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SUMMARY

The goal of an investigation, scientific or otherwise, is usually to find answers to some

specific set of questions about the state of nature: what is the seismic velocity structure?

How likely is this volcano to erupt within a certain period? Does a subsurface reservoir

contain resources of interest? Background research may reveal the existence of pertinent

knowledge and information discovered previously, new data are normally acquired, and

an inference problem is solved in order to answer the questions taking both all of the

a priori information and the new data into account. Inverse theory, decision theory and

the theory of experimental design provide methods to optimise the design of the inves-

tigation and to estimate results. However, those theories are normally set in the context

of a particular model of the universe, with its particular parameterisation. This requires

the investigator to specify a priori a coherent utility (a function that describes the risks

and rewards) of all possible outcomes under that parameterisation. Quite commonly, the

investigator may not be able to do this.

Ideally an investigator would be able merely to pose a set of questions, define a set of

constraints on the data types, acquisition costs and logistics, and provide a functional to

relate the questions to any particular parameter space. Theory and methodology would

then semi-autonomously drive the interrogation of the state of nature by optimally se-

lecting one or more relevant models and parameter spaces, and designing, acquiring and

analysing data, in order to best answer the questions. If necessary this could be done in

a sequential or iterative manner, which potentially then involves changing the questions

posed in each iteration based both on previous results and on inspiration from the inves-

tigator. We present such a theory of interrogation in this paper.

We review the relevant aspects of decision and design theory, and cast them in a frame-

work where the investigator specifies a utility only at the level required by the general

questions to be posed. Each model under consideration is then mapped into this utility

space of possible answers. We then extend this framework to sequential investigations,

where the outcome of each step may affect all aspects of the problem: the models enter-

tained, the utilities, and even the questions themselves.
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A variety of examples illustrates the generality of this method: an asset team investi-

gating how best to exploit a subsurface reservoir, Monte Carlo sampling to estimate the

Bayesian evidence for geophysical models, discriminating between different rock physics

models of strain in laboratory deformation experiments, an organisation sequentially as-

sessing the effectiveness of its methods to evaluate subsurface assets, assessing whether

subsurface CO2 storage should be promoted for climate change mitigation, and exam-

ples running through the text of seismic tomography, earthquake characterisation, and

autonomous interplanetary robotic exploration.

Key words: Decision Theory – Optimal Design – Risk – Utility – Inference – Bayesian
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1 INTRODUCTION

In an investigation an individual researcher, or group of researchers usually wishes to find the answer

to a set of questions. These questions are often formulated in plain, non-mathematical language: ‘How

much methane is in this gas field?’, ‘When will this volcano next erupt?’, ’How likely is it that atmo-

spheric CO2 will pass a given threshold?’, ‘How should one best assess the properties of particular

structures in the Earth’s subsurface?’ The answers may be found by experimentation, consultation of

records, consultations with experts, or some other data collection exercise. Subsequent interpretation

of this information is then an exercise in inference in its broadest sense, and usually involves solving

inverse problems. Figure 1(a) shows the classical schema for forward and inverse problems, which

incorporates the generation of synthetic data from a model of the universe (the forward problem), and

inference about parameters in the model from recorded data (the inverse problem) (Snieder 1998).

The answering of a question requires an experimental design, again in its broadest sense: the

selection of a method of inquiry which will result in new information, germane to the question at hand.

In such investigations the well established theory of statistical experimental design (e.g., Chaloner &

Verdinelli 1995; Myung & Pitt 2009; Curtis 2004a,b; Maurer et al. 2010) and theory of Bayesian

or statistical inference (e.g., Tarantola 2005; Vehtari & Ojanen 2012) provide machinery which in

theory deliver the optimal experimental design, and procedures for efficient estimation and inference.

However in order for this machinery to function, the questioner must – explicitly or implicitly – specify

models of the system under consideration, quantify prior knowledge, identify the space of possible

experimental designs, and quantify in the form of a utility function the risks or rewards associated

with drawing all possible conclusions in all possible worlds.
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Figure 1. (a) Classical schema for solving Inverse Problems: The data y are assumed to come from a model m,

parameterised by θ. The inverse problem is the estimation of the set of parameter values θ that will generate

data in the forward problem that best match the observed data. (b) Schema for Interrogation Problems: given a

set of scientific questions Q and a model m or range of models (Sambridge et al. 2006), an experimental design

is selected to generate data yd that best constrain the model parameters θ and thereby answer the questions.

Feedback occurs through the modification of the questions in the light of the answers, and the process can

repeat. This schema is embodied algorithmically in Figure 2.

These requirements may prove very demanding for investigators. Specification of models and

prior information may require the elicitation of expert opinion, and likewise expert knowledge may

be required to identify the set of feasible experimental designs, among which the optimal design can

be sought. Moreover, the specification of utilities, which quantify the consequences of different con-

clusions and which are needed to decide between outcomes using statistical decision theory, often

requires the construction of high dimensional functions in Geophysical problems. Some of the prop-

erties of these complex utilities may be significant, unintended, but go unnoticed because of their

complexity or dimensionality (see e.g. Curtis & Lomax 2001). Thus while much is known about op-

timal procedures in the context of a fully specified decision or estimation problem, little attention has

been given to the optimality of that specification.

Furthermore, it may be that the outcome of an inquiry is the realisation that there are new questions

that are relevant, questions which could not have been anticipated at the outset. In such circumstances

the inquiry continues, possibly for many iterations, with new questions added and old questions dis-

carded at each step. Each step of such a multi-stage investigation adds to the investigator’s knowledge

and may stimulate new directions of inquiry.

Our goal in this paper is to synthesise an overarching methodology for what we call an inter-
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rogation. An interrogation is a potentially open ended investigation, initiated by a set of high level

questions. We seek a framework for such an inquiry, which allows for the iterative updating of knowl-

edge and the generation of new questions. A specific requirement we have of such a procedure is that

answers be provided in the same high level terms that they are asked, and that investigators only be re-

quired to state their preferences and utilities at that same level. An updated schema for such problems

is shown in Figure 1(b).

An example motivation for seeking such a framework comes from the Earth resources industry,

and in particular from the complex investigations and decision making that take place routinely con-

cerning subsurface reservoirs of fluids contained within the pore space of rock. To make this concrete,

consider a depleted gas field managed by a commercial organisation. This organisation may be inter-

ested in deciding whether or not to use the field for carbon storage, i.e., storing the carbon dioxide

(CO2) produced by burning oil, gas or coal for electricity production, in a subsurface reservoir at the

field in order to mitigate against anthropogenic atmospheric CO2-related climate change.

Decisions regarding the gas field are made by an asset team, comprising experts of various kinds

(geologists, geophysicists, engineers, business managers and field/logistics managers). A sequence of

questions are relevant to the decision regarding whether to develop a carbon storage reservoir. At a

high level there is the question of whether a potentially secure storage reservoir exists. This requires

the team to establish a range of likely scenarios beneath the ground that involve answering lower

level questions: What are the subsurface rock types? What are their porosities (the amount of space

available for fluids)? A relevant sub-question is usually, what is the depositional origin of the rock (was

it deposited in an old tidal delta or in a lake? Around a reef front or in a lagoon?) as this partly controls

the reservoir rock properties that would be expected. Is there a cap rock above the reservoir that would

form a barrier to contain the carbon dioxide, thus preventing escape upwards into the atmosphere?

At their meetings the team has access to subsurface data, seismic surveys, geological models, and

various process models which can generate scenarios given likely sets of inputs. The data can be con-

sulted, displayed, discussed, and new scenarios generated. Ultimately the asset team needs to choose

answers to the above questions, and thus make a decision about suitable actions to be taken. Examples

of the decision process and flows of information that take place in such asset team discussions are

analysed in the sequence of papers by Polson & Curtis (2010); Polson et al. (2012b,a) and Polson &

Curtis (2015).

The process of determining the answer to the highest level question is by nature iterative, and re-

quires input from data, modelling, and the use of expert opinion. If questions cannot be resolved at the

meeting, then the team may decide to consult other experts, or to collect further data by exploratory

drilling, or by conducting a seismic survey (a subsurface imaging experiment). These data collec-
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tion exercises may take place simultaneously without reference to each other, and may use different

parameterisations of models or of the information obtained. Thereafter, information from all param-

eterisations must be reconciled and integrated within the subsequent decision-making process. From

the point of view of the company, the utility of such a decision made by the asset team is ultimately

determined by its cost and potential benefits, so the accurate assigning of costs and estimation of those

benefits to different courses of action is an important part of the process.

This example demonstrates the key components of an interrogation: an inquiry with an invariant

goal, embodied in high level questions which require one or more data collection exercises to provide

answers, connected to a decision-making process (which may simply be to decide which questions to

ask next – an experimental design exercise), with different costs and benefits associated with different

decisions made. Other examples include geophysical investigations of new areas of the Earth which

typically begin with a sparse survey to answer the question of whether suitable targets of interest exist,

followed by later iterations that deploy surveys designed to focus information on previously located

targets, or deploy more sophisticated data processing to extract more information from existing data.

