Bmi1 facilitates primitive endoderm formation by stabilizing Gata6 during early mouse development

Fabrice Lavial,1 Sylvain Bessonard,2 Yusuke Ohnishi,3,6 Akiko Tsumura,3,7 Anil Chandrashekar,1 Mark A. Fenwick,1 Rute A. Tomaz,1 Hiroyuki Hosokawa,4 Toshinori Nakayama,4 Ian Chambers,5 Takashi Hiiragi,3,6 Claire Chazaud,2 and Véronique Azuara1,8

1Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College, London W12 0NN, United Kingdom; 2GREDE, Inserm U931/CNRS UMR6247, Clermont Université, 63001 Clermont-Ferrand Cedex, France; 3Max-Planck-Institut für Molekulare Biomedizin, 48149 Münster, Germany; 4Department of Immunology, Graduate School of Medicine, Chiba University, IST, CREST, Chiba 260-8670, Japan; 5Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH9 3JQ, Scotland, United Kingdom

The transcription factors Nanog and Gata6 are critical to specify the epiblast versus primitive endoderm (PrE) lineages. However, little is known about the mechanisms that regulate the protein stability and activity of these factors in the developing embryo. Here we uncover an early developmental function for the Polycomb group member Bmi1 in supporting PrE lineage formation through Gata6 protein stabilization. We show that Bmi1 is enriched in the extraembryonic (endoderm [XEN] and trophectodermal stem [TS]) compartment and repressed by Nanog in pluripotent embryonic stem (ES) cells. In vivo, Bmi1 overlaps with the nascent Gata6 and Nanog protein from the eight-cell stage onward before it preferentially cosegregates with Gata6 in PrE progenitors. Mechanistically, we demonstrate that Bmi1 interacts with Gata6 in a Ring finger-dependent manner to confer protection against Gata6 ubiquitination and proteasomal degradation. A direct role for Bmi1 in cell fate allocation is established by loss-of-function experiments in chimeric embryoid bodies. We thus propose a novel regulatory pathway by which Bmi1 action on Gata6 stability could alter the balance between Gata6 and Nanog protein levels to introduce a bias toward a PrE identity in a cell-autonomous manner.

Keywords: Bmi1; Nanog; Gata6; cell fate; early mouse embryo; stem cells

Received January 31, 2012; revised version accepted May 17, 2012.

During early mouse development, the transition from morula to blastocyst around embryonic day 3.5 [E3.5] marks the onset of differentiation into the inner cell mass (ICM) and trophectoderm (TE) [Jedrusik et al. 2008; Rossant 2008]. At this stage, the ICM is heterogeneous and composed of pluripotent epiblast and extraembryonic primitive endoderm [PrE] progenitors, as revealed by a “salt-and-pepper” distribution of the key epiblast [Nanog] and PrE [Gata6] markers at E3.75 [Koutsourakis et al. 1999; Chambers et al. 2003, 2007; Mitsui et al. 2003; Chazaud et al. 2006; Plusa et al. 2008; Silva et al. 2009]. Compartmentalization of two distinct expression domains for Nanog and Gata6 is then achieved by cell sorting and apoptosis and strictly delineates the newly formed epiblast and PrE lineages [E4.5] [Plusa et al. 2008; Meilhac et al. 2009]. These confined expression patterns are stably maintained in blastocyst-derived embryonic [ES] and extraembryonic endoderm [XEN] stem cells—two cell populations that retain the properties of the epiblast and PrE, respectively [Evans and Kaufman 1981; Martin 1981; Kunath et al. 2005; Rossant 2008]. Prior to blastocyst formation, however, Nanog and Gata6 are seen to overlap in most cells from the eight-cell up to the morula stage. This early expression pattern is also characterized by highly dynamic and variable protein levels among blastomeres [Dietrich and Hiiragi 2007; Plusa et al. 2008]. How Nanog and Gata6 segregation is triggered and how their expression is stabilized in the epiblast and PrE progenitors remain largely unknown.

Epigenetic factors have emerged as key regulators of cell fate decisions during early development [Torres-Padilla et al. 2007]. Among them, the Polycomb-repressive complexes PRC1 [Ring1A, Ring1B, Bmi1, and Mel18] and PRC2
that Nanog negatively controls in RCN control cells, (Fig. 1A; data not shown). While detected at low levels in uniquely identified as being expressed inversely to (Fig. 1A). Among the PRC members analyzed, EF4 ES cells maintained in self-renewing conditions (Chambers et al. 2003, 2007). Quantitative cally modified ES cell lines with distinct Nanog expres- Nantory pathway that underlies cell fate allocation during early development. This process mechanistically links Bmi1 to the lineage-specific transcription factors Nanog and Gata6.

