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where �û �� ��x maxx L j  and �û �� ��y maxy L i , for 1... maxj j  and 1... maxi i . �ûx  and �ûy  
are the spacings between grid points in the x- and y-directions respectively. 

The length of the basin varies with time when the paddles are moving. To deal with this, the region 
governed by the Boussinesq equations is divided into two zones: the moving domain and the fixed 
domain. The moving domain is of variable length ib t  in the x-direction and fixed width, yL . At 

0t , all of the paddles are in the zero position, and the initial x-dimension of the moving domain is 
given by a fixed length, ( 0)ib t , herein referred to as 0b , which contains a fixed number of grid 

points, B , in the x-direction. The length of 0b , and consequently the value of B  is chosen 
depending on the problem under consideration. A similar approach is adopted to that of [20], whereby 

0b  is set to be approximately 10 times the maximum paddle sweep. 

When the paddles at the western boundary are in motion, the lattice of grid points that define the 
paddle domain stretches and compresses as the paddles move. In order to avoid re-meshing in this 
region at every time step, a transformation is used to map the moving grid onto a fixed computational 
grid to facilitate the solution of the governing equations. As the paddles are confined to the western 
edge of the tank and can only move in the x-direction, the mapping employed is a function of x only. 
Each moving row of grid points in the paddle domain is mapped onto a fixed row with points 
distributed evenly on the interval 1,1 , with spacing, �û �� �� ��x B . 

Figure 3:  Paddle domain transformation applied to the moving domain 

The initial length of the paddle domain is given by a fixed length, 0b . As the paddles move, each 
row, i, of the grid has a variable length 0

ii pb t b x t , where 
ipx t  is the paddle displacement 

time series for the i-th paddle. The transformation from the moving , ,x y t  domain to the fixed 

, ,x y t  domain, is based on the following linear stretching mapping: 

1 2 .ip

i

x x t
x

b t
  (10)  

Note that y y  and t t . Thus, , , , ,f x y t f x y t . The transformed basic derivative 
operators are derived by applying the chain rule, yielding 

2 1, , and 1 .i

i i

b t
x

x b t x y y t t b t t x
  (11)  

Higher order and mixed derivatives are obtained through careful combination of the above operators. 
Application of the transformation in (10) to (7), via the transformed derivative operators, results in the 
mapped Boussinesq equation set. Both sets of equations (the transformed set in the vicinity of the 
paddles, and the untransformed equations given by (7) in the rest of the Boussinesq domain), are 
solved numerically in the same way, as described in Section 3.2. 

3.2 Numerical solution of the Boussinesq equations 
3.2.1 Finite difference discretisation 
The Boussinesq equations are discretised using a second-order centred finite difference scheme. This 
involves a three point stencil for first and second derivatives and a five point stencil for higher order 
derivatives. The stencils for the spatial cross-derivative terms, 2 / x y , 3 2/ x y  and 

3 2/ x y , span three points in the x and y directions. 
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where the subscript ,i j  refers to the cell index, the superscript n represents the time level, �ût  is the 
time step, �ûx  and �ûy  are the grid spacings, and Ef , Wf , Ng  and Sg  are the fluxes through east, 
west, north and south faces respectively of each cell. 

Following [37], the MUSCL-Hancock predictor-corrector method is adopted to integrate the 
equations forward in time. This method achieves second-order accuracy in time and space. 

3.3.2 Boundary conditions for the shallow water equations 
If the eastern end of the basin is inundated, and the nonlinear shallow water equations are applied in 
this region, ghost cells are utilised beyond the eastern wall of the tank in a similar way as in the 
Boussinesq region. Given that the conserved variables are calculated at cell centres in the finite 
volume solver, the eastern boundary of the basin exists at the interface between cells, giving rise to 
the boundary conditions 

, 1 , , 1 , , 1 ,, , .i jmax i jmax xi jmax xi jmax yi jmax yi jmaxq q q q   (21)  

Similarly, the boundary conditions for the southern and northern boundaries of the shallow water 
domain are given by 

0, 1, 0, 1, 0, 1,

1, , 1, , 1, ,

, ,

, ,
j j x j x j y j y j

imax j imax j ximax j ximax j yimax j yimax j

q q q q

q q q q
  (22)  

where 1,switch dj B B . 

3.3.3 Wetting and drying 
The method described by Liang and Borthwick [37] is invoked where a wet/dry front exists towards 
the eastern end of the basin. In this approach to wetting and drying, the local bed slope is modified to 
avoid spurious flow in dry cells. In general, dry cells are excluded from the computational domain 
unless they are about to be flooded, i.e., if a cell is dry but has a bed level below that of a wet 
neighbour. The moving shoreline is thus automatically tracked by the finite volume solver. 