In each iteration, since the result is initially unknown, it is difficult a priori to fix a suitable parameter-

isation, utility function, and hence to design or decide what the next best course of action would be.

Still other examples include the design of semi-autonomous robots for interplanetary exploration (e.g.,

the ”Mars Rover”) that must iteratively identify targets and find ways to approach them, iterative elic-

itation of human expert opinion, interrogation of witnesses or suspects, and many other examples of

standard, iterative, hypothesis forming and testing in scientific investigations. Some of these examples

are revisited below.

In this paper we review all of the components of an interrogation, several of which are displayed

in Figure 1(b). Our approach draws on results from Bayesian inverse theory, optimal experimental

design theory, and from the decision theoretic approach to inference. We also rely on the existence

of established methods of model appraisal and selection (e.g., Snieder 1998; Burnham & Anderson

2002).

The novelty of our approach is the explicit consideration of goals, questions and answers as the

motivators of investigations, and in particular the dynamic nature of investigators’ questions. The

scope of what we describe here is admittedly large: we are proposing an overarching framework for

decision making in any setting. However in geoscience and other industries the resources committed

to decisions are in many cases so large that the current absence of a formal end-to-end theory for

decision making poses an apparent risk of wasteage of the substantial resources deployed.

We are aware of one paper which explicitly models the question–answer sequence in scientific

enquiry to the same level of dynamism as in our methodology, namely the paper by Brockmann &
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Dawkins (1979) on strategies of the digging wasp Sphex ichneumoneus. The layout of their paper,

explained in detail in Dawkins (2015) (pp51-82), mirrors the sequence of inquiries they carried out.

Each question is motivated by the answer to the question preceding it, and the latter questions could

not have been anticipated at the outset. Our work builds on these descriptive papers by providing

the first accompanying mathematical formalism with which the overall interrogation process can be

quantitatively modelled, analysed and designed.

Our formulation of interrogations is sufficiently broad that it captures the highly practical problems

of designed experiments as well as the more high level conceptual approaches to human decision

making. When making decisions in the real world we must at some level contemplate all possible

contingencies, and make optimal choices among all possible courses of action. Such a comprehensive

approach is of course impractical, but as we show below it is theoretically valuable to envision it,

even as we make appropriately severe restrictions to smaller sets of possible models for the world, and

possible courses of action. The examples we choose to demonstrate our approach below show that an

investigator can start with a high level conceptual view and still find practical implementation.

In Section 2 we define more precisely the components of an interrogation problem. This includes

some existing results from decision theory, recast in our notation and setting. We present a worked

example in Section 3. Sequential interrogations are described in Section 4, and a discussion follows in

Section 5. Our notation is summarised in Table 1.

2 INTERROGATION PROBLEMS

A schematic diagram of an interrogation problem is shown in Figure 2, and in this section we introduce

and explain each of the components of the problem, and establish our notation. The ‘investigator’

referred to in this section may typically be an individual in Geophysical investigations, but might

otherwise be a team of experts, a company, a government, or any entity capable of posing questions.

2.1 Components of an Interrogation Problem

An investigator has prior knowledge B, and questions about nature Q, the characteristics of which are

formulated further below. There is a set of possible answers A among which a choice will be made.

In standard descision theory these answers would be referred to as ‘actions’ or ‘decisions’, as the

conclusions of an inference procedure which follows the observation of new data (see e.g. Young &

Smith 2005, Ch. 2). The precise nature of an answer of course depends on the question being asked.

An answer may be the estimate of a particular parameter of interest (e.g., the seismic velocity structure

of the Earth, or the capacity of a putative subsurface reservoir), in which case the answer a is a single
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Table 1. Notation used for interrogation theory. Additional notation introduced in worked examples has been

omitted so as to clearly distinguish the fundamental entities.

Symbol Description

M Space of models

m Model; element of the space of models M

p(m) Prior probability of models in M

A Answer space

a Answer; element of answer space A

a∗(yd, d) Optimal answer given data yd ∈ Yd collected under design d ∈ D

D Space of Experimental Designs

d Experimental Design; element of design space D

d∗ A priori optimal design

Θm Parameter space of model m ∈ M

θm Element of Θm, the parameter space of model m

p(θm|m) Prior over parameter space Θm for parameters of model m

Yd Sample space of observations under design d ∈ D

yd Observation; element of sample space Yd observed under design d ∈

D

f(yd|d, θm,m) Statistical likelihood: probability distribution of data yd under de-

sign d if the state of nature is model m with parameter value θm

B State of knowledge

Q Questions about the state of nature

T (θm|m,Q) Target function, summarising the state of nature described by model

m with parameter values θm, relevant to questions Q. Takes values

in the Target space T

T Target space T of values of T (θm|m,Q)

U(a|θm,m, yd, d) Utility of answer a ∈ A if the true model is m ∈ M with parameter

values θm ∈ Θm, and data yd ∈ Yd are observed under experimental

design d ∈ D

U(a|t, d) Utility of answer a ∈ A if the summarised state of nature is t ∈ T

and the design is d ∈ D

Up(a|yd, d) Posterior expected utility of answer a ∈ A given data yd ∈ Yd

observed under experimental design d ∈ D

U∗(yd, d) Posterior expected utility for the optimal answer a∗(yd, d) given

data yd ∈ Yd observed under experimental design d ∈ D

U∗(d) A priori expected optimised utility for experimental design d ∈ D
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Knowledge B

Questions Q

Answers

Models M

Model m ∈ M
Parameter θm ∈ Θm

T (θm|m)

Target Space T

Designs D

Design d ∈ D

Sample Space yd ∈ Yd

Data yd

Utility U(a|t, d)

Answer Space A

Figure 2. Algorithmic schema of an interrogation problem. See text for details.

value or vector of values. Alternatively the answer may be the estimate of the entire distribution of

possible values of a parameter, and a is then a probability mass or density function. In the case of

an exercise which results in a choice being made amongst a set of options (e.g. to establish a carbon

storage reservoir, or not) then the answer a is the label of the option that is chosen. Equivalently when

choosing among a set of options the answer may be a vector with binary (0/1) entries, one for each

option, with exactly one entry being 1 and all others zero. Thus a can take many different forms,

and it is this variety of definition that provides the flexibility to represent a spectrum of interrogation

problems within a single schema and methodology.

The space of models M is the (countable) set of all models of nature that are deemed relevant to the

investigation by the investigator. Here the term ‘model’ is used in a mathematical sense, to represent a

relationship between observed data and the parameter of the model. For example in earthquake source

characterisation we might use a model m1 ∈ M based on a simple one-dimensional representation of
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seismic wave velocities in the Earth – with velocity dependent only on depth – and also an alternative

model m2 ∈ M that embodies a full three dimensional velocity structure. We note that in practical

settings such mathematical models can be, and usually are, implemented in some kind of software.

The content of M therefore depends on the investigator’s prior knowledge B, and on the questions

Q, and is assumed to be rich enough that some element of M, or some average over its elements,

provides a sufficiently accurate description of nature.

Each element m ∈ M has an associated parameter value θm in a parameter space Θm. The

parameter θm may be multidimensional (e.g., to describe the subsurface seismic velocity structure, or

earthquake source characteristics), and may have discrete and continuous components. In this paper

we treat θm as continuous, but all of our results hold if it is discrete, or has discrete components, in

which case integrals
∫
Θm

. . . dθm can be replaced by sums
∑

θm∈Θm
. The investigator has a prior

distribution on the space of models p(m) – the prior probability that model m is the true model,

and
∑

m∈M p(m) = 1. Within each model m the investigator has a prior p(θm|m) on the parameter

θm ∈ Θm, and
∫
Θm

p(θm|m)dθm = 1.

The investigator seeks to collect new information in order to answer the questions Q. This in-

volves collecting data, and this in turn requires some protocol or experimental design. For simplicity

we use the term ‘experiment’ to cover all possible data collection exercises, whether they would be

classed as observational or experimental, or even the acquisition of existing data already collected by

other investigators. In geophysical problems this could include deployment of seismometers at chosen

locations, samples of rock at a variety of depths, or acquisition of seismic records from an archive.

The design space D includes all possible experimental designs. These designs are independent of

all of the models. Each element d ∈ D defines a sample space Yd of possible observations yd ∈ Yd

which are observable under that design. Note that yd may be a (vector of) continuous and/or discrete

random variables. For every design d ∈ D and every model m ∈ M there is a statistical likelihood for

the observable data f(yd|d, θm,m), which describes the probability (density) of observing yd if model

m holds with parameter values θm.

When considering plausible models for nature, the investigator may entertain models with con-

siderable variation in complexity and structure. Some models may be very simple, with only a small

number of parameters – others extremely complex. However no matter which model is actually true,

the investigator’s questions Q must be answerable from the parameter θm of model m. Thus for each

model m there exists a target function T (θm|m,Q) mapping the values of the parameters θm of

model m into a target space T. This space T is common to all models m ∈ M, and the functions

summarise the state of nature in exactly and only the terms specified in the questions Q.