We show that Bmi1 is repressed by Nanog in ES cells and highly expressed in extraembryonic endoderm ([XEN] and trophectodermal [TS]) stem cells where Nanog is not present. In vivo investigation of expression patterns by immunostaining and single-cell PCR analysis established that Bmi1 first overlaps with Nanog and Gata6 to then preferentially segregate alongside Gata6 in PrE progenitors. In the absence of Bmi1, PrE formation is severely impaired in a cell-autonomous manner, as demonstrated in vitro in chimeric embryoid bodies [EBs]. Critically, we demon- strate that Bmi1 physically interacts with Gata6 in PrE-derived XEN cells and controls its protein stability and resultant activity by inhibiting Gata6 ubiquitination and proteasome-mediated degradation. Collectively, these find- ings provide novel evidence to suggest how Bmi1 action on Gata6 stability could impact on cell fate decisions between epiblast and PrE lineages, most likely by altering the balance between Nanog and Gata6 protein levels in indi- vidual cells. Interestingly, Bmi1 also interacts with and maintains high Gata3 protein levels in TE-derived TS cells (Tanaka et al. 1998), suggesting a broader function for Bmi1 in extraembryonic lineage formation and/or maintenance.

Results

Bmi1 is a direct target of Nanog in pluripotent stem cells

To investigate a possible transcriptional link between Nanog and PRC members, we took advantage of genetically modified ES cell lines with distinct Nanog expression levels (Chambers et al. 2003, 2007). Quantitative RT–PCR [qRT–PCR | Chambers et al. 2003, 2007]. Performing knock-in GFP/Nanog reporter line [TNG] revealed that ES cells oscillate between Nanog-low and Nanog-high states, with Nanog-low cells being more prone to differentiate (Chambers et al. 2007). Using the same TNG reporter line, we checked whether Bmi1 was predominantly present in primed, Nanog-low ES cells. Immunostaining revealed a mosaic expression pattern for Bmi1 within ES cell colonies. As illustrated in Figure 1D, low levels of Bmi1 protein were detected in a manner mutually exclusive to GFP/Nanog signals. This was confirmed at the mRNA level in FACs sorted GFP/Nanog-low and GFP/Nanog-high ES cell pop-ulations [Fig. 1E]. In contrast to Nanog, Oct3/4 and Sox2 expression was equally high in both cell populations, high- lighting the undifferentiated state of sorted cells [Fig. 1F; data not shown]. Bmi1 transcript was consistently enriched in GFP/Nanog-low ES cells, with relatively lower levels being detected in the Nanog-high state [Fig. 1F]. These results indicate that Nanog dynamically regulates Bmi1 expression in pluripotent cells and further suggest that Bmi1 might be an early hallmark of differentiation.

Bmi1 is an early marker of extraembryonic endoderm cell commitment

Remarkably, however, Bmi1 was not up-regulated in all Nanog −/− RCN8 immortalized ES cells [n = 61/265] (data not shown), but instead was selectively detected in a subset of cells that coimmunostained for Gata6 [n = 58/61, P < 0.01, Wilcoxon test] (Fig. 1G). This confined expression pattern was con- firmed in tamoxifen-inducible Nanog −/− RCN8 iB6 ES cells, where Bmi1 and Gata6 were promptly and simultaneously induced upon Nanog depletion, followed by Gata4 and Dab2—two late markers of the PrE lineage (Supplemen- tal Fig. S2A; Yang et al. 2002, Capo-Chichi et al. 2005). Colocalization of Bmi1, Gata6, and Gata4 protein in
Nanog-depleted cells was verified by immunostaining (Supplemental Fig. S2B), further pointing to a close association between Bmi1 up-regulation and the acquisition of an extraembryonic cell identity. Consistently, we found that Bmi1 was highly expressed in XEN cells as well as in TS cells—two stem cell populations derived from the PrE and TE lineages that lack Nanog, in contrast to ES cells [Supplemental Fig. S3]. Taken together, these data demonstrate that Bmi1 is rapidly up-regulated in PrE-like cells upon Nanog depletion and suggest a role for Bmi1 in extraembryonic lineages.

Bmi1 favors PrE lineage emergence

To explore this function, we investigated Bmi1 expression profile alongside Nanog and Gata6 in the early developing embryo. Bmi1 is a maternally inherited factor that is highly expressed in cleavage stage embryos (Puschendorf et al. 2008). Consistently, Bmi1 protein was homogeneously detected in all blastomeres of four-cell stage embryos (Fig. 2A). From eight-cell up to the early morula stage (20 cells, E3.0), Bmi1 overlapped in most cells with the nascent...
Nanog and Gata6 protein (Fig. 2B; data not shown). This pattern was dynamically altered around cavitation (E3.25), when cell heterogeneity arose among blastomeres. In particular, we observed the emergence of a subpopulation of cells (14.6%) that coexpress Bmi1 and Gata6 but not Nanog (29- to 43-cell embryos; \( P < 0.0001 \), Wilcoxon test) (Fig. 2B,C). Bmi1 protein staining became noticeably weaker in the developing blastocyst (E3.5–E4.5) (data not shown) despite Bmi1 transcript being detected throughout (see below), possibly reflecting a change in Bmi1 post-translational modifications (Voncken et al. 2005). These data reveal a dynamic protein expression pattern for Bmi1 and confirm its close association with Gata6 in vivo.

