCMIP models 

ACCMIP consists of a series of time-slice experiments targeting long-term changes in atmospheric 

composition between 1850 and 2100 (Lamarque et al., 2013). Our focus here has been on the results 



of the ACCMIP model simulations of tropospheric ozone and its precursors for the present day, 

which is taken as the year 2000 time-slice. The fourteen ACCMIP models have a wide range of 

horizontal and vertical resolutions, vertical extents, chemistry mechanism schemes and 

parameterisations representing interactions with radiation and clouds. Anthropogenic and biomass 

burning emissions, though not natural emissions, of O3 precursors were harmonised as far as 

possible, bearing in mind the different capabilities of the chemical mechanisms adopted (Lamarque 

et al., 2013). ACCMIP models and their predictions are described elsewhere (Lamarque et al., 2013; 

Naik et al, 2013; Stevenson et al., 2013; Young et al., 2013). 

In this study, we take the ACCMIP models and their ensemble to provide a reasonable, first attempt 

to quantify the likely uncertainties in O3 due to model formulation and structure, including the 

driving meteorological data or underlying climate model, process descriptions and parameterisations 

such as chemical mechanisms, whilst all other model inputs were harmonised within reasonable 

bounds. However, it should be recognised that ACCMIP is an ‘ensemble of opportunity’ and is not 

properly constituted to rigorously explore and quantify uncertainty. 

2.4 Seasonal cycles in tropospheric ozone at three marine boundary layer stations 

Policy-makers can reasonably expect that any model employed in their support is able to faithfully 

reproduce observations and this is the case for the global O3 models which are the subject of this 

study. Observational datasets for O3 have been authoritatively reviewed by Oltmans et al., (2006) 

and Cooper et al., (2014). Parrish et al., (2012; 2014) quantified O3 levels at eleven relatively remote 

northern midlatitude locations thought to be representative of continental to hemispheric scales. 

Parrish et al., (2016) compared the seasonal cycles at these locations with the results from three 

global chemistry-climate models. Derwent et al., (2016) selected three marine boundary layer (MBL) 

locations out of the eleven and provided a detailed comparison of the observed seasonal cycles with 

the results from the fourteen ACCMIP models. 



Three MBL O3 monitoring stations were selected for detailed study and comparison with the Monte 

Carlo and ACCMIP model results here: Mace Head Ireland, Trinidad Head California and Cape Grim 

Tasmania. Details of these stations and of their baseline records are given in Parrish et al. (2012) and 

Derwent et al., (2016). To accurately characterise the seasonal cycles in the observations and model 

predictions, sine curves were fitted through the monthly mean ozone mixing ratios (O3) using non-

linear regression software (NLREG, Sherrod, 1992) which returned five fitted parameters: Y0, A1, A2, 

φ1 and φ2, representing: 

O3  =  Y0  +  A1 sin( χ  +  φ1)  +  A2 sin( 2χ  +  φ2)                                  (1) 

where χ takes the values from 0 to 2π radians in covering one complete year from 1st January to 31st 

December, Y0 is the long-term annual average ozone mixing ratio, A1 and A2 are the amplitudes of 

the fundamental and second harmonics and φ1 and φ2 are their phase angles. In all cases the fits and 

the returned parameters were highly statistically significant. Sets of five parameters were 

determined for each set of observations for a given marine boundary layer (MBL) monitoring station, 

for each of the fourteen ACCMIP models using monthly average data and for each of the 98 

STOCHEM-OC Monte Carlo runs using the 3-hourly Lagrangian station data.  

3.  Uncertainties in global burdens and lifetimes for methane, carbon monoxide and ozone 

3.1 Monte Carlo replicates 

Ninety-eight MC runs were made with STOCHEM-OC and the results for a large number of output 

variables were collected and ranked in order to provide percentiles, means and standard deviations. 

