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The tropical forest carbon cycle and climate change   1 Edward T A Mitchard 2 
Preface: 3 Tropical forest makes an approximately neutral contribution to the global carbon 4 cycle, with intact and recovering forests taking in as much carbon as is released 5 through deforestation and degradation. In the near future, tropical forests will likely 6 become a carbon source, due to continued forest loss and the impact of climate 7 change on the remaining forests’ ability to capture excess atmospheric CO2. This will 8 make it much harder to keep global warming below 2° C. Encouragingly, recent 9 international agreements commit to halting deforestation and degradation, but a 10 lack of fundamental data for monitoring and model design makes policy action 11 difficult. 12   13 14 



 15 Tropical forests have played a critical role in the changing atmospheric carbon 16 concentrations of the industrial age, acting both as a very significant emissions 17 source as they have been logged or burned, but also as a carbon sink, as the 18 remaining forests have taken in much of the extra carbon added to the atmosphere. 19 To illustrate this, from 1960 to 2015 anthropogenic emissions of carbon totalled 20 408 PgC, 80% from burning fossil fuel and making cement, and 20% from (largely 21 tropical) land use change1. However, the atmospheric CO2 stock grew by ‘only’ 180 22 PgC over that period2, meaning that 55% of these emissions were taken in by the 23 Earth system, reducing the climate change caused. There are uncertainties around 24 the relative contributions of the three main locations of this sink, namely the oceans, 25 northern hemisphere forests, and tropical forests1, but likely between a quarter and 26 a third was due to the enhanced growth of trees in tropical forests3,4,5. 27 Understanding the size and causes of this sink is crucial for predicting its evolution 28 over the coming century: the tropical land sink is known to be very variable year-to-29 year1,6,7,8,9, and reverse to a source in hotter years10, suggesting there is a real risk 30 that over the coming decades under climate change it will become a major source 31 every year.  32 The tropical land sink is the least certain major component of the global carbon 33 budget1. There are various possible ways of estimating its size (Box 1), but none 34 estimates the sink directly, and all have high uncertainty due to either sparse 35 sampling5,11,12,13,14,15 or coarse resolution6,7,10. As a result, the main way the land sink 36 has been estimated is as the residual of the sum of all other components of the 37 global carbon cycle1; however with this method it is not possible to estimate the 38 relative contribution of the northern hemisphere and tropical forests to the sink. 39 Further, some other components of the global carbon cycle are also very uncertain 40 and variable, such as the Land Use Change (LUC) flux1,16, making accurately 41 estimating trends in the sink very difficult. This uncertainty greatly limits the 42 development and testing of theories and models, and thus means there is a wide 43 



divergence of predictions as to how the sink will change under different climate 44 change scenarios and policy interventions.  45 Considering all sources of evidence, it appears likely that tropical forests are in the 46 process of switching from being approximately neutral, to a net source, as the intact 47 forest sink declines in size1,3,7,17,18. This decline is caused by a combination of the 48 decrease in the area of intact forest19,20, and increasing temperatures and drought 49 reducing trees’ ability to respond to higher CO2 concentrations by growing 50 faster12,13. With both forest loss and climate change likely to accelerate over this 51 century, tropical forests are likely to release ever more carbon, making keeping 52 global warming to less than 2° C above pre-industrial levels very difficult21,22.  53 
The carbon balance of tropical forests 54 Living tropical trees store 200-300 Pg of carbon5,23,24,25, about a third as much as is 55 held in the atmosphere1. This stock is very dynamic: tropical trees perform about 56 60% of the the world’s photosynthesis, capturing ~72 Pg of carbon from the 57 atmosphere every year26, but also releasing a similar amount back to the 58 atmosphere through respiration of both the plants themselves and other 59 organisms17,27. Given these large fluxes, a small proportional change in either the 60 uptake or release of CO2 can result in a large net source or sink. There are multiple 61 lines of evidence that over at least the past 50 years these two processes have been 62 out of balance, with tropical vegetation increasing in biomass by >2 Pg C yr-1, about 63 1 % per year5,28,29. It is clearly though that this sink has very high inter-annual 64 variability, driven by temperature and rainfall fluctuations16,30,31.  65 The tropics are also the main nexus of global land use change, with deforestation 66 and forest degradation (where some trees are removed but the area retains 67 sufficient trees to be classed as a forest) releasing somewhere between 0.5 and 3.5 68 Pg C yr-1  (refs 7,20,32,33,34,35,36,37). The wide range of estimates is partly due to 69 differences in time period, but mostly caused by differing definitions and included 70 processes, different methods (Box 1), and wide uncertainty bounds. 71 