**Bmi1 preferentially cosegregates with Gata6 in PrE progenitors in the developing blastocyst**

Single-cell PCR analysis was exploited to dissect RNA segregation events and further examine the relationship between Bmi1 and Gata6 expression during epiblast/PrE lineage specification. ICMs were isolated from blastocysts by immunosurgery and dissociated into single blastomeres. Embryos analyzed in these experiments were staged based on the average cell number scored among littermates. Bmi1 expression was then examined by qRT–PCR in each individual blastomere, alongside Gapdh, Gata6, Gata4, Nanog, and Ring1B (Fig. 3). In the early blastocyst (49- to 50-cell stage; E3.25), Gata6 and Nanog were expressed in most, if not all, ICM cells, with little variability between blastomeres (Fig. 3A, top panel). Mutually exclusive expression of Gata6 and Nanog emerged at the 75- to 91-cell stage (E3.5) (Fig. 3A, middle panel) and became more prominent at the 163- to 227-cell stage (E4.5) (Fig. 3A, bottom panel) (\( P < 0.05 \) at E3.5 and \( P < 0.01 \) at E4.5; Spearman test) [Fig. 3B], as previously reported (Kurimoto et al. 2006; Guo et al. 2010). At these developmental stages, Gata6 expression was correlated with Gata4 (\( P < 0.05 \) at E3.25 and \( P < 0.01 \) at E3.5 and E4.5; Spearman test), denoting PrE lineage emergence and establishment within the ICM. Bmi1 expression was similarly detected in almost all ICM cells of the early blastocyst (E3.25), and its expression was gradually restricted to Gata6-positive/Nanog-negative, presumptive PrE cells (Fig. 3A). Remarkably, at E3.5 and E4.5, Bmi1 expression exhibited a significant correlation with Gata6 (\( P < 0.01 \), Spearman test) (Fig. 3B). In contrast, the expression of another PRC1 component, Ring1B, did not correlate with Gata6 in the late blastocyst (E4.5). These results establish that Bmi1 preferentially cosegregates with Gata6 at the transcript level in nascent PrE progenitors during blastocyst development.

**Bmi1 is physically associated with Gata6 in extraembryonic XEN cells**

The observed association between Bmi1 and Gata6 prompted us to investigate a possible transcriptional cross-regulation between the two factors. Ectopically expressing Bmi1 in ES cells did not, however, impact on Gata6 expression. Conversely, Gata6 overexpression, carried out as previously described (Fujikura et al. 2002; Shimosato et al. 2007), only led to a slight increase in Bmi1 mRNA levels (data not shown), suggesting that no direct transcriptional cross-regulation operates between Bmi1 and Gata6. To test whether Bmi1 and Gata6 could be part of a same protein complex, Cos-7 cells were cotransfected with Gata6 and Bmi1, and cell lysates were subjected

---

**Figure 2.** Bmi1 protein expression profile in the early mouse embryo. (A) Bmi1 staining in a four-cell stage embryo as assessed by immunofluorescence. (B) Examples of Bmi1 staining alongside Nanog and Gata6 in eight-cell, 29-cell, and 40-cell stage embryos. The white arrow highlights an example of blastomeres coexpressing Bmi1 and Gata6 but not Nanog. (C) Counting of blastomeres expressing Bmi1, Gata6, and/or Nanog in 29-cell up to 43-cell stage embryos \( (n = 26 \) embryos, 493 cells). \( P \)-values were calculated using the Wilcoxon test.
to anti-Gata6 immunoprecipitation. Bmi1 was strongly coimmunoprecipitated with Gata6, as revealed by anti-Bmi1 immunoblotting, thus demonstrating that Bmi1 and Gata6 are indeed physically associated (Supplemental Fig. S4A). Importantly, we confirmed that endogenous Bmi1 and Gata6 protein can also be successfully coimmunoprecipitated with anti-Bmi1 (Fig. 4A, top panel) or anti-Gata6 (Fig. 4A, bottom panel) antibodies in XEN cells and furthermore found this association to be DNA-independent, as indicated by Benzonase treatment of the protein extracts (data not shown). In contrast, the Bmi1 paralog Mel18 failed to interact with Gata6 in parallel experiments, highlighting the specificity of Bmi1/Gata6 association (Supplemental Fig. S4B). As expected, Bmi1 could readily interact with other core PRC1 members expressed in XEN cells, including Ring1B and Cbx8 (Supplemental Fig. S4C, left panels). However, Gata6 was not detected in the same complex (Supplemental Fig. S4C, right panels), further suggesting that Bmi1/Gata6 interaction might not take place in a canonical PRC1 complex.

**Bmi1 stabilizes Gata6 protein levels and enhances its transcriptional activity**

Critically, we next demonstrated that Bmi1/Gata6 association directly impacts on Gata6 stability and degradation in PrE derivatives. In this analysis, XEN cells were stably transfected with two shRNA vectors targeting Bmi1 [Supplemental Fig. S4D,E]. Gata6 protein levels were assessed in control [XEN<sup>Control</sup>] and Bmi1 knockdown [XEN<sup>Bmi1KD</sup>] XEN cells cultured for 0, 1, 2, and 4 h in the presence of cycloheximide [CHX]. Without protein syn-
thesis, Gata6 protein levels gradually decreased in control cells, with little or no effect on Gata6 transcription [Fig. 4B; data not shown]. This trend was dramatically accelerated in the absence of Bmi1, suggesting that the Bmi1/Gata6 interaction protects Gata6 from degradation. In contrast, no such difference was detected in Gata4 protein decay (Fig. 4B), a factor that was not found to interact with Bmi1 by coimmunoprecipitation in XEN cells (data not shown). The addition of Gata6 and Gata4 protein was quantified using ImageJ software and normalized to Actin as shown in graphs. Error bars represent the SD of four biological replicates. Similar results were obtained using two independent shRNA vectors targeting Bmi1 in XEN cells [data not shown].