T (θm|m,Q) may for example be a restriction of the dimension of the parameter space, eliminat-
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ing nuisance parameters and retaining only those parameters with a common, pertinent interpretation

which exists in all models m ∈ M. For example, we might be interested in the predicted earthquake

recurrence times on a large fault at a tectonic plate boundary – and might consider a simple model m1

which only includes the large scale structure of the boundary summarised in a small parameter set θ1.

We might also entertain a more complex model m2 with a larger parameter set θ2 which includes ad-

ditional parameters quantifying the slip rates on an array of minor faults. In such a case T1(θ1|m1, Q)

and T2(θ2|m2, Q) simply extract the recurrence time on the major fault from each model, ignoring all

other parameters.

In another setting an investigator might wish to answer a question such as, does the seismic ve-

locity structure indicate the presence of a specified set of subsurface properties of interest? Then

T (θm|m,Q) might be an indicator function, signaling whether or not the model confirms the presence

of each property.

The existence of a common target space T places constraints on the set of models M: all models

m ∈ M must be able to be mapped to the same target space through some T (θm|m,Q). We refer to

a value t ∈ T of the target function as the summarised state of nature: t embodies only those aspects

of the state of nature relevant to the questions Q.

The answer space A contains the set of possible answers to the investigator’s question Q. For

each answer a ∈ A there is, given the investigator’s knowledge and preferences B, a utility function

U(a|t, d) associated with accepting answer a if the summarised true state of nature is in fact t ∈ T

and design d ∈ D is executed. The utility depends on the experimental design d so that the costs of

carrying out the design d are included, conditional on the true summarised state of nature t.

Our expressions for the utility U(a|t, d) and target function T (θm|m,Q) are all conditioned on

the state of knowledge B. We make this conditioning explicit in Section 4 when we discuss sequential

interrogations which involve updating B, but until that section we suppress dependence on B for

notational simplicity.

2.2 Identifying optimal answers

The investigator wishes to select the best answer a to the question Q: i.e. that which is optimal given

the above construction. Optimality is determined by maximising the investigator’s utility U . Generally

speaking we have problems of two kinds, conditioned on the investigator’s state of knowledge and

utility:

1. Decision Problem. Given a particular design d, and an already observed dataset yd, what is

the best answer a∗(yd, d)? Conditional on a particular design d, a∗(yd, d) maps data onto answers. If

a∗(yd, d) takes discrete values then it induces a partition of the sample space Yd.
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2. Design Problem. What is the best experimental design d∗ which will lead to the choice of answer

with the highest utility? The solution to this problem identifies d∗ as the best design, and consequently

a∗(yd, d
∗) as the best decision rule.

In principle we can solve both problems using the framework of optimal Bayesian experimental

design (Chaloner & Verdinelli 1995). This approach requires the specification of a highly structured

utility, U(a|θm,m, yd, d) for answer a ∈ A, parameter θm ∈ Θm, embedded in model m ∈ M, and

data yd ∈ Yd collected under the experimental design d ∈ D.

However the investigator may in general have no means of constructing a utility function of such

structure and complexity. Moreover, when agreeing to a function of this dimensionality for the utility,

an investigator cannot generally be expected to appreciate all of the consequences of the choice of

a specific functional form (Curtis & Lomax 2001). There is also no easy way to guarantee that the

utilities specified are coherent across the various models under consideration.

Instead the investigator may only be able to specify with confidence a utility with respect to the

answers to the questions being posed. This is the motivation for our construction of the Target space

T in Section 2.1 above. It is more reasonable to expect that an investigator will be able to specify

most readily the utility U(a|t, d), i.e. the utility of accepting answer a if the true summarised state of

nature in the Target space is t, optionally incorporating the costs of the design d. Recall that in our

construction the summarised state of nature always exists for every model under consideration (if it

does not exist, the model is irrelevant to question Q). Requiring a utility only at the level of the Target

space relieves the investigator of the need to specify utilities for every parameter value for every model

m in the space of models.

As a simple example, say Q is the question, “What is the depth of the Moho beneath a particular

geographical location?”. The Moho is generally expected to mark the transition from crustal to man-

tle seismic velocities. So one might seek an answer by estimating the velocity structure with depth

beneath that location (parameters θm) by inverting measured surface wave dispersion curves (data yd

acquired in an experiment with design d) using a surface wave modal approximation for the forward

problem (model m). It is not a trival task to specify the form of a utility function U(a|θm,m, yd, d)

of the answer a to question Q directly from any potentially encountered multi-dimensional velocity

structure θm, which may use a variety of different parameterisations in different models m (Sambridge

et al. 2006). Instead, say a target function t = T (θm|m,Q) is defined such that it transforms any ve-

locity structure into the corresponding inferred depth of the Moho. Then defining a utility U(a|t, d) is

relatively easy: for example setting U(a|t, d) = −(a − t)2 means that the utility is maximised when

our estimate (the answer a) is as close as possible to the true depth (t).

We can therefore construct the expected posterior utilities of answers given data by first integrating
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over the model and parameter spaces:

Up(a|yd, d) =
∑
m∈M

∫
Θm

U(a|T (θm|m), d)p(θm,m|yd, d) dθm (1)

Here p(θm,m|yd, d) is the Bayesian posterior distribution over the space of models and over the

parameter spaces for each model.

Given a set of data yd observed under experimental design d the optimal answer a∗ that solves the

Decision Problem is the answer that maximises the utility above:

a∗(yd, d) = argmax
a∈A

Up(a|yd, d) (2)

The maximised utility corresponding to a∗(yd, d) is then denoted U∗(yd, d) = Up(a
∗|yd, d).

On the other hand, before any data are observed the expected utility that will result from a design

d ∈ D is the value of U∗(yd, d) after it has been averaged over all possible datasets observable under

the experimental design:

U∗(d) =

∫
Yd

U∗(yd, d)p(yd|d) dyd (3)

=

∫
Yd

max
a∈A

∑
m∈M

∫
Θm

U(a|T (θm|m), d)p(θm,m|yd, d)p(yd|d) dθm dyd

using equation (1). The optimal design a priori that solves the Design Problem is thus design d∗ ∈ D

that optimises U∗(d):

d∗ = argmax
d∈D

U∗(d) (4)

with maximised utility U∗∗ = U∗(d∗).

2.3 Estimating the Summarised State of Nature

We now make this procedure more concrete by considering the case where the goal is simply to

estimate the summarised state of nature T . The answer, and the answer to the investigator’s question,

is then a = T̂ where T̂ is an estimate of T . We set the utility of estimate T̂ when the true value of T

is t, to be the negative of the squared error function:

U(a|t, d) = U(a|t) = −(t− a)TW (t− a) (5)

Here t and a are vectors, and the target and answer spaces T and A are identical. W is a known,

symmetric, positive definite weight matrix, and the first equality in equation (5) acknowledges that

in this utility we have neglected any costs or benefits of acquiring data d other than those pertaining

to estimate t. The answer a∗(yd, d) that maximises the utility U(a|t) is the one that maximises the
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posterior expected utility

Up(a|yd, d) = E[U(a|T )|yd, d]

= −tr(WVar[T |yd, d])− (E[T |yd, d]− a)TW (E[T |yd, d]− a) (6)

where tr(·) is the trace of a square matrix and Var[·] is the variance operator. The second equality

follows from the definition of the variance-covariance of a vector, and is the vector generalisation of

the scalar result: E[(t−a)2] = Var[t]+(E(t)−a)2, where we have dropped conditional dependencies

and weights for simplicity. Since the first term on the right of equation (6) is invariant with respect to

a, the optimal answer is that which minimises the magnitude of the second term. This is achieved by

setting the estimate of T equal to the posterior mean of T averaged over all models m and parameters

θm since for this choice of T the second term on the right of equation (6) is zero:

a∗(yd, d) = E[T |yd, d]

=
∑
m∈M

∫
Θm

T (θm|m)p(θm,m|yd, d) dθm (7)

The maximised utility corresponding to a∗(yd, d) is then

U∗(yd, d) = −tr(WVar[T |yd, d]) (8)

A priori the optimal experimental design is the design d∗ ∈ D that optimises U∗(yd, d) after it has

been averaged over all possible datasets observable under the design d:

U∗(d) = −
∫
Yd

tr(WVar[T |yd, d])p(yd|d) dyd (9)

and so the optimal design is that which minimises the expected posterior variance. This design d∗ is

known as the A-optimal Bayesian design (see also §2.2 of Chaloner & Verdinelli 1995), however its

expression here differs from standard treatments because of our use of the common target space.

An important special case arises when the investigator’s interest is only in model selection. The

question Q is, “What is the best representation of nature out of the set of M models in the space of

models M?” The answer a is identity of this best model. This amounts to estimating the value of an

M × 1 indicator vector T , which is zero except for its m∗th entry which is 1, indicating that the true

model is m∗. We represent such an indicator vector as δm∗ .

For each model m, the function T (θm|m) is conditioned on model m being true. The indica-

tor vector for T (θm|m) is therefore δm. This is independent of parameter values θm, thus all of the

parameters θm are in fact nuisance parameters.