Comparing different methods, there is consensus that the overall carbon balance of 72 the tropics was approximately neutral over the past decades, with sinks in intact 73 and regrowing forests equal in magnitude to sources from deforestation and forest 74 degradation4,5,7(Fig. 1). However, it is also clear that in abnormally hot years, such 75 as during strong El Niño events, the tropics becomes a major net source1,10 (Fig. 1d).  76 The following section examines the current magnitude of the major sources and 77 sinks. Then the evidence for trends in these over recent decades is considered, along 78 with their likely future pathways, and whether international policy can change these 79 trends.  80 
                        Carbon sources 81 Deforestation is easy to map using optical satellite data, with free Landsat satellite 82 data meaning most countries produce their own maps20, with large scale 83 independent maps also available and broadly consistent19,39. Deforestation affects 84 very large areas: about 100 Mha were deforested in the tropics from 2000-2012, 85 about 50% in Latin America, 30% in SE Asia, and 20% in Africa (ref 19 using a forest 86 definition of >25% canopy cover; similar values are found in studies20,39). The main 87 drivers of this deforestation differ by location, with large-scale commercial 88 agriculture/pasture and mining dominating in much of Latin America, palm oil and 89 pulp/paper plantations in SE Asia, and smallholder agriculture and only more 90 recently mining and commercial agriculture/plantations driving deforestation in 91 Africa32. 92 Estimating the carbon released from deforestation is more difficult than assessing 93 its spatial extent. Often estimates are produced by simply multiplying the area 94 deforested by a single carbon density per unit area value, with the result therefore 95 very sensitive to that single value: normally this is the mean carbon density from a 96 number of local forest inventory plots, but to be accurate they must be numerous 97 and representative of the type of forest deforested. At a pantropical scale recent 98 studies have improved on this by overlaying the deforestation data on continuous 99 maps of carbon density7,32,35,37, though such methods have errors caused by their 100 



carbon data having a coarser resolution than their deforestation data, and the 101 carbon maps having potential large regional biases25,40. Overcoming these issues, 102 there has been some consensus in recent years that the flux from gross tropical 103 deforestation in the 2000s was 0.6-0.8 Pg C yr-1 (refs 32,35).  104 In contrast, it is much harder to estimate the area affected, and carbon losses 105 caused, by forest degradation41,42. Partly this is because degradation is caused by a 106 wide variety of processes with different impacts, including commercial logging, 107 fuelwood extraction, sub-canopy cultivation, grazing, fire, and edge effects caused by 108 nearby deforestation41,43. But further it is because the only remote sensing methods 109 that are sensitive to degradation are coarse resolution, with each pixel containing 110 twenty to thousands of hectares4,6,7,10,14,15,36,44, and thus far exceeding the <1 ha size 111 of most degradation events42,45. This means that estimates inevitably mix the fluxes 112 from deforestation, forest degradation, regrowth of previously disturbed forest, as 113 well as changes in intact forest, into a single combined change per pixel. 114 There are studies that have used inventory plots to estimate fluxes from 115 degradation46,47, however these give numbers on a per hectare basis that are hard to 116 scale, as we do not have maps of degradation. High resolution remote sensing from 117 LiDAR48 or Synthetic Aperture Radar45, combined with local field biomass plots, can 118 directly map the carbon stock changes from deforestation, degradation and 119 regrowth at a suitable resolution, but so far such studies are rare and have only 120 been used for small areas, so cannot help much with pantropical estimates. They can 121 however show the broad ratio between carbon losses from deforestation and 122 degradation; though this varies widely in space and time, there is a suggestion that 123 at a large scale degradation is responsible for perhaps twice the carbon release of 124 deforestation, with great regional variation7,45. Further, there is agreement that 125 degradation is more significant as a proportion of total emissions in Africa than in 126 South America or SE Asia29,38,41,42.  127 Tropical peat forests are independently a major potential source of carbon. Peat is 128 carbon-rich partially decayed organic matter, associated with waterlogged and 129 