Figure 4. Bmi1 interacts with Gata6 and regulates its stability and activity in XEN cells. (A) Coimmunoprecipitation of Gata6 and Bmi1 proteins in XEN cells. Protein extracts were immunoprecipitated [IP] with control anti-IgG, anti-Bmi1 [top panel], or anti-Gata6 [bottom panel] antibodies and subjected to immunoblotting [IB] with anti-Gata6 and anti-Bmi1 antibodies, respectively. Three independent experiments were performed with similar results. (B) Gata6 and Gata4 stability assay in control [XENC] and Bmi1 knockdown [XENBmi1KD] XEN cells. Bmi1, Gata6, and Gata4 protein levels were assessed by immunoblotting in XENC and XENBmi1KD cells cultured with CHX for the indicated times. The amount of Gata6 and Gata4 protein was quantified using ImageJ software and normalized to Actin as shown in graphs. Error bars represent the SD of four biological replicates. Similar results were obtained using two independent shRNA vectors targeting Bmi1 in XEN cells (data not shown). (C, D) Same experiment as in B in the presence of the proteasome inhibitor MG132 (1 μM) and E1 ubiquitin ligase inhibitor PYR41 (1 μM), respectively. (E) Gata6 and Gata4 ubiquitination levels in XENC and XENBmi1KD cells. XENC and XENBmi1KD cells were cultured for 7 h in the presence of MG132. Protein extracts were subjected to immunoprecipitation with anti-Gata6 [left panel] or anti-Gata4 [right panel] antibodies, and the levels of multiubiquitination [Ub] were revealed by immunoblotting with anti-ubiquitin antibodies. Anti-Gata6 and anti-Gata4 immunoblots confirm the uniform recovery of Gata6 or Gata4 protein by immunoprecipitation across cell samples. (F) Gata6 reporter assay in XENC and XENBmi1KD cells. Both cell populations were transiently transfected with Gata6-dependent Hnf4 reporter, and luciferase activity was assessed 48 h post-transfection. Data were normalized to Renilla. Error bars represent the SD of three biological replicates. The P-value was calculated using the Student's t-test.

directly validated by comparing the levels of Gata6 multiubiquitination [Ub] in XENC and XENBmi1KD cells following proteasome inhibition. The absence of Bmi1 resulted in an increased accumulation of Gata6 ubiquitinated forms [Fig. 4E], which strictly mirrors its decreased protein stability (Fig. 4B). Gata4's ubiquitination status remained unchanged, as expected (Fig. 4E). Interestingly, Bmi1-mediated Gata6 stabilization also enhanced the transcriptional activity of Gata6, as assessed by luciferase assays using a Gata6-dependent Hnf4 promoter reporter [Morrissey et al. 1998] in XEN cells in the presence or absence of Bmi1 (Fig. 4F). Collectively, these results demonstrate that Bmi1/Gata6 association regulates Gata6 protein stability and enhances its transcriptional activity through the inhibition of Gata6 ubiquitination and proteasome-mediated degradation.
The C-terminal domain of Gata6 mediates its interaction with Bmi1 and ubiquitin-dependent degradation

In an attempt to establish which domain of Gata6 was critical for ubiquitin-dependent proteasome degradation, we next generated truncated Gata6 mutants lacking the C-terminal domain alone (∆CT) or including its zinc finger region (∆CTZF), where putative lysine ubiquitination sites are preferentially mapped [highlighted by asterisks in Fig. 5A]. Flag-tagged wild-type, ∆CT, or ∆CTZF Gata6 constructs were transfected into Cos-7 cells, and Gata6 protein decay and ubiquitination status were assessed as previously performed [Fig. 4]. Both deletions resulted in an increased Gata6 protein stability [Fig. 5B] and a reduced sensitivity to ubiquitination [Fig. 5C], identifying the C-terminal domain as being critical for Gata6 degradation via ubiquitination. Moreover, this domain was found to be equally important for Gata6 interaction with Bmi1, as demonstrated by coimmunoprecipitation assays [Fig. 5D]. Conversely, using a similar mutagenesis approach for Bmi1, we validated that Bmi1/Gata6 interaction is mediated via the Bmi1 Ring finger domain [Fig. 5E,F; Hosokawa et al. 2006] and furthermore demonstrated that an intact Bmi1 is required for enhancing Gata6 transcriptional activity [Fig. 5G]. Taken together, these results reiterate the functional importance of Bmi1/Gata6 interaction and further suggest how Bmi1 binding can confer protection against Gata6 ubiquitination and degradation, most likely by masking lysine residues in the Gata6 C-terminal domain from ubiquitin-conjugating enzymes.