From equation (7) the optimal answer under the squared error loss function in equation (5) is

a∗(yd, d) = E[T |yd, d] =
∑
m∈M

δmp(m|yd, d) (10)
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which implies that the optimal estimate a∗(yd, d) is simply the M × 1 vector of posterior probabilities

of each of the models m in the space of models M being true.

From equation (8) the maximised utility corresponding to this estimate is

U∗(yd, d) = −
∑
m∈M

Wmmp(m|yd, d) +
∑
m∈M

∑
m′∈M

Wmm′p(m|yd, d)p(m′|yd, d) (11)

If the weight matrix W is the identity, then this expression simplifies further to

U∗(yd, d) = −
∑
m∈M

p(m|yd, d)(1− p(m|yd, d)) . (12)

This sum achieves its maximum possible value if the posterior probabilities p(m|yd, d) only take

values 0 or 1 in which case U∗(yd, d) = 0 (in words, our utility is maximised because we make zero

loss). Moreover since those probabilities must add up to 1, this largest possible value is achieved when

all of the posterior probability concentrates on a single model and all other models have zero posterior

probability.

Integrating equation (12) over all possible datasets yd from the design d weighted by their proba-

bilities p(yd|d) we obtain

U∗(d) = −1 +

∫
Yd

∑
m∈M

p(m|yd, d)p(yd|m, d)p(m) dyd

= −1 + E[p(m|yd, d)] (13)

so that the a priori optimal design d∗ for model selection is thus the one that maximises the expected

posterior probability E[p(m|yd, d)] where the expectation in this expression is over all models m and

all data yd observable under the design d.

3 A WORKED EXAMPLE

We now consider a simple example of a generic inverse problem with which we can demonstrate the

methodology above.

3.1 Problem Motivation

Over recent years, the method that has become most widely used for finding the solution to an inverse

problem is to deploy Bayes rule:

p(θ|y) = p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫

θ∈Θ p(y|θ)p(θ)dy
(14)

where p(θ) is the prior distribution on parameters θ, and p(y) is the marginal distribution of the obser-

vations y and is called the evidence. The solution on the left is expressed as a conditional distribution
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of θ given the observed values of y which usually involves solving an inverse problem. The attraction

of equation (14) is that it converts that inverse problem on the left into a forward problem (finding the

probability of observing y given the values of parameters θ) as shown on the right. However, as can be

seen in the second equality, a remaining difficulty is that to calculate the evidence requires an integra-

tion to be performed over parameter space Yd. This is a serious issue as in many Geophysical problems

either performing or avoiding direct computation of this integral requires the use of Monte Carlo meth-

ods, incurring substantial computational expense (e.g., Mosegaard & Tarantola 1995; Tarantola 2005;

Bodin & Sambridge 2009).

Motivated by this problem, we now show how interrogation theory can be applied to obtain opti-

mal results for the integration of probabilistic variables. We demonstrate the method using one dimen-

sional variables, but the multi-parameter case works similarly.

3.2 Problem Specification

Assume that there is some observable scalar property µ(x) of the universe that varies with position x

along the real line. An investigator is not interested in the details of the form of µ(x), but only wants

to determine the scalar value of the integral

T =

∫
X
µ(x) w(x) dx (15)

for some specified weight function w(x). Here the domain X of x is a portion or all of the real line R.

For example, Figure 3 shows T as the integral of µ(x) with w(x) simply being an indicator function

w(x) = I(x ∈ [a, b]) that restricts the range of x to an interval of interest [a, b]. This clearly relates

to the problem of finding the evidence p(y) in equation (14) with µ(x) = p(y|x) and x = θ. Alter-

natively, a practical example of such an integral occurs where µ(x) is energy loss due to attenuation

during transmission of waves over the spatial interval [a, b]; we may neither know nor be interested in

the exact form of µ(x), but nevertheless need to estimate total energy loss T . Each of these scenarios

might constitute types of questions Q that have answers given by target T of the form in equation (15).

Other forms of functions that we could have chosen instead of equation (15) include calculating

an average of the gradient dµ(x)/dx over some interval, the maximum value of µ(x) in an interval, or

the value of µ(x) at some inaccessible (or future) value of x. We consider equation (15) principally for

its simplicity, which means we are able to derive some explicit analytic results below. More complex

(possibly multidimensional) target functions T may require numerical and/or simulation methods in

what follows, but the interrogation theory remains similar.

We assume that the value of µ(x) is observed at a selected set of points x, and from these values

an estimate of T will ultimately be obtained. It is common that physical models of this sort need to
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x

µ(
x)

a b

T

Figure 3. Example integral T =
∫ b

a
µ(x)dx giving the shaded area under the graph. The investigator wants to

estimate the value of T , with the precise form of µ(x) being only of secondary interest.

incorporate some natural variability around an overall trend function, for example. It is also always

the case that there is some measure of observational uncertainty associated with every measurement

of µ(x). These two components of uncertainty can often be separated through repeated measurements

of µ(x) at the same locations. For the purposes of the current example we leave them combined as

additive, independent and identically distributed zero mean Normal errors. Furthermore, for simplicity

in this first example, we assume that the variance of these errors σ2 is known. This means that an

observation y of µ(x) at x takes the form

y(x, ε) = µ(x) + ε (16)

where ε is the N(0, σ2) additive error.

Equation (15) may be defined for any model for µ(x) deemed to be plausible. Again to keep

things simple we assume that the investigator entertains only constructions for µ(x) that are linear in

parameters θm, and that there are M possible models of interest, with

µ(x|θm,m) = gm(x)T θm for m = 1, . . . ,M , and x ∈ X (17)

Here the vector gm(x) is a vector of functions of x, effectively basis functions, appropriate to the

model under consideration. For example model m1 might be a quadratic function in which case

µ(x|θ1,m1) = θ11 + θ12x + θ13x
2 and g1(x) = (1, x, x2)T . Model m2 might only have two
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parameters, but depend on x through the log function, e.g., µ(x|θ2,m2) = θ21 + θ22 log x with

g2 = (1, log x)T . We leave the actual content of the functions gm(x) unspecified for the moment.

It follows that under the assumption that model m is true, an observation y of µ(x|θm,m) at

location x has distribution

y(x|θm,m) ∼ N(µ(x|θm,m), σ2
m) for m = 1, . . . ,M , and x ∈ X (18)

with σ2
m assumed known. The models in equation (17) form the entire space of models M = {m1, . . . ,mM},

and the investigator gives them prior probabilities (p(m1), . . . , p(mM )).

The parameter spaces of each model are Θm = Rpm , where pm is the dimension of θm. The

investigator adopts Normal priors for these

θm|m ∼ N(θ0m, σ2
mR0m) (19)

where θ0m is the pm dimensional prior mean for θm, R0m is a specified pm × pm positive definite

matrix, and σ2
m is again the known error variance.

The scientific questions of interest Q are entirely summarised by the question “What is the value

of the integral in equation (15)?” So, for the target functions T we have the expression

T (θm|m) =

∫
X
µ(x|θm,m) w(x) dx = ḡTmθm (20)

where we have defined

ḡm =

∫
X
gm(x) w(x) dx (21)

For all models m ∈ M the values of T lie in the space of real numbers T = R. The answer to the

question is the estimated value of the integral, so that the space of answers A is the same as T = R.

The investigator chooses the squared error utility function U(a|t, d) = −(t − a)2, the form taken by

equation (5) when a scalar is to be estimated.

The investigator specifies a design space D: an element d of this space is the choice of a set of nd

sampling locations {xdi : i = 1, . . . , nd} along the x-axis.

Given a design d and a model m, the functions of x contained in each gm(x) in (17) give the rows

of the nd× pm model matrix Xmd, with Xmd;ij = gmj(xdi) for i = 1, . . . nd and j = 1, . . . , pm. This

fully specifies the statistical model yd|d, θm,m that gives rise to the observed data yd:

yd|d, θm,m ∼ N(Xmdθm, σ2
mI) (22)

Given the above, and assuming we have chosen the functions gm(x) in (17) that define each model

and hence design matrices Xmd, the Decision Problem is now fully specified, and the Design Problem

is to select an optimal set of nd sampling locations at which to observe the values of y.



Interrogation Theory 19

3.3 Solution

We now seek the form of solutions to the Decision and Design Problems outlined in Section 2.2.