acidic conditions, which exists in layers up to 20 m thick under tropical swamp 130 forests. Recent large discoveries under the forests of the Congo49 and 131 Amazon50 basins has increased the known area of tropical peat by 50% to 577,000 132 km2 (combining figures from refs49,51). These peat forests have very high carbon 133 densities, meaning they have the potential to make an outsized contribution to the 134 global carbon cycle: about 5% of tropical forests overlay peat, but they store 70-130 135 Pg C (ref 49), significant compared to 200-300 Pg C in all tropical trees5,23,24,25. The 136 majority of tropical peat is in SE Asia, which has been extensively cleared and 137 drained in recent decades (over half the area present in 1990 had been deforested 138 or degraded by 200852,53), therefore contributing significantly to land use change 139 emissions by releasing 0.3-0.54 Pg C yr-1 (refs 3,16). This large flux is included in the 140 land use change numbers in Figure 1, but excluded from normal values giving the 141 deforestation flux (e.g. refs 7,32,35,37), as such methods exclude below-ground 142 carbon. Further, intact, degraded and drained peatlands in SE Asia have been 143 subject to fires in El Niño years that have released much larger quantities of carbon: 144 up to 2.5 Pg C in a single year, sufficient to cause noticeable anomalies in the 145 atmospheric CO2 growth rates10,54. In contrast, the peatlands of the Congo and 146 Amazon basins were until recently largely undisturbed, so are not currently thought 147 to contribute significantly to the land use change flux55.  148 Even undisturbed peatlands are however likely losing carbon due to climate 149 change3,51,53. This is hard to monitor because satellites can only see the trees, but 150 the vast majority of the carbon in peat forest ecosystems is instead stored in 151 belowground as peat. Gruelling fieldwork to ascertain peat depths and extract cores 152 for chemical analysis is a necessity to ascertain carbon stocks, but these point 153 estimates are hard to scale to large areas due to great spatial variability49,53. 154 Tracking losses is further complicated because of the range of mechanisms through 155 which peats can lose carbon: respiration in peats releases CH4 as well as CO2; 156 burning releases CO and C in addition to CO2; and dissolved and particulate organic 157 carbon is washed away in rivers. There is some data on non-CO2 emissions: both 158 satellite and modelling datasets suggest that all tropical peatlands are significant 159 



methane sources56, and field data suggests that both intact and disturbed peats in SE 160 Asia have significant fluvial organic carbon transport, which has increased by >30% 161 from 1990-200852. While more baseline data is needed, it seems likely that climate 162 change caused warming and droughts are resulting in peat forests being net sources 163 of carbon3,29,51,53.  164 
                    Carbon sinks 165 The remeasurements of millions of trees in networks of forest inventory plots 166 across the undisturbed forests of Latin America, Africa and SE Asia suggest these 167 forests have all been gaining carbon at a similar rate of ~0.5 Mg C ha-1 yr-1 over the 168 past decades, adding up to a total sink of a little over 1 Pg C yr-1 (refs5,13,57,58). 169 Though it has been suggested that artefacts in plot remeasurements could lead to 170 erroneous findings of increasing carbon storage with time59, there is also 171 considerable evidence of a sink of around this magnitude from independent 172 methods, such as atmospheric inversion studies4,14,15, satellite data7,36, and models17, 173 so there is little doubt that it exists.  174 Regrowing and disturbed forest are also clearly taking in carbon from the 175 atmosphere, but as with forest degradation, there is little reliable data on the 176 magnitude of this sink. Studies tracking individual field plots show great variation: 177 following total clearance there was no increase in biomass at all after 20 years at a 178 site in Uganda60, but over 10 Mg C ha-1 yr-1 throughout the first ten years in moist 179 sites in Latin America11. A meta-analysis of 1468 plots in 45 sites found average 180 recovery rates of 3.05 Mg C ha−1 yr−1 for the first 20 years, and that sites regained 181 90% of old-growth biomass values after a median of 66 years11 (though biodiversity 182 does not recover in these timescales11,42,60). As we do not have good maps of past 183 disturbance it is hard to turn plot values into tropical estimates, but these data are 184 consistent with inversion studies and satellite observations of a current flux with a 185 similar magnitude to the intact forest sink (i.e. 1 Pg C yr-1), with large 186 uncertainty3,4,5.   187 



                      Trends in the sources and sinks 188 Despite the uncertainties related to individual components, we do have a reasonable 189 understanding of the carbon balance of the tropics in the recent past, with various 190 methods agreeing that the tropics make an approximately neutral contribution to 191 the global carbon budget3,4,7,36 (Fig. 1). However, we are much less certain about 192 how the system is changing.  193 While there is general agreement that total forest area is shrinking across the 194 tropics, there is considerable controversy as to whether the rate of loss is rising or 195 falling. Official figures from the Food and Agriculture Organisation (FAO, collated 196 from national statistics) show a decline in annual net forest loss rates since 197 200020,38, whereas satellite-based data see an increase in the loss rate19 (Fig. 2). 198 Some of this difference can be explained by differing definitions of forest and the 199 precise area compared, but the difference in trend is too large to be explained by 200 these alone. It has long been known that FAO statistics are not ideal for analysing 201 trends61: while some tropical countries probably produce very good data, their 202 monitoring capacity is variable62. As an example, 14 African countries have reported 203 exactly the same annual change in forest area every year from 1990 - 201538, even 204 though other datasets see significant changes in their rates of loss through time33. 205 On balance, the evidence from the remote sensing data sources appears more 206 reliable than the FAO data. This is because the data from Hansen et al.19 is produced 207 consistently across the tropics; detects country-level trends where we have good 208 alternative sources of data, for example correctly seeing the rapid reduction in 209 deforestation in Brazil63, and the recent rapid acceleration of loss in the Democratic 210 Republic of Congo64; and matches well to detailed high resolution data in a study 211 comparing areas with different patterns of forest loss65. It is therefore likely that the 212 rate of deforestation in the tropics is increasing. 213 Over the coming decades, as the global demand for agricultural, timber and mineral 214 commodities, and local population density, continue to grow, it seems likely that the 215 rate of forest loss will continue to increase32,63,64. Current areas that are largely 216 