Bmi1 promotes the emergence of PrE-like cells upon EB formation

The experiments described thus far show that Bmi1 cosegregates with Gata6 in PrE derivatives, where it interacts with and stabilizes Gata6 protein levels. This suggests an early developmental function for Bmi1 in regulating extraembryonic endoderm lineage formation that we investigated in ES-derived EBs. In this system, ES cells are induced to form aggregates in hanging drops, and differentiation is allowed to proceed over 5 d. During this time window, PrE- and epiblast-like cells first emerge in a salt-and-pepper manner [Rula et al. 2007]. They then segregate with the formation of an organized, outer PrE-like layer that coexists for Bmi1, Gata6, and Gata4, as visualized by immunofluorescence on day 5 EBs [Fig. 6A]. As previously reported, Nanog-overexpressing EBs were not capable of forming a proper outer layer [Chambers et al. 2003; Niakan et al. 2010], and this phenotype was associated with a loss of Bmi1 induction alongside Gata6 and Gata4 (data not shown).

To directly assess the effect of Bmi1 depletion on this process, Bmi1 knockdown ES cells were established by stable transfection with different Bmi1 shRNA vectors. These cells showed no increased incidence of differentiation when grown in self-renewing conditions [data not shown]. Importantly, Bmi1 knockdown was efficiently maintained upon EB formation, as assessed at the mRNA and protein levels [Fig. 6B; data not shown]. Here, we observed a pronounced defect on PrE-like cell differentiation in the absence of Bmi1. While Oct3/4 and Nanog were down-regulated in both control and Bmi1 knockdown EBs, the induction of the PrE markers Gata6 and Sox17 was impaired [Fig. 6B], with no proper outer layer organization [Fig. 6C]. This phenotype most closely resembles that of Gata6−/− EBs but differs from that of Sox17−/− EBs, in accord with Bmi1 action on Gata6 stability [Fig. 4; Koutsourakis et al. 1999; Fujikura et al. 2002; Niakan et al. 2010; Artus et al. 2011]. Moreover, and as shown in Figure 6C, only very few PrE-like, Bmi1-depleted cells emerged, and these cells expressed Gata4 protein alongside Gata6, further highlighting that the emergence of PrE-like progenitors, rather than their maturation, might be directly affected by Bmi1 depletion.

Bmi1 biases cell fate toward a PrE identity in a cell-autonomous manner

To assess whether the observed defect was cell-autonomous, we repeated these experiments and mixed control [ESControl] cells with Bmi1 knockdown [ESBmi1KD] ES cells to form chimeric EBs. Cells were first labeled by stable Gfp transfection followed by FACS sorting, and the GFP-labeled ESCControl or ES Bmi1KD cells aggregated with unlabeled ESCControl cells upon EB formation [Fig. 6D]. The fate of labeled cells was assessed based on their position within the EB structure [inner/outer], and the emergence of PrE-like cells was monitored by looking at Gata6 expression [Fig. 6E; Supplemental Fig. S5]. Remarkably, GFP-ES Bmi1KD cells were preferentially located within the inner part of EBs [P < 0.05, Student's t-test] [Supplemental Fig. S5A], in contrast to GFP-ESCControl cells, which appeared to be evenly distributed. This observation was consistent with a lower frequency of Gata6-positive, GFP-ES Bmi1KD cells detected in day 5 EBs as compared with controls [P < 0.005, Student's t-test] [Supplemental Fig. S5B]. Taken together, these results demonstrate a direct role for Bmi1 in cell allocation between a PrE- and an epiblast-like fate upon EB formation.