The O3 burden was estimated for each run by summing the O3 number densities over the model 

domain and averaging over the last twelve months of each two-year model experiment. As more and 

more Monte Carlo runs were performed, the spread in the O3 burdens widened with increasing 

sample size. So as Figure 1 shows using box-and-whisker plots, the 2 – σ confidence ranges widened 

from 224 – 502 Tg for the first seven runs, for the first 14, 21 runs and so on, to 192 – 556 Tg for all 



98 runs. At the same time, the average O3 burden changed little from 363 Tg for the first seven runs 

to 374 Tg for all 98 runs. 

The O3 atmospheric lifetime was estimated for each MC run by dividing the O3 burden calculated as 

in the previous paragraph by the total O3 loss. The total O3 loss was estimated by summing six 

separate reaction fluxes over the model domain and over the last twelve months of each two-year 

model experiment. The six separate fluxes addressed the OH + O3, HO2 + O3, O1D + H2O, NO 

emission, N2O5 loss reactions and O3 dry deposition. The O3 atmospheric lifetime changed from 22.3 

± 5.1 days (where the quoted range is the 2 – σ or 95% confidence range) for the first seven MC runs 

to 23.0 ± 8.0 days for all 98 runs. 

On this basis, it was concluded that the O3 burdens and atmospheric lifetimes converged with 

increasing sample sizes such that convergence was achieved for sample sizes greater than about 20, 

well below the sample size of 98 actually employed. 

These convergence tests were then extended to the tropospheric burdens and atmospheric lifetimes 

for carbon monoxide (CO) and methane (CH4). The tropospheric burdens and atmospheric lifetimes 

for CO only converged for sample sizes greater than about 70, finally settling down to 374 ± 209 Tg 

and 53 ± 34 days, respectively. The tropospheric burdens and atmospheric lifetimes for CH4 

converged for sample sizes of about 30, midway between O3 and CO, finally settling down to 4620 ± 

460 Tg and 9.0 ± 4.6 years, respectively. 

Our results in terms of tropospheric burdens and atmospheric lifetimes for O3, CO and CH4 have 

shown a satisfactory degree of convergence with increasing sample sizes, up to the maximum of 98 

for this study. On this basis, these results should provide a first estimate of the likely uncertainty 

ranges in tropospheric model outputs, driven by uncertainties in O3 precursor emissions sources and 

sink processes. There are likely to be diminishing returns in carrying out many more MC runs in 

order to refine these outputs further. These conclusions are broadly consistent with those found by 



Hanna et al., (1998) in their application of MC uncertainty techniques to a large and sophisticated 3-

D urban airshed model. 

3.2 Comparison between the Monte Carlo runs and the ACCMIP ensemble    

STOCHEM-OC model estimates of the global CH4 burden ranged from 3970 to 5051 Tg, with an 

average of 4620 ± 460 Tg from the MC analysis. A frequency distribution of the CH4 burdens 

indicated a distinct skewness towards larger burdens. This average burden was in reasonable 

agreement with that from the ACCMIP models (Naik et al., 2013) which gave 4813 ± 162 Tg, see 

Table 2. Indeed, 40% of the MC runs gave estimates that were within the 2-σ confidence range of 

the ACCMIP models. However, this agreement is not a crucial test of STOCHEM-OC model 

performance because of the long CH4 atmospheric lifetime. The two-year STOCHEM-OC model 

experiments were not long enough to establish steady state behaviour and so these results were 

strongly influenced by the chosen initial CH4 distribution for the year 2000 which was taken from 

observations (Japan Meterorological Agency, 2012). The apparent agreement with ACCMIP merely 

confirms that the choice of initial set-up for CH4 and choice of the one-year spin-up and one-year 

model experiment represented a reasonable starting point in STOCHEM-OC.  Ideally, the Monte 

Carlo runs should have covered a minimum of ten years to ensure that ozone, carbon monoxide and 

methane should have reached some form of steady state. 