undisturbed due to inaccessibility, such as the peat forests of the western Amazon 217 and the Congo, will likely become accessible and suffer deforestation55. Eventually 218 the rate of forest loss will stabilise and start to fall, partly because the area of 219 remaining unprotected forest will have greatly decreased, but also because the that 220 once countries reach a sufficient level of economic development and forest loss, 221 policy and civil society drivers result in the remaining forest area stabilising or even 222 increasing66. However this point may come only once most forest has been lost, and 223 even once countries reach this point (such as Vietnam, China or much of the 224 developed world), they themselves will export deforestation to less economically 225 developed countries as their economies demand increasing levels of commodities67. 226 The case of Brazil makes an interesting case study here: it greatly reduced its rate of 227 forest loss from 2005-201419, due to reductions in global commodity prices and 228 policy interventions63, but the rate has since increased again and could climb faster 229 as the global demand for agricultural and mineral commodities increases, and laws 230 promote development not forest protection63,68. 231 Forest degradation is hard to map and monitor: as discussed previously there is 232 little hard evidence about its overall current magnitude, let alone trends, though we 233 suspect it involves a much larger area than deforestation each year7,44,45,46. Normally 234 degradation appears to be closely associated with deforestation44, and it is 235 reasonable to assume in the future as the area of forest that is accessible increases, 236 due to fragmentation caused by deforestation and road building, the area of forest 237 degraded each year will also increase. About 20% of all tropical forest is now within 238 100 m of an edge, with 84% of these edges anthropogenic, and this proportion will 239 continue to increase as more anthropogenic edges are created each year than closed 240 up43. Commercial logging, a major direct cause of degradation but also a driver of 241 increase fragmentation and access roads, also seems likely to increase in impact as 242 ever more logging concessions are granted41,42. Degradation due to fire may also 243 increase with time due to climate change, as well as increasing fragmentation42. 244 Overall it is hard to believe that the area of forest degraded each year is not 245 increasing, nor that it will stop increasing in the near future. 246 



 247 As the area of degraded forest increases, so does the area of forest with the potential 248 for regrowth; thus the proportion of the forest sink that comes from previously 249 disturbed forest is likely to increase with time3. Disturbed forest normally takes up 250 carbon much faster per hectare than undisturbed forest, though with high 251 variability11,69. Under climate change the rate of growth that could be achieved by 252 disturbed forest could increase further, due to CO2 fertilization17,70. However, other 253 factors (increased temperature, changing precipitation) could negate this effect: a 254 specific modelling test as to whether land use change increased the land sink under 255 an extreme CO2 scenario found only one of four models predicted an increased sink, 256 with the others showing no increased sink70. Fundamentally the size of the sink 257 from regrowing forest is very hard to model using current knowledge, with a high 258 level of divergence between models71. Separately, there is evidence that in the long 259 term, once deforested, land is ultimately normally permanently converted to 260 agriculture, pasture or settlements; and most degraded land is itself ultimately 261 deforested72. This pattern is unlikely to change as the global economy and 262 population continue to grow, so ultimately carbon captured in the regrowing sink 263 may not remain captured long. 264 It is also difficult to predict how the intact forest sink will change with climate 265 change because we know that climate change will have opposing pressures5 (Figure 266 3). Theory and modelling studies generally agree that the most likely cause of the 267 sink is CO2 fertilisation: as atmospheric CO2 concentrations have risen from ~280 268 ppm in 1850 to over 400 ppm today fixing carbon through photosynthesis is easier, 269 with CO2 concentrations in leaves increasing for a given level of stomatal opening 270 (itself limited by water availability)17. This effect should continue as CO2 levels 271 increase8,17, but climate change will also raise temperatures, increasing soil and 272 plant respiration rates, and droughts and fires will also increase, directly killing 273 trees (Fig. 3). Further, deforestation and degradation will continue to reduce the 274 area of intact forest that can act as a sink. Many studies therefore suggest that 275 climate change could lead to a reduction in the sink strength, and ultimately its 276 