Discussion

In this study, we identify a novel role for the Polycomb group member Bmi1 in regulating cell fate choice between extraembryonic endoderm and pluripotent lineages (Fig. 7). We show that Bmi1 is readily detected in vivo in all blastomeres of cleavage stage embryos and overlaps with Nanog and Gata6 from the eight-cell stage onward. This pattern dynamically changes upon blastocyst formation, when Bmi1 becomes mosaic among ICM cells, preferentially cosegregating with Gata6 in nascent PrE progenitors. Critically, we demonstrate that Bmi1 controls Gata6 protein stability and its resultant activity by conferring protection against ubiquitination and proteasome-dependent degradation, as confirmed by Bmi1 knockdown in XEN cells. This effect is thought to be mediated through Bmi1/Gata6 interaction via the Bmi1 Ring domain, which could, in turn, alter Gata6 protein conformation and/or mask lysine residues in the Gata6 C-terminal domain from
Figure 5. The C-terminal domain of Gata6 is critical to trigger its ubiquitin-dependent degradation and interacts with the Bmi1 Ring domain. (A) Scheme depicting Flag-tagged Gata6 wild-type and truncated forms. Wild-type Gata6 (Wt) mouse cDNA was flagged, and mutants lacking either the C-terminal domain (ΔCT) alone or including its zinc finger region (ΔCTZF) were generated by PCR-based mutagenesis. Asterisks highlight the location of putative ubiquitination lysine sites in Gata6 protein. (B) Comparative protein stability assay using wild-type (Wt) and mutant Gata6 forms. Cos-7 cells were transiently transfected with wild-type, ΔCT, or ΔCTZF Gata6. Flagged Gata6 protein levels were assessed by immunoblotting following CHX treatment for the indicated times. The amount of Gata6 protein was quantified using ImageJ software and normalized to Actin as shown in graphs. Error bars represent the SD of three biological replicates. (C) Ubiquitination status of Gata6 mutant forms. Cos-7 cells were transiently transfected with Flagged wild-type, ΔCT, or ΔCTZF Gata6 and cultured for 7 h in the presence of MG132. (Top panel) Protein extracts were subjected to immunoprecipitation with anti-Flag antibodies, and the levels of Gata6 multiubiquitination (Ub) were revealed by immunoblotting with anti-ubiquitin antibodies. Anti-Flag immunoblots confirmed the efficient recovery of Gata6 protein following immunoprecipitation across cell samples. (D) Coimmunoprecipitation of Bmi1 and Gata6 mutant forms. (Bottom panel) Cos-7 cells were transiently cotransfected with Flag-tagged wild-type, ΔCT, or ΔCTZF Gata6 and Myc-tagged Bmi1, and protein extracts were immunoprecipitated (IP) with anti-Flag antibodies and subsequently subjected to immunoblotting (IB) with anti-Flag (recovery control) or anti-Myc antibodies to detect Bmi1 protein. (E) Scheme depicting Myc-tagged wild-type and truncated Bmi1 forms. (F) Coimmunoprecipitation of Gata6 and wild-type or ΔRing Bmi1. Cos-7 cells were transiently cotransfected with Gata6 and Myc-tagged wild-type or ΔRing Bmi1, and protein extracts were subjected to immunoprecipitation (IP) with anti-Myc antibodies (top panel) and immunoblotting (IB) with anti-Gata6 antibodies (bottom panel). Inputs and anti-Myc immunoblots confirmed homogeneous levels of different transfected forms. Three independent experiments were performed with similar results. (G) Gata6 reporter assay using wild-type and ΔRing Bmi1 forms. HEK293 cells were transiently cotransfected with Gata6-dependent Hnf4 reporter and wild-type versus ΔRing Bmi1 constructs, and luciferase activity was assessed 48 h post-transfection. Data were normalized to Renilla. Error bars represent the SD of three biological replicates. The P-value was calculated using the Student’s t-test.
Importantly, we establish that Bmi1 plays a cell-autonomous role in promoting the induction of the PrE lineage, as assessed in vitro in chimeric EBs. In the context of the early embryo, Gata6 and Nanog expression is first stochastic (Dietrich and Hiiragi 2007), and cell fate is thought to remain flexible (Yamanaka et al. 2010). We propose here that Bmi1 action on Gata6 stability could directly alter the balance between Gata6 and Nanog protein levels in individual blastomeres and thus impact on cell fate.

Figure 6. Bmi1 promotes PrE emergence in a cell-autonomous manner. (A) Coimmunostainings for Bmi1, Gata6, and Gata4 were performed on agarose-embedded and microsectioned EBs cultured for 5 d. (B) Relative transcript levels for Bmi1, Oct3/4, Nanog, Gata6, Gata4, and Sox17 as assessed by qRT-PCR in control [ESControl] and Bmi1 knockdown [ESBmi1KD] ES cells upon EB formation for 5 d. Data were normalized to S17 and L19 and expressed relative to undifferentiated ESControl cells. Error bars represent the SD of two biological replicates. (C) Coimmunostainings for Gata6 and Gata4 performed on EBs cultured for 5 d in the presence (ESControl; top panel) or absence (ESBmi1KD; bottom panel) of Bmi1. Bars, 20 μM. (D) Schematic of chimeric EB formation. GFP-labeled ESControl or ESBmi1KD cells were mixed with unlabeled ESControl cells [ratio 1/1–1/3] and allowed to differentiate for 5 d upon EB formation. (E) Coimmunostainings for GFP and Gata6 performed on chimeric EBs formed as described in D. The outer layer of the EB structure is denoted by dotted lines. Bars, 20 μM.
expression also leads to a reduction in Nanog levels by an unknown mechanism (depicted as a black dotted line). Bmi1 is a pleiotropic factor with roles linked to cell cycle regulation and cancer [Bruggeman et al. 2007; Grinstein and Mahotka 2009] as well as to the homeostasis of adult stem cells (van der Lugt et al. 1994; Molofsky et al. 2003; Park et al. 2003; Bruggeman et al. 2007). Our study unveils a previously unrecognized developmental function for Bmi1 [Puschendorf et al. 2008], acting as a key post-transcriptional regulator of Gata6, a factor essential for extraembryonic endoderm development both in vitro and in vivo [Koutsourakis et al. 1999; Lim et al. 2008]. Of interest, Bmi1 was also found to interact with Gata3 in TDE-derived TS cells (Supplemental Fig. S7A; Home et al. 2009; Ralston et al. 2010). Bmi1 depletion in TS cells notably led to a loss of stem cell identity accompanied by a rapid and drastic reduction in Gata3 protein levels (Supplemental Fig. S7B–E). This indicates that Bmi1 might regulate Gata3 protein expression in TS cells and suggests a broader role for Bmi1 in the formation and/or maintenance of extraembryonic lineages during early mouse development.

**Materials and methods**

**Cell culture**

Mouse ES, TS, and XEN cell lines were grown as previously described [Tanaka et al. 1998; Kunath et al. 2005; Alder et al. 2010]. For Nanog depletion, the RCN9f8HB cell line was treated with 1 μg/mL 4-OH-tamoxifen [Chambers et al. 2007]. Transfections were carried out using Lipofectamine 2000 [Invitrogen, 11668] following the manufacturer’s recommendations. For stable clone derivation, cells were treated 24 h post-transfection with puromycin [Sigma, p8833] at 1 μg/mL for 8–10 d. Clones were then pooled or picked individually, depending on the experimental design. EB formation was induced in hanging drops as previously described (Lavial et al. 2007).