STOCHEM-OC estimates of the CH4 atmospheric lifetime should be largely free from the influence of 

the steady state behaviour since it is primarily controlled by the distribution of hydroxyl (OH) radicals 

in the troposphere. The model estimates ranged from 4.2 to 14.9 years, with an average of 9.0 ± 4.6 

years. The frequency distribution showed some evidence of skewness towards longer lifetimes. The 

average was well within the range of the ACCMIP models which indicated an atmospheric lifetime of 

9.7 ± 3.0 years (Naik et al., 2013), see Table 2. Indeed, over 80% of the Monte Carlo model runs gave 

lifetimes within the 2-σ range of the ACCMIP models. A scatter plot of the CH4 burden versus the 

atmospheric lifetime showed good correlation (R2 = 0.8). The average turnover corresponding to 



burden / atmospheric lifetime was 541 ± 228 Tg /year. This estimate corresponded well with the 

ACCMIP model estimate of 496 ± 154 Tg /year (Naik et al., 2013). The scatter plot showed some 

evidence of curvature towards long atmospheric lifetimes, indicating underestimation of the CH4 

burdens for those experiments that indicated lifetime in excess of 12 years. This reflects the choices 

made in fixing the model experimental duration at 2 years. 

STOCHEM-OC estimates of the CO burden ranged from 202 Tg to 643 Tg, with an average of 374 ± 

209 Tg. These estimates were comparable with those from the ACCMIP models of 323 ± 76 Tg (Naik 

et al., 2013), see Table 2. Over 70% of the MC model estimates lay within the 2-σ confidence limits 

of the ACCMIP models. CO atmospheric lifetimes ranged from 24 days to 113 days in the MC runs 

and showed an average lifetime of 53 ± 34 days. A scatter plot of CO burden against lifetime showed 

good correlation (R2 = 0.83) and an average turnover of 7.1 ± 1.7 Tg /day. 

STOCHEM-OC estimates for the O3 burden ranged from 205 Tg to 645 Tg, with an average of 374 ± 

182 Tg. A frequency distribution of the model estimates indicated a markedly skewed distribution 

favouring smaller burdens. These burdens were calculated up to 100 mb and so necessarily included 

some O3 that was in the stratosphere. Notwithstanding this, the average burden was in reasonable 

agreement with that from the ACCMIP models which indicated 337 ± 46 Tg for the troposphere 

alone (Young et al., 2013), see Table 2. About 40% of the MC runs gave ozone burdens that were 

within the 2-σ confidence range of the ACCMIP models. 

STOCHEM-OC estimates of the O3 atmospheric lifetime ranged from 15 days to 32 days, with an 

average of 23 ± 8 days. The frequency distribution of these model values was skewed, with a tail 

towards longer lifetimes. About 70% of the MC estimates lay within the 2 - σ confidence limits of the 

ACCMIP models consequently the STOCHEM-OC average was in agreement with that from ACCMIP 

of 22.3 ± 4 days (Young et al., 2013), see Table 2. A scatter plot of O3 lifetime versus burden showed 

reasonable correlation (R2 = 0.46) and a slope characterised by a turnover of 16.2 ± 6 Tg /day. Again, 



this agreed well with the ozone turnover of 15.1 ± 3.4 Tg /day from the subset of the ACCMIP 

models that provided production and loss diagnostics (Young et al., 2013).  

It is concluded from these simple comparisons of the global burdens and atmospheric lifetimes for 

O3, CO and CH4 that the averages of the MC estimates and of the ACCMIP models are in reasonable 

agreement, taking into account their 2 - σ confidence ranges, see Table 2. Generally, however, the 

standard deviations are somewhat smaller for the ACCMIP models compared with the MC estimates. 

This is only to be expected since the ACCMIP models used harmonised emissions data and differed 

mainly in their meteorological data and model formulations, including chemical mechanisms. In 

contrast, there has been a conscious effort to describe the uncertainties in the emissions, chemical 

kinetic and photochemical data employed in the STOCHEM-OC model using MC sampling, albeit with 

the same model formulation. 