Before proceeding to find these solutions we note by applying standard linear inverse theory that the

priors and likelihood from (19) and (22) imply that within model m the posterior for θm given data yd

from design d is

θm|yd, d,m ∼ N(M−1
mdum(yd), σ

2
mM−1

md) (23)

where we have defined

Mmd = R−1
0m +XT

mdXmd and umd(yd) = R−1
0mθ0m +XT

mdyd (24)

The posterior mean of θm in model m, conditional on data yd and design d can thus be written

θ̂md(yd) ≡ E[θm|yd, d,m] = M−1
mdumd(yd) = M−1

md(R
−1
0mθ0m +XT

mdyd) (25)

The marginal distribution of yd|d,m, integrating over θm, is

yd|d,m ∼ N(Xmdθ0m, σ2
mS−1

md) (26)

where we have defined

Smd = Ind
−XmdM

−1
mdX

T
md (27)

and Ind
is the nd×nd identity matrix. Before seeing any data the expected distribution of the posterior

mean θ̂md(yd) in (25) is

θ̂md|d,m ∼ N(θ0m, σ2
m(R0m −M−1

md)) (28)

Since our chosen utility is the squared error function, we can use the results of Section 2.3. In par-

ticular, given a particular design d, and an observed dataset yd under that design, the optimal answer

a∗(yd, d) is given by (7):

a∗(yd, d) =
∑
m∈M

ḡTmM−1
md(R

−1
m0θm0 +XT

mdyd) p(m|yd, d) (29)

The posterior p(m|yd, d) for the models m in (29) is given by Bayes rule using the marginal distri-

bution p(yd|d,m) from (26) and the prior probabilities on the space of models p(m). This solves the

Decision Problem conditional on observations yd from design d.

The maximised utility corresponding to a∗(yd, d) is given by (8):

U∗(yd, d) = −E[T 2|yd, d] + (a∗(yd, d))
2

= −
∑
m∈M

ḡTm
[
σ2
mM−1

md +M−1
mdumd(yd)u

T
md(yd)M

−1
md

]
ḡm p(m|yd, d)

+ (a∗(yd, d))
2 (30)
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To solve the Design Problem we find the a priori expected value of U∗(yd, d) by averaging over all

possible observations yd:

U∗(d) = −
∑
m∈M

ḡTm
[
σ2
mR0m + θ0mθT0m

]
ḡm p(m) + E

[
(a∗(yd, d))

2
∣∣∣ d] (31)

The optimal design maximises U∗(d). Note that the first term of (31) is independent of the design, so

that the optimal design is the one that maximises

Ǔ∗(d) = E
[
(a∗(yd, d))

2
∣∣∣ d]

=

∫
Yd

[∑
m∈M

ḡTmθ̂md(yd) p(m|yd, d)

]2

p(yd|d) dyd (32)

Thus we see that an optimal design is obtained by maximising the expectation over the data space of

the squared target value’s expectation over the space of models. An ideal sampling strategy is therefore

one that chooses samples (perhaps sequentially - see below) that maximise this expected utility.

3.4 Demonstration

As a demonstration of estimating the integral T , consider a laboratory experiment to estimate the creep

deformation characteristics of a rock sample by applying a constant stress over time x and measuring

the resulting strain µ(x) across the sample for some function µ. It is well known that the dominant

initial (primary) mode of deformation is approximately logarithmic in time (µ(x) takes a form similar

to log(1 + x)); as strain builds, the response transitions to a secondary mode which is dominated by

strain that is linear in time (µ(x) is approximately proportional to x) – see Boukharov et al. (1995).

For any new material, there can be significant uncertainty about which measured data correspond to

primary and which to secondary creep mechanisms, hence any inference we wish to make based on

the creep properties must take this uncertainty into account.

Thus motivated we consider the case where there are two single parameter models with different

basis functions:

m1 : µ1(x) = θ1x for θ1 ∈ R

m2 : µ2(x) = θ2 log(1 + x) for θ2 ∈ R
and x ∈ [0, b] (33)

The two basis functions which are being compared are the linear function g1(x) = x and the curved

function g2(x) = log(1 + x). They both pass through the origin, and for sufficiently large b (i.e.

beyond the linear regime close to x = 0), they are distinguishable by the curvature of the log function.

We expect that detection of that curvature would require an adequate coverage of x values across the

interval [0, b].

We assume the error variance σ2
m = σ2 is known and is the same for both models, we assume equal
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prior probabilities for the models p(m1) = p(m2) = 1/2, and the same diffuse prior θm ∼ N(0, σ2
0)

for θm in both models.

Initially, say our goal is to estimate the integral

T =

∫ b

0
µ(x) dx (34)

When evaluated for each of the models, this takes the values

T (θm|m) = ḡmθm with ḡm =

 1
2b

2 if m = 1

(1 + b) log(1 + b)− b if m = 2
(35)

The design space consists of choices of n observation locations xd at which observations of y will be

made. Given a choice of locations the design matrices Xmd are simply n× 1 column vectors xmd:

X1d = x1d =


xd1

xd2
...

xdn

 and X2d = x2d =


log(1 + xd1)

log(1 + xd2)
...

log(1 + xdn)

 (36)

An observation yd under design d is a vector of n real values yd. Under model m with parameters θm,

and design d these are drawn from the distribution

yd|d, θm,m ∼ N(xmdθm, σ2In) (37)

Integrating out θm over its Normal prior distribution, the distribution of yd is

yd|d,m ∼ N(0, σ2S−1
md) (38)

where

Smd = In −
σ2
0xmdx

T
md

σ2 + σ2
0x

T
mdxmd

(39)

S−1
md = In +

σ2
0

σ2
xmdx

T
md (40)

with |Smd| = σ2/(σ2 + σ2
0x

T
mdxmd). The marginal distribution of yd averaging over the prior on

models is a mixture (sum) of Normal distributions:

p(yd|d) = (2πσ2)−n/2
∑
m∈M

p(m)|Smd|1/2 exp(− 1
2σ2y

T
d Smdyd) (41)

The posterior distribution of the parameter θm within model m is then found to be

θm|yd, d,m ∼ N

(
σ2
0x

T
mdyd

σ2 + σ2
0x

T
mdxmd

,
σ2σ2

0

σ2 + σ2
0x

T
mdxmd

)
(42)
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The posterior distribution of models m given data yd from design d is

p(m|yd, d) =
p(m)|Smd|1/2 exp(− 1

2σ2y
T
d Smdyd)∑

m′∈M p(m′)|Sm′d|1/2 exp(− 1
2σ2y

T
d Sm′dyd)

(43)

Thus the optimal answer a∗(yd, d) given data yd from design d is given by (29):

a∗(yd, d) =
∑
m∈M

ḡmσ2
0x

T
mdyd

σ2 + σ2
0x

T
mdxmd

p(m|yd, d) (44)

This answer to the question is our best estimate of the integral T , and has variance equal to the negative

optimised utility by equation (30):

Var[T |yd, d] = −U∗(yd, d)

=
∑
m∈M

ḡ2mσ2
0

σ2 + σ2
0x

T
mdxmd

[
σ2 +

σ2
0(x

T
mdyd)

2

σ2 + σ2
0x

T
mdxmd

]
p(m|yd, d)

− (a∗(yd, d))
2 (45)

To identify the optimal design a priori, by (32) we need to find the design d (the set of sampling

locations) that maximises

Ǔ∗(d) =

∫
Yd

[a∗(yd, d)]
2 p(yd|d) dyd (46)

where p(yd|d) is the mixture of Normal distributions given in equation (41) and a∗(yd, d) is given

in equation (44). Note that the integral over yd is an n−dimensional integral, so that in designs with

large samples (i.e., with many values of x at which µ(x) is observed) the optimisation to find the best

design d∗ may be computationally costly.

As an explicit example, we have implemented the model above with the fixed parameter settings

b = 10, σ0 = 3 and σ = 0.2. We considered five designs, each with three sampling locations, which

are listed in Table 2. We evaluated Ǔ∗(d) in equation (46) for each design, and the results are also

shown in Table 2. They identify design d4 as the optimal design, i.e. the design with maximal utility

a priori, with the data points spread widely across the interval. Similarly spread out designs d2 and d5

are almost as good. The worst design d1 puts all of the sampling points close to zero, meaning that

there is no hope of discriminating between the linear and log funcitons.

We simulated a dataset for each of the five designs using Model 1 and a true parameter value of

θm = 0.4, corresponding to a true value of the integral of T = c1θ1 = 20. We then approached

these datasets as an analyst ignorant of the true model would. We computed the posterior probability

p(m|yd, d) of each model m ∈ {1, 2} given the data and design using equation (43), and the best esti-

mate of the integral T̂ = a∗(yd, d) using equation (44) with its standard error SE(T̂ ) =
√
−U∗(yd, d)

(square root of the variance from equation (45)). These values are listed in Table 3. The design d4,

identified a priori as the best, is also the best a posteriori (smallest standard error), again with d2 and
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Table 2. Experimental designs and their corresponding a priori utilities for integral estimation. The values Ǔ∗(d)

are calculated using (46) with a∗(yd, d) from (44) and p(yd|d) from (43).

Design, d xd1 xd2 xd3 Description Ǔ∗(d)

d1 1 1.5 2 Clustered close to 0 12356 (worst)

d2 1 5.0 10 Spaced widely 12456

d3 9 9.5 10 Clustered far from 0 12411

d4 1 9.5 10 One near 0, two clustered far 12505 (best)

d5 1 1.5 10 Two near 0, one far 12456

d5 performing almost as well. All three designs strongly discriminate between the two models by as-

signing effectively zero probability to model 2, and yield very precise estimates T̂ = a∗(yd, d) of

T . Notice that (by chance) design d5 leads to a posterior estimate of the target integral that is closest

to the true value of 20. However, since the true value is unknown, the investigator is unaware of this

fortuitous outcome, and therefore can not take advantage. The worst design a priori d1 has poor dis-

crimination and the least precise estimate. The basis functions and the best fitting models for the best

design d4 and the worst design d1 are displayed in Figure 4.