reversal into a source10,73,74,75,76. There is evidence from networks of field plots that 277 this is already happening, with the sink magnitude decreasing through time12,13. 278 However, models do not generally predict a reduction in the land sink, with many 279 predicting the CO2 fertilisation will offset the negative influence of climate change 280 on ecosystem respiration and tree mortality8,17,70,77.  For example, six coupled 281 climate models run under the same CO2 growth scenario found changes in tropical 282 land carbon storage between 1960-2099 ranging from -11 Pg C to +319 Pg C, with a 283 mean of +172 Pg C (Ref 8). The differences between these models is mostly caused 284 by differences in the sensitivity of tropical vegetation to temperature, and the extent 285 to which temperature rises due to non-CO2 forcings (for example reduction in 286 aerosol concentrations or other greenhouse gases), which do not come with the 287 positive CO2 fertilization effect8. The variability in model prediction of the current 288 size of the intact forest carbon sink8,71,78,79, and model’s lack of critical factors such 289 as mortality of large trees caused by droughts76, makes it difficult to use model-290 based predictions for predicting trends in the forest sink. Therefore the best 291 evidence is from field plots12,13 and satellites6,10, which show that the intact forest 292 sink is weakening, and becomes a source in unusually hot years, suggesting that it 293 will likely reverse under climate change.  294 There is so little data on the carbon balance of intact peat forests that it is hard to 295 speculate with confidence how they are changing. But it is likely that increasing 296 temperature and variable precipitation has increased the rate of carbon loss, 297 especially when combined with draining and other disturbance, and that such losses 298 are likely to accelerate in future49,52,53,55. However there are high uncertainties, and 299 an increase in basic observations of peat forests are urgently needed. 300  301  302 



Modelling the future of tropical carbon 303 From recent trends, it appears likely that the current major sources of emissions 304 (deforestation and degradation of forests, including peat forests) will at least stay 305 stable or likely increase over the coming decades32,63,64, whereas the current sinks 306 (from intact and regrowing forest) will likely reduce, and could reverse and become 307 sources10,73,74,75,76. Therefore it is very likely that tropical forests will become a net 308 source of CO2 to the atmosphere in the near future, if they have not already3.  309 Estimating the size of this tropical source through time is very difficult though, even 310 when considering a specific scenario of land use and climate change, due to complex 311 feedbacks and interactions between different elements of the carbon cycle, climate 312 change, people, policy and the global economy. 313 The climate modelling community has produced ever more complex models that 314 include the complex feedbacks between land use change, climate change and intact 315 forest71. A noticeable difference between the 4th and 5th Assessment Report of the 316 International Panel on Climate Change (IPCC) is that the latter uses Earth System 317 Models (ESMs) for much of its predictions, rather than Atmosphere-Ocean General 318 Circulation Models (AOGCMs)29. ESMs include all the processes of AOGCMs, but add 319 representations of biogeochemical cycles, including the full carbon cycle, and couple 320 these cycles with other components allowing for feedbacks. For example, 321 deforestation in a AOGCM simulation will increase the atmospheric CO2 322 concentration, and change the physical properties of the ground surface, but only in 323 an ESM will the smoke and dust released from deforestation, and their subsequent 324 effect on atmospheric chemistry and the rate of photosynthesis of the remaining 325 trees, be modeled71. 326 In order to standardise the inputs to modelling climate change under different 327 scenarios to 2100, for is 5th Assessment Report the IPCC developed four 328 Representative Concentration Pathways (RCPs)29. These are trajectories of 329 atmospheric greenhouse gas concentration and consequent radiative forcing, and 330 are named after the radiative forcing in the year 2100 relative to pre-industrial 331 



levels in W m-2: RCP2.6, RCP4.5, RCP6 and RCP8.5. They are based on underlying 332 assumptions about social and technological development, and the extent to which 333 climate mitigation activities take place, with RCP8.5 assuming annual fossil fuel 334 emissions increase rapidly to about 2070 before eventually stabilising, whereas 335 RCP2.6 assumes emissions peak by 2020 and then decrease rapidly80.  Ideally it 336 would be possible to provide confident predictions for the size of the forest sinks 337 under these different scenarios, but unfortunately ESMs still have high variability in 338 their predictions of the tropical carbon cycle, and cannot agree as to whether the 339 tropical land surface will gain or lose carbon overall under the different 340 scenarios8,81. Much of the uncertainty in tropical land surface prediction (~80%) is 341 caused not by scenario uncertainty but differences in model structure71, specifically 342 for the tropics dominated by differences in predictions of the effect of specific 343 climate parameters and CO2 concentration on NPP and vegetation turnover 344 (including structural shifts, wild fires and mortality)82. It is thus urgent that we 345 improve our knowledge of how the components of the tropical carbon cycle 346 function, in order to better design and test such models. 347 
Policy impact on tropical forests 348 The extreme RCPs (RCP2.6 and RCP8.5) assume similar levels of conversion of 349 tropical forest to agriculture81, with the differences coming largely from the degree 350 of fossil fuel burning. However, in reality big developments in national and 351 international policy since the last IPCC report in 2013 have made reducing tropical 352 deforestation and degradation, and restoring previously degraded and deforested 353 tropical land, a key pillar of reducing climate change. This is sensible, as unless 354 tropical deforestation and degradation is reversed the task of halting the rise in 355 atmospheric CO2 concentrations would involve decarbonising the global economy at 356 a likely unfeasible rate21,22, and offers the possibility of a different path for the 357 tropical carbon cycle than continuing current trends. 358 The Paris Agreement of 2015, now ratified by 176 of the 197 countries of the 359 UNFCCC and having entered into force in 2016, aims to keep increases in global 360 