4. Seasonal cycles in ozone at MBL stations 

The observed and model fitted seasonal cycles in O3 at Mace Head, Ireland are presented in Figure 

2a, showing the results for all 98 MC runs. As reported previously by Parrish et al., (2014), the 

observed seasonal cycle exhibits a spring-time maximum and a summertime minimum which can be 

accurately represented using a five parameter sine curve fit as described in section 2.4 above. In 

contrast, the STOCHEM-OC MC runs exhibited seasonal cycles that exhibited characteristically 

different behaviour as illustrated in Figure 2a with a tendency to show summertime maxima and 

wintertime minima. Long-term average Y0 values converged on 53 ± 21 ppb with increasing sample 

sizes beyond 50 out of 98, representing a significant overestimate of the observed baseline Y0 of 38.6 

ppb. 

Despite comprehensively addressing uncertainties in O3 precursor emissions and in sources and 

sinks, few of the MC runs predicted seasonal cycles that satisfactorily matched the Mace Head 

observations. Whatever the problems were with the STOCHEM-OC model at the Mace Head 



location, they could not be fixed by invoking uncertainties in O3 precursor emissions and sources and 

sinks. 

In contrast, the majority of the ACCMIP models caught accurately the main features of the observed 

seasonal cycle at Mace Head, Ireland and exhibited well characterised spring-time maxima and 

summertime minima, see Figure 2b. However, some ACCMIP models gave seasonal cycles that were 

distinctly different from the observations, showing summertime or wintertime maxima.  

Figures 3a and 3b present the observed and model fitted seasonal cycles in O3 at Trinidad Head, 

California. Both sets of model averages overestimated the observations but gave broadly similar 

shaped seasonal cycles. The observed maximum during April was accurately (within one day) 

predicted by the ACCMIP average but the MC average peaked two weeks later. The observations 

reached a minimum during July with the MC average reaching a minimum one week earlier and the 

ACCMIP average two weeks earlier. The observations exhibited a secondary peak during November, 

the timing of which was well predicted (within 6 days) by the MC average, though the magnitude of 

the maximum was grossly overestimated. The ACCMIP secondary maximum was also overestimated 

and was predicted to be one month too early. 

The observed and MC model fitted O3 seasonal cycles at Cape Grim, Tasmania are presented in 

Figure 4a. The observed seasonal cycle peaked at the end of August, recording 31.7 ppb and reached 

a minimum during January. The MC runs peaked over a month later and grossly overestimated the 

observed peak, reaching between 26 – 84 ppb. Each MC curve had a characteristically different 

shape to that of the observations which meant that the broad features of the observed seasonal 

cycle were not well predicted by the MC runs. Again, whatever the problems were with the 

STOCHEM-OC model at the Cape Grim location, they could not be fixed by invoking uncertainties in 

O3 precursor emissions and sources and sinks. 

The observed and ACCMIP model fitted O3 seasonal cycles at Cape Grim are presented in Figure 4b. 

Several of the ACCMIP models showed seasonal cycles that followed the observations closely with 



August or September maxima and December or January minima. The ACCMIP average peaked 17 

days later compared to the observations but accurately predicted the peak level to within ± 10 %.  

Looking in more detail at the values of the five fitted sine curve parameters, then the observed long-

term average ozone mixing ratio, Y0, at Mace Head was well predicted by the ACCMIP models 

whereas it was less well predicted by the MC runs. The observed Y0 for Trinidad Head was 

overestimated by both sets of model predictions. That for Cape Grim was generally well predicted by 

the ACCMIP models but less well predicted by the MC runs. The observed magnitudes of the 

amplitudes of the fundamental terms, A1, were well predicted by both sets of models at Mace Head 

and Trinidad Head. However, the ACCMIP members tended to underestimate the observed A1 at 

Cape Grim and the MC runs tended to overestimate it. The observed fundamental phase angles, φ1, 

were found to lie within the 2 - σ confidence ranges of the results from the ACCMIP models. 