**Antibodies**

Anti-Bmi1 (Millipore, F6), anti-Gata6 [R&D Systems, AF1700], anti-Gata4 (Santa Cruz Biotechnology, sc-9053), anti-Gata3 (D Systems, AF1700), and other factors were used as previously described (Lavial et al. 2007).
[Santa Cruz Biotechnology, sc-268], anti-Cdx2 [Biogenex, MUS92A-UC], anti-Nanog [Cosmobio, RCA 8000 2P-F], anti-ubiquitin [Bioul, FK2], anti-Ring1B [Active Motif, 39663], anti-Cbx8 [Bethyl Laboratories, A380-882A], anti-Mel18 [Abcam, ab5267], anti-GFP [Abcam, AB290], anti-MyC [Santa Cruz Biotechnology, sc-40], anti-Flag [Sigma, M2], and anti-Actin [Abcam, AB8227] were used. For immunoprecipitation experiments, anti-Gata6 [Santa Cruz Biotechnology, sc-9055] was used. For immunofluorescence, Alexa secondary antibodies were used [Invitrogen]. For immunoblotting and communoprecipitation experiments, mouse [Santa Cruz Biotechnology], rabbit [Santa Cruz Biotechnology], and goat [Dako] secondary antibodies were used.

**RNA expression analysis**

Total RNA was isolated using the Qiagen RNasy minikit and DNase I-treated. Samples were oligo(dT) reverse-transcribed using Invitrogen SuperScript III or M-MLV following the manufacturer’s recommendations and analyzed by qRT–PCR using Sigma Jumpstart SYBR Green. Primer sequences are available on request.

**Vector construction**

pLKO.1 vectors containing hairpins directed against Bmi1 cDNA were purchased from Sigma: shRNA vector 1 [CGCGCCACGCAA GTATTGCTTATATGCTGAGAATAGGCAAATCTTGTGCT GGT TTT TT] and shRNA vector 2 [CGCCGCTGAACATAAG GTGACGATAATCTGAGTATCTGTACATGTTTTT TTT]. The Bmi1 2.4-kb promoter was PCR-amplified on mouse ES cell genomic DNA using long expand Taq [Roche Biomedical, 11681834001] and Bmi1prom-F [5'-TCCCTGACAGACT GTTTTTC-3'] and Bmi1prom-R [5'-CGTAATAGCACCGGG GATT-3'] primers. Taq polymerase [Invitrogen 10342-020] was used to add adenosines and clone the fragment into pGEMTeasy (Promega, TM042). The Bmi1 1.9-kb promoter fragment was then subcloned into the pGL3 promoter [Promega, E1761] using MuII and BgIII restriction enzymes [New England Biolabs]. Mutations in the Nanog-binding site BS1 were inserted using PfuTurbo polymerase [Stratagene 600250], DpnII restriction enzyme [New England Biolabs], and Bmi1mut-F [5'-TAAATGTCTTGGC AGACGTCAATGTCTCAGCCGTATTAACGCGTATTTTTA GACAAACACTT-3'] and Bmi1mut-R [5'-AAAGTTAGATGCTTCT TAAAGATGCTCTTAATACGCGTACATGCTCTCG CGACCACAGATTTA-3'] primers. Gata6 cDNA was subcloned in the BgIII site of pSG5-Flag [Stratagene] using primers G6-F [5'- ATAGATCTACGGCTATGACGCCGGCCGACGACG-G3'] and G6-R [5'-AT AGATCTATCGACGGCCGGCCGGCCAGC-3']. Gata6 truncated forms were generated with primers ΔCTZF-F [5'- CCTGCTCG GAGACGCCCTGATAGCTGTGTACC-3'], ΔCTZF-R [5'-GG ACCAGATCTACGGCCGCTTCCGGACAGC-3'], ΔCTF-F [5'-GG AATCCTAACGCAAACGAATAAGTATGACTGTG TACC ACTA-3'], and ΔCT-R [5'-TGTTACAGATCCAGATCATATCTT TGGTACGGTTTGAATCC-3']. Recombinant lentiviruses were generated using a three-plasmid system in 293T cells. Stable lines were generated using Lipofectamine 2000 [Invitrogen, 11668-019]. Luciferase activity was assessed 48 h post-transfection using a Steadylite kit [PerkinElmer, 6016756] following the manufacturer’s recommendations. Transfection efficiency was corrected using GFP or Renilla levels.

**Immunoblotting analysis**

Cells lysis was carried out using RIPA buffer (50 mM Tris at pH 8, 1 mM EDTA, 0.5 mM EGTA, 1% Triton X-100, 0.1% sodium deoxycholate, 140 mM NaCl) supplemented with a protease inhibitor tablet [Roche Diagnostics, 11836153001]. Protein fractionation was performed using NE-PER kit [Thermo Fisher Scientific, 78833]. Protein concentrations of whole-cell extracts were measured using a Bradford assay [Thermo Fisher Scientific, 23225]. Thirty-microgram samples were loaded onto 10% acrylamide gels and blotted onto methanol-activated polyvinylide fluoride membranes [Millipore, IPFL00101] using a semidy or wet transfer system. Membranes were treated with enhanced chemiluminescent substrate [Thermo Fisher Scientific, 32106].