It might be that instead of estimating the integral value in equation (34) our interest was defined

by the question: “which is the best model from the two candidates in (33)?” Then, from Section 2.3,

the optimal answer is the estimate of the 2 × 1 indicator vector T which takes the value (1, 0)T if

Model 1 holds, and (0, 1)T if Model 2 holds.

Given observations yd from design d then the optimal estimate of T that solves this Decision

Table 3. Simulated Data. For each of five designs we list a set of simulated observations yd, posterior probabil-

ities of each model p(m|yd, d), and estimates of the integral T from (35) (the true value is 20), with associated

standard errors from (45). The true model is m = 1.

Observations p(m|yd, d)

Design, d yd1 yd2 yd3 m = 1 m = 2 T̂ SE(T̂ )

d1 0.393 1.094 0.660 0.290 0.710 15.89 5.32 (worst)

d2 0.327 1.945 4.164 1.000 0.000 20.51 0.89

d3 3.476 3.690 3.695 0.196 0.804 24.01 2.57

d4 0.301 3.748 3.939 0.999 0.001 19.69 0.75 (best)

d5 0.264 0.520 4.035 1.000 0.000 20.05 0.98
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Figure 4. (a) Basis functions for the two models; (b) and (c) show the best fits for Models 1 and 2 under the best

(d4) and worst (d1) of the five designs, given the data simulated under Model 1 with θ = 0.4 (Table 3). The true

model is shown as a solid line, the simulated data are shown as open circles. The shaded areas around the fitted

curves are the 95% posterior credible intervals for the fitted models.

Problem is given by equation (10). Thus for our simulated data the estimates of the vector T are the

pairs of p(m|yd, d) values from Table 3, reproduced in Table 4. The data from designs d2, d4 and d5

strongly favour Model 1 (the true model), with posterior probabilities of Model 1 close to 1. The data

from designs d1 and d3 favour Model 2, but less strongly than the other three designs favour Model 1

– the posterior probabilities for Model 2 being only 0.71 and 0.80 under d1 and d3 respectively.

The optimal design d∗ for model selection is the one that maximises the model selection utility

Ǔ∗
MS(d) = E[p(m|yd, d)] in equation (13). Values of Ǔ∗

MS(d) for the five candidate designs are given

in Table 4. On the basis of this prior utility the ordering of the five designs is similar to that for the

estimation of the integral value (Table 2) in that the top three optimal designs a priori are d2, d4 and d5

with the candidate points spaced widely, and the worst is again d1 in which they cluster close to zero.

There is a slight preference for design d5 in this case, showing that the optimal experiment to perform

varies with the question posed.

4 SEQUENTIAL ANALYSES

We now consider the situation where a sequence of data collection exercises are to be carried out. At

each stage the optimal experimental design is selected, and data are collected. The new data result in an

updated state of knowledge, then the process repeats. We refer to this as a sequential interrogation.
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Table 4. Experimental designs, a priori utilities for model selection, and estimates of the summarised state of

nature (the latter repeated from the simulated data in Table 3). The a priori utilities Ǔ∗
MS(d) are given by (13)

and estimates T̂m = p(m|yd, d) come from (43).

Design, d Description Ǔ∗
MS(d) T̂ = (T̂1, T̂2)

d1 Clustered close to 0 0.75 (0.290, 0.710)

d2 Spaced widely 0.96 (1.000, 0.000)

d3 Clustered far from 0 0.83 (0.196, 0.804)

d4 One near 0, two clustered far 0.95 (0.999, 0.001)

d5 Two near 0, one far 0.97 (1.000, 0.000)

Such sequential exercises arise from the recognition that the first questions posed by the investiga-

tor may ultimately be found to be irrelevant. In the example of interrogating a human criminal suspect

the interrogator is motivated to Solve The Crime; they may commence the interrogation already con-

vinced of the broad features of how a crime was committed, and be seeking information about the

finer detail. The utility for the initial questions may relate to accurate estimates of the sequencing

and timings of certain key events. It may however be found during questioning that the entire logi-

cal reasoning of the interrogator was based on a flawed assumption. That being the case, questioning

may proceed in a new and entirely unanticipated direction. A geophysical example might be that a

surprising revelation about the nature of subsurface structures may induce a change in the focus of

enquiry: questions about the exact location and size of a particular known fault may shift to the map-

ping of hitherto undetected faults that are revealed by an imaging experiment conducted as part of the

interrogation.

To formalise the sequential process we first need a definition of the state of knowledge. We then

define exactly what we mean by a sequential interrogation, and show how the state of knowledge is

updated after each step in the sequence. We illustrate this procedure with a simple example.

4.1 The state of knowledge

At the start of the kth step the state of knowledge of the investigator is Bk. This state of knowledge

includes, or can be translated into, the following components:

1. A set of questions Qk

2. The space of models Mk, containing all of the models that are considered by the investigator at

step k;

3. For each model m ∈ Mk:
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• a prior probability pk(m) = p(m|Bk) of the model;

• a parameter space Θm;

• a prior distribution pk(θm|m) = p(θm|m,Bk) of the parameter θm in Θm.

4. Target functions Tk(θm|m) = T (θm|m,Bk) which encode the questions Qk for each model m.

For all models m ∈ Mk the function Tk(θm|m) takes values in the single target space Tk.

5. An answer space Ak.

6. A design space Dk of experimental designs amongst which a design is to be chosen at step k.

7. A utility Uk(a|t, d) = U(a|t, d, Bk) for answer a ∈ Ak, defined as the utility of accepting

answer a if the true value of the function T (·|·) is t and the design chosen is d ∈ Dk.

8. For each design d ∈ Dk and model m ∈ Mk there is a likelihood f(yd|d, θm,m) for data

yd ∈ Yd. Since the likelihood is conditioned only on the chosen design d and model m, it is otherwise

independent of the state of knowledge Bk.

9. The stock of any other knowledge Ωk that the investigator has, which is not captured by 1–8

above.

While knowledge Ωk appears to be superfluous at iteration k, it may prove to contain significant

information at later iterations. Hence, Ωk represents our stock of intellectual capital that we hold in

reserve.

In summary we can represent the state of knowledge in symbolic terms as

Bk = (Ωk, Qk,Mk,Tk,Ak,Dk,

{pk(m), {pk(θm|m), Tk(θm|m)|θm ∈ Θm}|m ∈ Mk}, (47)

{Uk(a|t, d)|a ∈ Ak, t ∈ Tk})

4.2 Interrogation procedure

The procedure is as follows. At each step k the methods described in earlier sections can be applied to

solve the Decision and Design Problems:

1. Given the state of knowledge Bk at step k the optimal design d∗k can be identified (as the solution

of the appropriate Design problem):

d∗k = argmax
d∈Dk

U∗
k (d)

= argmax
d∈Dk

∫
Yd

max
a∈Ak

∑
m∈Mk

∫
Θm

Uk(a|T (θm|m), dk)

×pk(θm,m|yd, d)pk(yd|d) dθm dyd (48)

2. Design d∗k is then implemented, and data yd∗k are collected.
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3. The optimal answer is

a∗k = argmax
a∈Ak

∑
m∈Mk

∫
Θm

Uk(a|Tk(θm|m), d∗k)pk(θm,m|yd∗k , d
∗
k) dθm (49)

and this achieves an estimated utility of

Uk(a
∗
k|yd∗k , d

∗
k) =

∑
m∈Mk

∫
Θm

Uk(a
∗
k|Tk(θm|m, d∗k))pk(θm,m|yd∗k , d

∗
k) dθm (50)

4. The state of knowledge is updated combining the previous state Bk and new data yd∗k |d
∗
k to form

a new state of knowledge Bk+1. Details of the updating process are given below.

5. The procedure repeats for step k + 1 unless a condition for terminating the sequence has been

met. At termination the final answer a∗k has been accepted and the final state of knowledge is Bk+1.

Updating the state of knowledge to Bk+1 involves updating some or all components in equation 47,

potentially including the questions Qk+1. The application of the termination condition and the updat-

ing of the questions in step 5 (note that questions are included in Bk+1) are generally controlled by

some supra-utility U(U †
k , Bk+1, Ck). This is a function of the (estimated) utility U †

k = Uk(a
∗
k|yd∗k , d

∗
k)

achieved at the end of step k, the updated state of knowledge Bk+1, and Ck which is some measure

of accumulated time and/or cost at the end of step k. U embodies any overall raison d’etre of the

interrogation procedure, and all logistical or cost constraints.

For example, if questions Q are sufficient to describe the raison d’etre of the interrogation prob-

lem, then if the sequence is scheduled to stop after a prechosen number of steps K, then the ‘cost’ is

the number of steps Ck = k and the supra-utility is simply U(Ck) = Ck. Termination occurs once U

reaches the value K.