average temperature to ’well below 2°C above pre-industrial levels’. It does not set 361 specify how this should be reached, but includes a strong statement in Article 5 that 362 countries ’should take action to conserve and enhance … forests’83. In order to assist 363 developing countries with meeting Article 5, it ‘encourages’ all countries to engage 364 in REDD+ (’reducing emissions from deforestation and forest degradation, and the 365 role of conservation, sustainable management of forests and enhancement of forest 366 carbon stocks in developing countries’)83. The details of financing and monitoring 367 have yet to be agreed, but there is significant optimism that REDD+ can succeed in 368 increasing the area of forest, and the proportion of it that is undisturbed, compared 369 to business as usual32,84,85.  Most tropical countries have thanks to ‘REDD Readiness’ 370 funding increased their capacity to monitor changes in their own forests62, and are 371 submitting Forest Reference (Emission) Levels, official baselines against which 372 future emissions can be compared, and plans for reducing emissions below these 373 levels if funding is provided.  374 Though the Paris Agreement is ambitious in overall terms, its proposals on forests 375 lack concrete detail, stating only that countries should ‘take action’. However, there 376 are other international agreements involving many or most of the same countries 377 that are more specific. For example, the New York Declaration on Forests, signed by 378 192 organisations including 40 governments in 201486, aims to: “At least halve the 379 rate of loss of natural forests globally by 2020 and strive to end natural forest loss 380 by 2030”. This was ambitious, but some believed it was achievable32. More 381 ambitious still, the UN Sustainable Development Goals87, agreed in 2015, include as 382 Target 15.2 an aim to “By 2020 … halt deforestation”. This was included not just 383 because preventing climate change is a key aim of the SDGs, but because healthy 384 tropical forests are important for the achievement of most of the 17 SGDs66. Few 385 believe deforestation can really be stopped so fast, but these international 386 agreements will spur at least some countries to enact policies to greatly reduce their 387 deforestation rates32,63. 388 The New York Declaration on Forests further aims to restore 150 million hectares of 389 currently deforested or degraded land by 2020, and 350 million hectares by 2030. 390 



There are worries related to these ambitious targets: there is a risk that natural 391 grasslands will be afforested, leading to a loss of biodiversity and potentially also 392 soil carbon88, or that agriculture will be displaced by restored forest, leading to 393 more deforestation elsewhere89. Also many countries have not committed to meet 394 their goal solely through natural forest (e.g. through leaving degraded land to 395 regenerate naturally, with the greatest ecological and long-term carbon benefits), 396 but instead will plant monocultures of exotic tree species such as teak and rubber. 397 Nonetheless, this overall enthusiasm for restoration of forests should be positive for 398 tropical carbon storage (Fig. 3), and if the sites are chosen well and the restoration 399 type carefully considered, it could be highly beneficial for people and the 400 environment21,89. 401 Looking further into the future, the Paris Agreement mandates that by the second 402 half of this century remaining anthropogenic emissions will be balanced by sinks22. 403 This will require a large program of capturing carbon directly from the atmosphere 404 and storing it elsewhere29. As tropical trees are by far the most efficient carbon 405 capture method known, a proposal called Bioenergy with Carbon Capture and 406 Storage (BECCS) is proposed, which will generate energy through the burning of 407 tropical plantations and store the CO2 produced belowground22. To meet the 408 negative emissions targets needed to keep global warming below 2°C by 2100, 409 models suggest it would need to be implemented on an enormous scale (400 - 800 410 Mha, for comparison India covers 329 Mha)22,29. This would clearly make the tropics 411 a major carbon sink, but with negative biodiversity and ecosystem services 412 consequences. 413 Overall, these agreements are sufficient to dramatically change current trends, and 414 if fully implemented would increase the forest carbon storage of the tropics 415 markedly over the coming century. However, meeting the targets would involve 416 drastic and coordinated action from people, policy makers and companies 417 globally32,63. 418 