**ChIP and communoprecipitation**

ChIP was carried out as previously described [Alder et al. 2010]. For communoprecipitation experiments, 800 μg of cell protein extracts was precleared with protein A Sepharose beads [Sigma, P3391] for 2 h at 4°C and then incubated overnight at 4°C with the indicated antibodies. Protein A beads were then added for 5 h, washed with RIPA and TSE buffer (2 mM EDTA, 20 mM Tris at pH 8, 150 mM NaCl) four times, and loaded on either 7% or 14% acrylamide gels. Protein extracts were treated for 2 h at 4°C with 50 U of Benzonase [Merck, 71205] where indicated.

**Protein stability assay**

Cells were split, and 3 × 10^6 cells were plated back into 10-cm plates. On the following day, cells were treated with 100 μM CHX [Sigma], CHX plus 1 μM MG132 [Calbiochem, 474790], or CHX plus 1 μM PYR41 [Calbiochem, 662105] for the indicated times. Protein amounts were quantified using Image software and normalized to Actin levels.

**Ubiquitination assay**

Cells were treated for 7 h with 1–5 μM MG132, lysed in the presence of deubiquitination inhibitor NEM [Sigma, E3876], sonicated, and subjected to overnight immunoprecipitation with control anti-IgG, anti-Gata6, anti-Gata4, or anti-Flag antibodies. Protein G beads [GE Healthcare, 17-0618-01] were added for 4 h at 4°C, and the levels of ubiquitination were subsequently revealed by immunoblotting with anti-ubiquitin antibody.

**Immunofluorescence analysis**

Cells were seeded on gelatinized glass coverslips and fixed in PBS with 4% parafomaldehyde. Samples were permeabilized and blocked at room temperature before incubation with the indicated antibodies. Coverslips were mounted on VectaShield with DAPI [Vector Laboratories, H-1200] and examined using a Leica SP5 confocal microscope [40× or 63× lens]. Embryo immunostainings were performed as previously described [Chazaud et al. 2006]. EBs were fixed overnight in formalin at 4°C and embedded in agarose and wax. Five micromolar sections were used for stainings and observations on a Leica SP5 confocal microscope.
Embryo collection and staging for single-cell PCR analysis

BL/6xC3H F1 mice were bred naturally, and the embryos were recovered at E3.25, E3.5, or E4.5 by flushing either the oviduct or uterus. ICMs were isolated from blastocysts by immunosurgery and further dissociated into single blastomeres by pipetting in a solution of 1 mM EDTA dissolved in HBS after treatment with 1% trypsin (Sigma, T-4549) and 1 mM EDTA in HBS. Staging of embryos subjected to single-cell PCR analysis was defined as follows. Upon recovery, average-size embryos were selected for subsequent analysis, and the remaining littermates were fixed in PBS with 4% paraformaldehyde (Electron Microscopy Sciences, 19208) and stained in PBS with 10 μM DAPI (Molecular Probes, D3571) and 5 U/mL Alexa Fluor 633 or Alexa Fluor 564 phalloidin (Molecular Probes, A22284 or A22283, respectively). Images were acquired on a Zeiss LSM 510 META or 710 microscope and analyzed using IMARIS software (Bitplane). The total cell number of each embryo was counted, and an average cell number of littermates (excluding those with maximum and minimum cell numbers) was used to define the developmental stage of each embryo processed for single-cell PCR analysis. Experiments were performed in accordance with European Union guidelines for the care and use of laboratory animals.

Single-cell cDNA amplification

Single-cell cDNA amplification from each blastomere was performed as previously reported (Kurimoto et al. 2006). Briefly, single blastomeres were lysed in individual tubes without purification, and first strand cDNAs were synthesized using a modified poly(dT)-tailed primer. The unincorporated primer was specifically digested by exonuclease, and the second strands were generated with a second poly(dT)-tailed primer after poly(dA) tailing of the first strand cDNAs. The cDNAs were amplified by PCR first with poly(dT)-tailed primers and subsequently with primers bearing the T7 promoter sequence. The resultant cDNA products were used for further real-time PCR analysis. Primer sequences are available on request. Note that “spike” RNAs that consist of poly[A]-tailed RNAs artificially designed from Bacillus subtilis genes were added to each sample to define the developmental stage of each embryo and back again. The Spearman’s rank correlation coefficient was performed using GraphPad Prism 5. For statistical analysis, the Spearman’s rank correlation coefficient was used to perform a two-tailed correlation test with a significance level of p < 0.05.

Acknowledgments

We thank N. Brockdorff for the B1-TS cell line, J. Rossant for the IM9A1 XEN cell line, R. Guyot for the pSG5-Flag plasmid, and P. Ovando Roche for his technical assistance. H. Acloque, H. Jorgensen, M. Parker, T. Rodriguez, and all the members of the Epigenetics and Development group are acknowledged for discussion and/or critical reading of the manuscript. This work was supported by the BBSRC, Genesis Research Trust, FCT, Imperial College London, ARC, LNCC, ERC, DFG, and ministry of Education, Culture, Sports, Science, and Technology in Japan.

References