Alternatively termination may occur if the achieved step k utility U †
k = Uk(a

∗
k|yd∗k , d

∗
k) is sufficient

(large enough according to some criterion). For the negative squared error utility such a stopping

criterion is equivalent to estimates having a variance below some specified tolerance. In this situation

the supra-utility is U = U †
k .

To continue the example of the interrogation of a human suspect the iterations represent successive

lines of questioning. In that case U †
k would likely represent a measure of the strength of evidence of

guilt of a crime; however, the nature of the crime being investigated may change as questions Qk

evolve at successive iterations, as investigators become aware of new information. The invariant goal

of the investigator is to Solve the Crime, and this is encoded in the supra-utility U , which is some

measure of whether U †
k has exceeded a threshold where the evidence is expected to pass muster in

a court of law, and would also depend on any time limits during which suspects can be held for

questioning without a specific charge being brought. Hence, if cost Ck measures the cumulative time

for rounds of questioning 1 to k, then U = f(U †
k , Ck) for some chosen function f .
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4.3 Updating the state of knowledge

The updating process from Bk, yd∗k |d
∗
k to Bk+1 in principle requires the respecification of every com-

ponent of the state of knowledge from Section 4.1.

Changing the questions will result in an alteration to almost every part of the state of knowledge.

In particular the target and answer spaces may differ completely from the previous step, as will the

design space and the utility.

The space of models Mk+1 may be the same as Mk. However we may eliminate some models now

thought to be impossible, and might include new models which are more complex or more detailed

versions of models in Mk.

For each model m ∈ Mk+1 we need to define priors for the models and priors on the parameters

of those models. This is straightforward in the case that the spaces of models Mk and Mk+1 are

identical, in which case we use Bayesian updating in which the posteriors from step k are the priors

for step k + 1:

• the model prior pk+1(m) = pk(m|yd∗k , d
∗
k);

• the parameter space Θm is unchanged;

• the parameter prior pk+1(θm|m) = pk(θm|yd∗k , d
∗
k,m).

If we eliminate some models now thought to be impossible, only the first bullet above changes

to pk+1(m) = 0 for those m that are dropped, and otherwise pk+1(m) = Rpk(m|yd∗k , d
∗
k) for nor-

malisation constant R that ensures that pk+1(m) still sums to unity over all m. While the parameter

prior need not change, some of the values of pk+1(θm|m) become redundant if the corresponding

pk+1(m) = 0. If nevertheless calculated, such redundant information therefore becomes part of the

background stock of knowledge Ωk+1.

If the questions and spaces of models remain the same in iteration k + 1 then the target functions

Tk+1(θm|m) will be the same as Tk(θm|m), and Tk+1 = Tk. Otherwise new target functions must

be specified for new models added to the space of models, or these functions may change completely

if the questions have changed. If the questions Qk+1 are a subset of Qk, some questions having been

answered satisfactorily, the new target space may simply reduce in dimension.

For any pair of design d ∈ Dk+1 and model m ∈ Mk+1 that already existed at step k, then the

likelihood function f(yd|d, θm,m) must be the same as at step k. Any new pair (d,m) not seen before

must have a new likelihood constructed. However, conditional on (d,m) this construction does not

otherwise depend on the state of knowledge.

The stock of knowledge Ωk+1 is updated to include any additional information from the observed

data yd that is informative but which lies outside the scope of the space of models Mk+1.
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Even if it can neither be enumerated nor even described other than conceptually, the role of Ωk is

important. It represents the background knowledge and human experience that does not seem relevant

at step k, but which nevertheless provides the information required to pose new questions, introduce

new models, contemplate new possible answers and introduce new designs. In other words it describes

the knowledge and experience base that may underpin human inspiration. Note also that there are sit-

uations where Ωk can be enumerated and represented explicitly. For example, an artificially intelligent

robot might store a parameterised form of information collected during its experience to-date. This

information might be partitioned into that deemed relevant and irrelevant for a particular problem at

hand; Ωk represents the latter partition element. This is important in a variety of situations, for ex-

ample if interrogation theory is used to describe robotic decision-making over very long time periods

where accumulated experience is significant, and where inspiration is important and must be simu-

lated, such as will likely be required in future unmanned space missions to investigate other planets

(e.g., for autonomous geological mapping see Candela et al. 2017). This is discussed further below.

The simplest case of all is that our models, questions and possible answers do not change from

step to step – and therefore that there is no inspiration after the initial setup of the problem. That

implies that the priors are updated using Bayes rule, the utility function remains the same throughout,

and there is no change to the state of knowledge Ωk which remains fixed at its initial value Ω1. In that

case:

Bk+1(Bk, yd∗k |d
∗
k) = (Ω1, Q,M,T,A,D,

{pk+1(m) = pk(m|yd∗k , d
∗
k), (51)

{pk+1(θm|m) = pk(θm|yd∗k , d
∗
k,m), T (θm|m)|θm ∈ Θm}|m ∈ M},

{U(a|t, d)|a ∈ Ak, t ∈ Tk})

A sequential interrogation set up in this way is also the simplest candidate for automation e.g., when

inspiration from an autonomous robotic system is neither necessary nor desired.

4.4 Example Sequential Interrogation

As an example of a sequential investigation we consider the case of a subsurface Earth resources

company reviewing its portfolios of assets in the Earth’s subsurface (e.g., water, hydrocarbon or CO2

reservoirs; ore bodies or mineral assets). It is interested in assessing the proportion of such assets

that were improperly assessed by asset teams at the exploration phase – before the eventual economic

success or failure of each asset was known. It wishes to make this assessment by inspecting the original

paperwork for each asset for any significant irregularities or deficiencies in procedures followed. This

task is costly so the company decides to take a random sample of assets to inspect, and to stratify the
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sample across those assets that were eventually successful and those that were unsuccessful in terms

of providing a resource that proved economically feasible to produce or use. The company decides to

take independent samples from each of these two portfolios of assets.

There are Nj assets in each portfolio j, (j = 1, 2) and the (unknown) proportion of assets with

irregularities in portfolio j is θj . Say the overall proportion of assets with irregularities is the quantity

of interest

T =
N1θ1 +N2θ2
N1 +N2

= c1θ1 + c2θ2 , (52)

with cj = Nj/N , N = N1 + N2 and c1 + c2 = 1. The overall aim is to estimate this proportion as

accurately as possible, given a fixed overall budget that will allow a total of n individual asset inspec-

tions. To achieve the maximum efficiency the allocation of the n assets between the two portfolios

must be chosen to minimise the variance of the ultimate estimate of T . However that variance depends

on the unknown values of θ1 and θ2. Therefore the company plans a sequential analysis. At each stage

a sample is allocated between the two portfolios, the sample is collected, and new estimates of θ1

and θ2 are made. These estimates improve (become more precise) at each step, enabling an improved

allocation of the sample at the next step. Thus we have a sequence of design problems: each one being

the choice of the optimal design based on the accumulated evidence.

The space of models Mk at every step k contains the same single model m: there are two possibly

distinct proportions θ1 and θ2 of assets with irregularities. The parameter space is Θk = [0, 1]× [0, 1].

At Step 1 the prior for θj is assumed to be a Beta(α1j , β1j) distribution, for j = 1, 2 (see e.g.

Gelman et al. (2013) for a definition of the Beta distribution). The function T (θ1, θ2) is defined in

equation (52) above, and the answer to the question is an estimate of T with a squared error loss

function chosen to define the utility. We therefore use the method and results laid out in Section 2.3.

At step k the design space Dk consists of possible allocations of nk units between the two port-

folios, with nkj samples taken from portfolio j, for j = 1, 2, and nk1 + nk2 = nk. We assume that

K steps will be taken, and that the size of the sample nk to be allocated at step k has been fixed in

advance, with
∑K

k=1 nk = n. We discuss the choice of K and nk further below.

Within portfolio j there are nkj assets inspected, chosen by a simple random sample of assets not

inspected so far, of which ykj are found to have irregularities or deficiencies. Assuming independence

among the assets within portfolios these data can be assumed to arise from Binomial probability

distributions (Gelman et al. 2013):

ykj |θ, dk ∼ Binomial(nkj , θj) for j = 1, 2 and k = 1, . . . ,K. (53)

We assume that the proportion of assets to be sampled is small compared to the number of assets in

either portfolio, so no finite-population corrections are necessary. At the first step this standard Beta-
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Binomial set up means that the posterior for θj is a Beta(α1j + y1j , β1j + n1j − y1j) (Gelman et al.