Safeguarding tropical forest carbon 419 The evidence suggests that unless the world makes a coordinated effort to change 420 from its current course, deforestation, degradation and climate change will combine 421 to make the tropics a net source of carbon to the atmosphere over the coming 422 decades. This is despite increasing CO2 levels making it easier for intact forests to 423 photosynthesise and absorb carbon8,17. However, if we were able to stop 424 deforestation and forest degradation, leave currently degraded forests to recover, 425 and reforest, as targeted in international agreements, then tropical forests would 426 instead likely become a significant carbon sink, contributing to the Paris Agreement 427 goal of keeping mean global temperatures rises to below 2°C21,22. Keeping and 428 restoring these forests would have further immense benefits to human wellbeing, 429 through maintaining their biodiversity and ecosystem services66. However, two 430 interconnected problems limit the achievement of these goals. Our spatial 431 information on how forests are changing is poor, and a lack of field experiments 432 means ESMs cannot predict well how forests will respond to different climate and 433 land use change scenarios. 434 While we monitor deforestation well, we do not have good data on changes within 435 forests.  We have techniques that can observe the integrated carbon flux over large 436 regions, but have very little knowledge of the size of the individual processes 437 involved (such as degradation, regrowth, or the impact of droughts and fire). This 438 makes it hard to design and implement policy: for example no country has reliable 439 baseline figures on their rate of forest degradation62, making it hard to set targets or 440 create policies to reduce degradation under REDD+, nor receive payments even if 441 such policies are successful. This also limits model development and testing. 442 New satellite mission such as GEDI and OCO-3 (both planned for launch in 2018), 443 and BIOMASS (2021) will help by producing high resolution, globally consistent 444 maps of forest carbon stock changes for the first time. These will not only assist with 445 targeting and monitoring policies, but also allow us to discover the magnitude of the 446 forest sink at an unprecedented resolution  (< 1km2) and how local conditions and 447 



climate fluctuations influence it. However these satellites require pantropical forest 448 inventory and airborne LiDAR data for calibration and validation. REDD+ will assist 449 directly here: already significant funding has been spent on designing and setting up 450 monitoring systems and capacity in developing countries62. Unfortunately the data 451 collected is rarely made available to the international scientific community, as 452 publishing such data is against the natural instincts of countries, who wish to 453 protect their sovereignty  (there are some exceptions, for example field and LiDAR 454 data from recent carbon stock map of DRC is available 455 at http://panda.maps.arcgis.com). Funders and scientists must persuade countries 456 to be more open, or they will not obtain the full benefits from new satellite missions. 457 Better maps of forest carbon stocks will make a big difference, removing the current 458 wide spread of figures on the carbon fluxes from tropical forests (Figs 1&2), 459 supporting REDD+ and other policy efforts to reduce forest loss, and enabling the 460 testing of ESMs and theories as to how tropical forests respond to climate 461 fluctuations and disturbance events. However, these data will not improve our 462 understanding of how forests will respond to climate and CO2 conditions that do not 463 currently exist, understanding that is necessary for improving ESMs. For this we 464 need field experiments, such as those that artificially drought, warm or increase the 465 CO2 concentration of large tropical forest plots. Such experiments are expensive to 466 run, and take many years to produce useful results76, and therefore inevitably they 467 are almost nonexistant in the tropics90. Their development should be supported by 468 governments, as without them there will be no data to develop and test the critical 469 next generation of ESMs79.  470  471 
        472  473  474  475 



 476  477 
Figure legends 478 
Figure 1: Tropical forest carbon fluxes assessed using different 479 
methods 480 Annual fluxes (in Pg C yr-1) into and out of tropical forests for different overlapping 481 time periods (a-c) and for a recent El Niño year (d). The net intact forest flux is 482 shown in blue, the net flux in regrowing forest is in pink, and the deforestation and 483 forest degradation flux (including fire) is shown in red. Panels a-c shows there is 484 broad agreement that the tropics have made an approximately neutral contribution 485 to atmospheric carbon stocks in the recent past, but panel d shows that in hot and 486 dry years intact forest can become a carbon source, leading to significant net 487 emissions from the tropics. a) Ref 5: data from networks of forest inventory plots, 488 combined with forest area data from country surveys or ref 38. b) Ref 7: data from 489 annual 463 m resolution optical satellite data, calibrated using LiDAR data and field 490 plots from the mid 2000s. Intact and regrowth fluxes are not separated in this 491 method. The figures in the study have been grossed up from biomass to total carbon 492 stock change (i.e. including dead wood, litter, soil) using the data in Ref 5 Table 2 493 (adding 16%). c) Ref 4: data derived from looking for overlap between atmospheric 494 inversion, modelling and field plot estimates. d) Ref 10: data from satellites sensitive 495 to atmospheric CO2 concentrations for the 2015 El Niño year, contrasting sharply 496 with the other estimates shown. Land use change could not be divided into separate 497 regrowth and loss fluxes in this method.  498 
 499 
FIGURE 2: Contradiction in major forest area change datasets 500 Satellite datasets and nationally reported statistics are in agreement about the rate 501 of net tropical forest loss in the early 2000s, but diverge increasingly with time. 502 Orange points and trendline (quadratic OLS): net annual forest loss from a 503 