Following [37] and [40] any cell with water depth less than the critical value (generally 1mm for 
laboratory scale simulations) is automatically dried out and the fluxes set to zero. The small amount of 
water that was present is added to a wet adjacent cell to ensure mass conservation. In some cases, for 
example when the slope is steep, the model may predict that more water than is actually available will 
flow out of the cell of interest, causing a negative water depth. In this situation, the depth is set to zero 
and water is subtracted from the adjacent cell containing the most water, again ensuring mass is 
conserved. In both cases, the fluxes, xq  and yq  in the adjacent cell are adjusted to ensure the 
velocities remain the same as before. 

It should be noted that automatically drying out cells with water depths below a critical value results 
in a shoreline position that differs from the theoretical shoreline. Antuono et al. [41] show that in 
depth-averaged models that incorporate a Chézy-type frictional formulation, where 0fC  the 
difference between the theoretical and fictitious shorelines grows linearly with time. This is due to the 
generation of a thin layer of water on the beach face which has a weak influence on the water 
dynamics in this area. 

3.4 Wave breaking and the interface between the Boussinesq and shallow water 
domains 
The 2DH model implements the enhanced Boussinesq equations (7) pre-breaking where the modelled 
free surface is smooth. The nonlinear shallow water equations (5) are applied to shoaling waves, 























Figure 19 presents plots of the predicted free-surface profile at four different times, showing the 
evolution of the focused wave group as it propagates up the beach. The red line indicates the paddle 
position, while the dashed green line represents the switch point between the governing Boussinesq 
(BE) and nonlinear shallow water (NSWE) equation sets. The switch point is determined by 
calculating the local slope of the water surface (Equation (23)). In this case, the switch point is set to 
one quarter of a wavelength offshore of the most offshore location where the threshold slope of 0.4 is 
exceeded. The wavelength of the wave where the slope threshold is exceeded is determined by a 
down-crossing method. 

Figure 20 compares the experimentally measured and numerically predicted free surface elevation 
time series at 6 wave gauge locations along the basin centreline. Leading waves in the wave group are 
predicted to very high accuracy across all the wave gauge locations. In the deeper water, before the 
waves break, the numerical model under-predicts the amplitude of the central wave crest, and over-
predicts the troughs either side, in particular the trailing trough (see Figures 20a and 20b). The wave 
breaking location, and the propagation of broken waves is predicted with reasonable accuracy. A 
slight phase lag in the propagation of the third and fourth bores can be seen in Figures 20c to 20f, 
where the numerically predicted bores appear to travel slower than the waves observed in the 
laboratory. In general, the mismatch between the numerical prediction and the experimental data 
mirrors that reported by Orszaghova [20] for the one-dimensional model, and may be attributed to 
limitations in the underlying shallow water equations. The speed of propagation (phase speed or 
celerity) of linear surface gravity waves in shallow water /10kh  is given by c gh ; 
however research has shown that this shallow water approximation under-predicts the observed phase 
speed of waves in the surf zone in both field observations (e.g. [59], [60], [61]) and laboratory 
experiments (e.g. [62], [63], [64]). Several researchers (e.g. [12] and [13]) have used a modified 
shallow water approximation of the phase speed in the surf zone given by c a gh , where a is a 
constant to be determined and typically has a value of 1.3a . This value is consistent with surf zone 
measurements made in the laboratory by [63]. 

Figure 21 presents space-time plots of the wave group as it propagates up the beach. Presentation of 
the data in this way allows an overall comparison to be made between the numerical prediction and 
the gauge data. The central crest (shown in yellow) and the troughs on either side (dark blue) are 
clearly visible. Dispersion is evident as the wave group propagates up the beach, and breaking can be 
identified in the numerical x t  plot by a sharp drop in amplitude at 15.5x  m for the central crest, 
and at 13.5x  m for the trailing crest. This feature is more difficult to see in the x t  plot of the 
experimental data due to the low resolution, but in general there is good agreement between the two 
datasets. Overall, the numerical model performs well, capturing the evolution of the wave group from 
the paddle face through to wave breaking and formation of bores. 

Figure 20:  WG1 - Crest-focused uni-directional wave group time series in the UKCRF: 
Comparison between measured wave gauge data (thick grey line) and numerical prediction (red line) 
at selected gauge locations 

Figure 21:  Space-time ( x t ) plot of NewWave propagation at a plane beach: (a) measured free-
surface; and (b) numerical prediction of free-surface elevation data along basin centreline 

6 Conclusions 
This paper presents a two-horizontal-dimensional (2DH) numerical flow solver for modelling the 
propagation of waves in the coastal zone, from intermediate to zero depth. Pre-breaking, the 
numerical model is based on the enhanced Boussinesq equation set derived by [3]. Broken waves 
propagate as bores and are described in the hybrid model by the non-linear shallow water equations. 
The switch between the governing equation sets is determined by the most offshore location where the 
absolute value of the local slope surface vector exceeds a set threshold. The switch is applied 
uniformly across the domain in the y-direction, with the shallow water equations solved at all points 
onshore of the switch point in the x-direction, and the Boussinesq equations solved offshore of the 
switch point. Waves are generated in the model by independently moving numerical piston paddle 
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