However, at all three stations, these predictions spanned an exceedingly wide range of up to nine 

months. In contrast, the results from the MC replicates were generally tightly distributed but well 

away from the observed values at all three MBL stations. 

The observed amplitudes of the second harmonics, A2, were generally well predicted by both sets of 

model predictions. However, the ACCMIP predicted values again spanned a considerable range. The 

MC runs had difficulty reproducing the observed A2 at Trinidad Head. The phase angles of the second 

harmonics, φ2, were again generally well predicted by both sets of model predictions. Again, the 

ACCMIP predicted values spanned a considerable range and the MC runs had difficulty reproducing 

the observed φ2 at Trinidad Head. These results are generally consistent with those reported by 

Derwent et al., (2016), who compared the results of the these same ACCMIP models and the best 

estimate STOCHEM-CRI model run with the observations from these same three MBL stations. 

Despite comprehensively addressing uncertainties in O3 precursor emissions and in sources and 

sinks, none of the MC runs gave values of φ1 that matched the observations at any of the three MBL 

stations. We find it difficult to reconcile the good level of model performance shown by the MC runs 



for φ2 at Cape Grim with the poor level shown for A2 and φ2 at Trinidad Head. However, we could 

conclude that whatever the problems were with the seasonal cycle at Mace Head, Trinidad Head and 

Cape Grim in STOCHEM-OC, they could not be fixed by invoking uncertainties in O3 precursor 

emissions or production and destruction. 

The five fitted parameters obtained from the observations were found to fall within the respective 2-

σ confidence ranges calculated for the fourteen ACCMIP members for all three MBL stations. This 

forms a marked contrast with the situation found for the MC runs. The coverage of model 

formulation and structure issues, together with meteorological data, across ACCMIP must have been 

wide enough to ensure that at least one model performed satisfactorily for each of the fitted 

parameters and at each site.  However, it was readily apparent that the ACCMIP member that 

worked best for one of the five fitted parameters was not necessarily the best for another fitted 

parameter or for the same parameter at the other site. There was no single ACCMIP member that 

performed the best for each fitted parameter and site that could in some way be taken as indicating 

‘best practice’ in terms of model formulation and structure.  

5. Discussion and Conclusions 

We have applied the MC uncertainty approach (see Hanna et al., 1998 and the references therein) to 

make a first assessment of the uncertainties in one global tropospheric model arising from the 

uncertainties in O3 precursor emissions and in the chemical kinetic parameters describing O3 

production and destruction. Estimates of the 2 – σ confidence ranges about the average O3 burdens 

and atmospheric lifetimes converged with increasing numbers of MC runs, such that convergence 

was achieved well within the maximum sample size of 98. The chosen number of MC runs was thus 

found to be large enough to allow a first estimate to be made of the likely 2 – σ uncertainty ranges in 

tropospheric parameters. These conclusions applied also to the CO and CH4 burdens and 

atmospheric lifetimes. It was further concluded that there would be diminishing returns in carrying 



out many more MC runs in order to refine these outputs in terms of averages and 2 – σ confidence 

ranges. 

The MC estimates of O3 burdens of 374 ± 182 Tg were found to be comparable with those from the 

ACCMIP models of 337 ± 46 Tg, with the same conclusion found for the atmospheric lifetimes, 23 ± 8 

days from the MC runs versus 22.3 ± 4 days from ACCMIP. Generally, the 2 – σ uncertainty ranges 

were somewhat smaller for the ACCMIP models compared with those for the MC runs. This is only to 

be expected since the ACCMIP models used harmonised global emission fields and differed only in 

their meteorological data and model formulations whereas the MC runs covered a wide range in 

model inputs which addressed uncertainties is both global emissions and chemical kinetic data. On 

this basis, we conclude that a first estimate has been made of the likely uncertainties in the O3, CO 

and CH4 burdens and atmospheric lifetimes due to uncertainties in global O3 precursor emissions 

and in sources and sinks. These uncertainties are between factors of 2 – 4  times larger than those in 

model formulation alone as revealed by the ranges in the results from ACCMIP. 