systematic global satellite analysis from the University of Maryland (UMD)19, 504 Version 1.4. Forest gain is not assigned to a particular year in this dataset, so is here 505 distributed equally across the time period to give net figures. A forest definition of 506 10% canopy cover in 2000 was used. Green points and trendline (linear OLS): net 507 annual forest area change across tropical countries from the FAO FRA 201538, as 508 summarised in ref 20. Forest area is reported at 5-year intervals, the change has 509 been calculated between each interval and then divided by 5 to give annual data. A 510 variety of forest definitions are used by countries when producing these figures, 511 with canopy cover ranging from 10-30%. This means that the total area of forest 512 considered for 2000 is higher in the UMD dataset, and would be expected to lead to 513 consistently slightly higher deforestation for the UMD dataset than the FAO dataset. 514 However this difference in forest definition cannot explain the differences in trend, 515 as only ~5% of losses in the UMD dataset are in forest with canopy cover between 516 10 and 30 %.   517  518 
Figure 3: The impacts of climate and land use change on the 519 
intact forest carbon sink. 520 The potential contrasting impacts of climate change and different land use change 521 trajectories on the size of the intact forest carbon sink. Arrows pointing up show 522 how climate change and policy could increase the magnitude of the sink, whereas 523 arrows pointing down show how it will be reduced. All processes will occur to some 524 extent, so predicting how the sink size will change is very difficult.  525  526  527 

528 



Box 1: Methods used to assess the tropical forest carbon balance 529 
Forest inventory plots: marked areas of forest where tree diameters are measured 530 and species recorded, enabling estimation of tree mass91. Revisiting networks of 531 such plots every ~5 years gives precise estimates of how forest carbon stocks are 532 changing12,13,57, though uncertainties are increased because plots are rare and 533 unevenly distributed, with some forest types undersampled. There are also plots 534 that are intensively monitored to give insight into the detail of carbon allocation and 535 use efficiency92, and rare experimental manipulations that test the response of trees 536 to conditions that do not naturally exist76,93. 537 
Atmospheric inversions: There is a sparse network of towers and marine 538 measurement sites across the tropics that permanently collect greenhouse gas 539 concentration and micro-meteorological data. These are supplemented by ship and 540 aircraft data, and combined with atmospheric transport models to estimate the net 541 flows of CO2 into or out of the atmosphere at a broad, regional scale4,14,15. 542 
Satellites can be used to estimate:      543 -  Forest area Landsat satellites have been used to produce consistent 544 estimates of forest cover change since the early 1970s. Many countries 545 produce their own maps, and global 30m resolution forest change data are 546 available from 2000 onwards19. However loss data are much more reliable 547 than gain, and relating the area-based data to carbon stock changes is 548 difficult.  549 -   Carbon stocks A unique LiDAR satellite operating in the mid-2000s 550 collected distributed estimates of tree height in 70 m footprints, which were 551 combined with field plots and other satellite data to make medium resolution 552 (500 m – 1 km pixels) carbon stock maps23,24, albeit with large 553 uncertainties40. These maps enable estimates of emissions when combined 554 with forest area change data35, or when produced annually7. It is also 555 possible to estimate carbon stock changes using passive microwave remote 556 



sensing36, however the resolution (1-2 times coarser) makes it impossible to 557 separate gain and loss fluxes. 558  559 - GHG concentration Satellites can measure the greenhouse gas 560 concentrations of narrow columns of the atmosphere with a precision of 561 ~1ppm CO2. These measurements have been used to directly observe the 562 carbon entering and leaving tropical forests, giving information about the 563 size of the tropical forest sink and its reaction to droughts at a continental 564 scale6,10. However cloud cover means the observations are sparse in time and 565 space, and the coarse resolution once again means forest loss and gain fluxes 566 cannot be distinguished.   567 
Modelling: Given the difficulty with directly observing forest responses to rising 568 CO2 concentrations and climate changes, dynamic vegetation models are used 569 directly to predict their responses8,17. The latest generation of models, Earth System 570 Models (ESMs), include many more processes and feedbacks than traditional 571 Atmosphere-Ocean General Circulation Models (AOGCMs), increasing their 572 predictive power71. Models provide information on processes or time periods where 573 we have no other data, and enable us to synthesise our current knowledge about the 574 Earth system to predict the future under specific scenarios of climate and land use 575 change22. 576 
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