It is widely accepted that some model input parameters are highly uncertain (Young et al., 2018), to 

the extent that the assumptions made here of a factor of two uncertainty range may underestimate 

the actual uncertainty. If global models were particularly sensitive to such parameters then this 

study would necessarily have underestimated the uncertainty ranges in the model output variables 

studied. In such a case then, the uncertainty range due to uncertain input parameters would be 

greater than that from the spread of different models. In general, when discussed, “model 

uncertainty” is determined from the spread of results from different models – i.e. uncertainty due to 

model formulation (e.g. Hawkins and Sutton, 2009; Young et al., 2013). Support for this has 

previously come from comparing the ensemble spread of CMIP5 (Coupled Model Intercomparison 

Project – Phase 5) climate models against perturbed physics and initial condition ensembles from 

single models, with the single model ensembles showing less dispersion than the multi-model ones 

(Yokohata et al., 2013). However, here there is a wider uncertainty range found for the STOCHEM-



OC (single model) ensemble compared with ACCMIP multi-model ensemble. This is likely due to the 

comparatively large parameter ranges explored in the STOCHEM-OC MC runs but this point should 

be revisited with other global chemistry models to see if their uncertainty range is also greater than 

a multi-model spread.   

The seasonal cycles in surface O3 were assembled from both the MC runs and the fourteen ACCMIP 

models for the 2000s time-slice and compared with the seasonal cycles at the three MBL stations. 

Detailed examination of the predicted and observed seasonal cycles was achieved by fitting sine 

curves through the seasonal cycles and determining five fitted parameters: the long-term average, 

Y0, and A1 and φ1, to define the fundamental and A2 and φ2 to define the second harmonic. These 

five parameters were determined for the available observations, all 98 MC runs and all fourteen 

ACCMIP members for the three MBL stations. A close examination of these fitted parameters 

showed that the broad level of agreement found in a cursory examination of the model output was 

illusory. That is to say, although the long-term average Y0 values were in reasonable agreement with 

the observed values, this was not always the case for the A1, φ1, A2 and φ2 values at each of the MBL 

stations. 

We found it difficult to reconcile the good level of model performance shown by the MC runs for 

some fitted parameters at some stations with the poor level shown by at other stations. Because the 

uncertainties applied to the BE runs were largely independent of time of day and season, it is 

possible that the MC runs would not produce strong changes in seasonal cycles at the MBL stations. 

However, although the perturbations were largely constant in time and space, they operated on BE 

processes describing ozone production and destruction that were highly variable both spatially and 

temporally. We therefore concluded that whatever the problems were with the representation of 

the seasonal cycle in ozone at the three MBL stations in STOCHEM-OC, they could not be fixed by 

invoking uncertainties in O3 precursor emissions and in the chemical kinetic parameters defining O3 

production and destruction. 



The observed values of each of the five fitted parameters were found to fall within the respective 2-

σ confidence ranges calculated for the 14 ACCMIP members. The coverage of model formulation and 

structure issues, together with meteorological data, across ACCMIP must have been wide enough to 

ensure that at least one model performed satisfactorily for each of the fitted parameters and at each 

site. All the features of the O3 seasonal cycles at the three MBL stations were achievable across the 

range of the ACCMIP members but they were not achievable within a single model. Consequently, 

we are unable to explain which features of the ACCMIP members led to good performance and 

which led to poor performance. 

A number of explanations have been considered for the poor performance of STOCHEM-OC in 

predicting ozone at MBL stations. There is the possibility that the chosen value for the deposition 

velocity of O3 to ocean surfaces may have been underestimated leading to an underestimation of 

deposition to the southern oceans which would particularly affect the predictions for Cape Grim, 

situated as it is on the western coast of Tasmania. Increasing the deposition velocity decreased the 

over-estimation in O3 but made no change to the shape of the seasonal cycles. Such an increase in 

the deposition velocity of O3 to the oceans would be contrary to current developments in the 

oceanic dry deposition of O3 (Luhar et al., 2017). There is a further possibility that a photochemically-

labile halogen species is emitted from the ocean surface and may destroy O3 photochemically 

(Dickerson et al., 1999). Making some plausible assumptions concerning possible ocean sources 

controlled by sea-surface temperatures again merely decreased the model overestimation without 

inducing noticeable changes in the shapes of the seasonal cycles. No further model experiments 

were performed to pursue these possibilities. 

A major uncertainty in the modelling of tropospheric composition lies in the transport of chemical 

species and its representation in current models (Orbe et al., 2016). Orbe et al., (2016) identify two 

approaches to reducing uncertainty in atmospheric transport either by using winds from 

meteorological analyses directly in a chemistry-transport model or by constraining the flow in a 



general circulation model. Both approaches were apparent in ACCMIP (Lamarque et al., 2013). In 

addition to the uncertainties associated with the use of analysed winds, there are additional 

uncertainties arising from the parameterisations used to represent deep convection, gravity wave 

drag and the atmospheric boundary layer (Lawrence et al., 2003; Doherty et al., 2005; Rind et al., 

2007; Orbe et al., 2016). Whilst a detailed examination of all of these issues is beyond the scope of 

this study, we note the importance of the uncertainties arising from the parameterisation of deep 

convection and why they may be of particular concern in the context of the present study of the O3 

seasonal cycles at MBL stations. 

In previous studies, Parrish et al., (2016) have noted the importance of the issue of the isolation of 

the marine boundary layer from the free troposphere in establishing the observed seasonal cycle in 

ozone at the surface. So, in particular above the Trinidad Head site in the altitude range from the 

surface to 3 km, the peak of the fundamental term of the seasonal cycle shifts from March to June, 

that is to say, φ1, decreases from about 0.5 to < -1 radians. In the STOCHEM-OC model, convective 

mixing wiped out the isolation of the marine boundary layer bringing the seasonal cycle of the free 

troposphere down to the surface model layer and giving a similar seasonal cycle over the 950 – 550 

mb layer. At the Cape Grim site, observed O3 peaks during August to September whilst O3 at an 

altitude of 2 km peaks during December – January implying a marked change in the ozone seasonal 

cycle in the lower troposphere. Again, this change is not reproduced by STOCHEM-OC, which 

accurately reproduced the seasonal cycle in the free troposphere but wrongly carried this all the way 

down the altitude profile to the surface. 

It is therefore possible that the different choices made of the parameterisations for deep convection 

within the ACCMIP models account for their inconsistent performance when evaluated against the 

observed O3 seasonal cycles. Furthermore, the parameterisation of convective mixing in STOCHEM-

OC may have led to an overestimation of mixing which has eroded the isolation of the marine 

boundary layer above both sites and thus hid the model’s real level of performance for free 



tropospheric O3. Further sensitivity experiments are thus called for across the range of tropospheric 

models employed for policy purposes to examine the importance of the parameterisation of 

convective mixing and its influence on the O3 seasonal cycle at MBL stations. 
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Table 1. Representation of the uncertainties in the STOCHEM-OC model input parameters in the 

Monte Carlo study of input parameter uncertainties. 

 

Input parameter Representation Range 

 

31 inorganic rate coefficients multiplicative scaling x 0.65 – 1.35 
11 RO2+NO rate coefficients multiplicative scaling x 0.65 – 1.35 
16 RO2+RO2 rate coefficients multiplicative scaling x 0.65 – 1.35 
8 RO2+HO2 rate coefficients multiplicative scaling x 0.65 – 1.35  
25 OH+VOC rate coefficients multiplicative scaling x 0.65 – 1.35 
8 photolysis rate coefficients multiplicative scaling x 0.65 – 1.35 
Temperature  additive ± 0 – 5 K  
Water vapour  multiplicative scaling x 0.65 – 1.35 
O3 dry deposition velocity multiplicative scaling x 0.65 – 1.35 
HNO3 dry deposition velocity multiplicative scaling x 0.65 – 1.35 
NOx emissions multiplicative scaling x 0.65 – 1.35 
CO emissions multiplicative scaling x 0.65 – 1.35 
H2 emissions multiplicative scaling x 0.65 – 1.35 
SO2 emissions multiplicative scaling x 0.65 – 1.35 
DMS emissions multiplicative scaling x 0.65 – 1.35 
ammonia emissions multiplicative scaling x 0.65 – 1.35 
CH3Br emissions multiplicative scaling x 0.65 – 1.35 
methane emissions multiplicative scaling x 0.65 – 1.35 
methanol emissions multiplicative scaling x 0.65 – 1.35 
HCHO emissions multiplicative scaling x 0.65 – 1.35 
ethane emissions multiplicative scaling x 0.65 – 1.35 
ethylene emissions multiplicative scaling x 0.65 – 1.35 
CH3CHO emissions multiplicative scaling x 0.65 – 1.35 
propane emissions multiplicative scaling x 0.65 – 1.35 
propylene emissions multiplicative scaling x 0.65 – 1.35 
acetone emissions multiplicative scaling x 0.65 – 1.35 
butane emissions multiplicative scaling x 0.65 – 1.35 
isoprene emissions multiplicative scaling x 0.65 – 1.35 
toluene emissions multiplicative scaling x 0.65 – 1.35 
o-xylene emissions multiplicative scaling x 0.65 – 1.35 

 

Notes:  

a. all assignments in this table are subjective;  

b. a scaling factor of unity represents ‘best estimate’. 

  



Table 2. Comparison of the burdens and lifetimes for ozone, carbon monoxide and methane from 
the Monte Carlo runs and from ACCMIP. 

Trace gas Monte Carlo runs ACCMIP 

 

ozone burden in Tg 374 ± 182 337 ± 46a 

ozone lifetime in days 23.0 ± 8 22.3 ± 4a 

carbon monoxide burden in Tg 374 ± 209 323 ± 76b 

carbon monoxide lifetime in days 53 ± 34  

methane burden in Tg 4620 ± 460 4813 ± 162b 

methane lifetime in years 9.0 ± 4.6 9.7 ± 3.0a 

Notes: 

a. Young et al., 2013 

b. Naik et al., 2013. 

  



 

Figure 1. Box-and-whisker plot of the uncertainty distribution of the O3 burdens found in the 

STOCHEM-OC Monte Carlo model runs with increasing sample size. The black squares show the 

average values, the grey rectangles show the 1 – σ confidence ranges and the whiskers the 2 – σ 

confidence ranges.   

  



 

 

Figure 2a. Seasonal cycles in ozone at the Mace Head, Ireland marine boundary layer station in the 

STOCHEM-OC Monte Carlo model runs (black lines) and in the observations (thick red line).  
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Figure 2b. Seasonal cycles in ozone at the Mace Head, Ireland marine boundary layer station in the 

ACCMIP models (black lines) and in the observations (thick red line). 
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Figure 3a. Seasonal cycles in ozone at the Trinidad Head, California marine boundary layer station in 

the STOCHEM-OC Monte Carlo model runs (black lines) and in the observations (thick red line).  
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Figure 3b. Seasonal cycles in ozone at the Trinidad Head, California marine boundary layer station in 

the ACCMIP models (black lines) and in the observations (thick red line). 

  



 

Figure 4a. Seasonal cycles in ozone at the Cape Grim, Tasmania marine boundary layer station in the 

STOCHEM-OC Monte Carlo model runs (black lines) and in the observations (thick red line).  
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Figure 4b. Seasonal cycles in ozone at the Cape Grim, Tasmania marine boundary layer station in the 

ACCMIP models (black lines) and in the observations (thick red line). 
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