2013). This posterior serves as the prior Beta(α2j , β2j) at the second step, with α2j = α1j + y1j and

β2j = β1j + n1j − y1j . The posterior at step k is used as the prior at step k + 1, so it follows that the

priors at every step are

θj |Bk ∼ Beta(αkj , βkj) (54)

with

αkj = α1j +
k−1∑
ℓ=1

yℓj and βkj = β1j +
k−1∑
ℓ=1

(nℓj − yℓj) (55)

The optimal answer at step k (i.e. the best estimate of T ), is given by equation (7), which in this case

is

a∗k(ydk , dk) =
2∑

j=1

cj
α(k+1)j

α(k+1)j + β(k+1)j
(56)

with optimised utility from equation (8):

U∗
k (ydk , dk) = −

2∑
j=1

c2j
α(k+1)jβ(k+1)j

(α(k+1)j + β(k+1)j)2(α(k+1)j + β(k+1)j + 1)
(57)

The optimal design at step k maximises the a priori expected utility

U∗
k (dk) = −

2∑
j=1

λkj

(αkj + βkj + nkj)
(58)

with respect to design dk = nk1 (since nk2 = nk − nk1), where

λkj = c2j
αkjβkj

(αkj + βkj)(αkj + βkj + 1)
. (59)

By setting derivatives of U∗
k (dk) to zero, this optimisation problem reduces to the solution nk1 of the

quadratic equation

λk1(αk1 + βk1 + nk − nk1)
2 − λk2(αk2 + βk2 + nk1)

2 = 0 . (60)

In the case when c1 = c2, αk1 = αk2 and βk1 = βk2, this gives the simple solution nk1 = nk/2,

in other words equal allocation. This would be the likely situation at step 1 if the priors for the two

portfolios are the same and if the two portfolios were the same size (N1 = N2). The solution to

equation (60) is not guaranteed to be an integer; however the solution nk1 can just be rounded to the

nearest whole number to produce a physically implementable design.

The sample sizes nk at each step were fixed in advance in this example, as was the number of

steps K. At one extreme the whole exercise could be done in one step, with nk = n and K = 1. At

the other extreme we could have nk = 1 and take K = n steps, at each step allocating the next sample

member to the porfolio which will increase the utility the most. This latter approach will yield the best



32 R. Arnold and A. Curtis

possible result in terms of the utility, but is likely to be ruled out as impractical. Instead the number of

steps K and workloads nk may be chosen in advance for convenience and ease of administration, or

can be designed by maximising the expected utility as in equation 58.

Note that an alternative stopping rule is to fix the nk in advance, but have the number of steps

K undetermined. The supra-utility U is then equal to the optimised achieved utility U∗
k (ydk , dk) =

−Var[T |ydk , dk] from equation (57), and the process terminates once this exceeds some chosen value

−V0, where
√
V0 is the desired maximum standard error of the estimate of T .

After initial assessments of the proportion of incorrectly assessed assets in equation (52), at some

step the company might decide that it would also like to know the answer to a related but different

question Q: “Is improper asset evaluation associated with the success rate of the asset portfolio?” This

question can be answered by finding the values of both θ1 and θ2 in order to assess any differences in

their values. Our goal is then to estimate the vector T = (θ1, θ2)
T with minimum variance, and we

must specify the weight matrix W in equation 5 in the construction of the utility. If we set W to be

diagonal then the relative sizes of the (non-negative) diagonal entries W11 and W22 characterise the

importance we place on knowing θ1 and θ2. It follows directly that the solutions to the design and

decision problems are the same as the above (equations (56)–(60)), but with c1 and c2 replaced with
√
W11 and

√
W22 respectively.

5 DISCUSSION

Many different types of problems can be addressed using the schema in Figures 1 and 2. Herein the

worked examples were all linear in the parameters Θ to be estimated, but the general approach and

expressions presented in Section 2 also apply to nonlinear problems. Hence, for example, nonlinear

inversion, model selection, and experimental design problems fit equally well within the same interro-

gation methodology.

The theory presented herein appears highly structured and formalised. Nevertheless, it can be used

to represent processes that are apparently less structured such as human discursive decision-making,

interrogation or elicitation. For example, the study of Polson & Curtis (2010, 2015) recorded the dy-

namics of the uncertainty perceived by individual geoscientific experts in a sequential manner – before,

during and after a group elicitation session. That session was carried out to assess the suitability of a

particular analogue geological reservoir for subsurface storage of CO2 for climate change mitigation,

and the result showed the dynamic state of subjective opinions, even of experts with a well defined

common data set (Bond et al. 2007, 2012; Curtis 2012). In a separate expert elicitation experiment in

2011, the same authors applied their methodology with a group of six other experts. The investigator

in the exercise was interested in the answer to the question Q1 : “Should we promote carbon capture
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(a) (b)

Figure 5. Individual and consensus probability distributions for p(θ1) elicited from six experts (E1-E6) under

(a) design d1, and (b) design d2 discussed in the text. From a study similar to that of Polson & Curtis (2010,

2015).

and subsurface storage as a technology for climate change mitigation now?” The relevant state of na-

ture θ1 is the truth of this statement: either θ1 = 0 if it is false, and θ1 = 1 if it is true. The investigator

had no expert opinion about this, and at the outset assigned a prior p(θ1 = j) = 1
2 to both options

j = 0, 1.

The investigator then called together a panel of experts, and following a discussion, collected both

their individual views and their group consensus view about θ1. This discussion was an experiment,

with design d1 (which at this stage was simply to elicit their views about θ1), and their responses

constituted the investigator’s data yd1 . These data were translated by the investigator, using averaging

techniques appropriate to the synthesis of expert opinion (see Polson & Curtis (2010)), into a posterior

probability distribution for θ1: p(θ1|yd1).

However the result of this exercise was judged unsatisfactory, because the views of the individual

experts were highly divergent (Figure 5a). The reason for this was apparently that during the discussion

d1 the experts had found it difficult to answer the question about θ1 directly, because it depended on the

related question of whether alternative low carbon technologies or strategies (such as the development

of new nuclear power options, or energy use reduction) would also be promoted fairly.

In response to this situation a new subquestion was added: Q2 : “What is the probability that

alternative low carbon technologies will also be promoted fairly?” Associated with this question is the

state of nature parameter θ2 – the probability that alternative technologies would be promoted fairly:

θ2 = 1 if alternative technologies would be promoted fairly, and θ2 = 0 if not. The investigator’s prior

for this parameter was p(θ2 = k) = 1
2 for both options k = 0, 1.

The discussion was resumed in a second iteration. Experimental design d2 was designed to first

elicit an answer to Q2 (the value of θ2); then elicit the answer to Q1 (the value of θ1) conditional on

each possible answer to Q2. The content of the second discussion resulted in data yd2 . These data
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were first used to construct the posterior distribution p(θ2|yd2 , yd1) thus providing an answer to Q2.

Secondly, the conditional posterior distribution p(θ1|θ2, yd2 , yd1) was constructed for each of the two

scenarios θ2 = 0 or 1. Finally, the marginal posterior for θ1, the ultimate goal of the exercise, and the

answer to Q1, was calculated by

p(θ1|yd2 , yd1) = p(θ1|θ2 = 0, yd2 , yd1)p(θ2 = 0|yd2 , yd1)

+ p(θ1|θ2 = 1, yd2 , yd1)p(θ2 = 1|yd2 , yd1) (61)

While the true answer to this overall question is unknown (and may not exist in any objective sense),

the experts stated that they felt better able to estimate the probabilities elicited in design d2 than those

in design d1. This may explain why results were significantly more consistent (the inter-expert variance

was significantly reduced) using the second approach (Figure 5), as subjective biases that occur in

highly uncertain situations are reduced (Bond et al. 2007, 2012; Curtis 2012). What is more, the

experts’ overall tendency was to promote CO2 storage under design d1 (estimates of θ1 are on average

greater than 50% in Figure 5a) whereas they slightly prefered not to promote CO2 storage under design

d2 (estimates of θ1 in Figure 5b are on average lower than 50%). This illustrates how critical the design

of experiments is to the results of such elicitation experiments. Moreover this example demonstrates

the manner in which a realisation on the part of the interrogator during the interrogation can allow that

interrogator to fruitfully change the course of the inquiry by posing a new question and collecting data

under a new experiemental design.

This example shows how a common, discursive elicitation method to solve a problem can be rep-

resented within the interrogation schema. The additional advantage of the schema is that it provides a

basis to optimise such elicitation sessions in future: elicitation methods such as that of Polson & Curtis

(2010) which provide quantitative, probabilistic outcomes based on parameterisations of a problem,

fit perfectly within the interrogation schema. This would allow, for example, the experimental design

– the choice of which data to elicit from the experts (which verbal questions to pose) – to be optimised

in each iteration (e.g., Coupé & Van der Gaag 1997; Curtis & Wood 2004). Alternatively, the schema

could be used to divide the experts into two groups in order to assess different parameters, or to provide

independent estimates of the same parameters. Methods similar to those in the asset portfolio example

above could be used to decide how many experts should be in each group, or which parameters each

group should estimate.

The above elicitation example illustrates the critical role of inspiration within interrogation prob-

lems. In iteration 1, the focus was not initially on factors controlling whether the experts perceived

other technologies to be adequately promoted. Hence, parts of their background knowledge seemed

irrelevant, and were represented by Ω1. However, it became clear during the course of that iteration
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that these were relevant factors; hence in iteration 2 some of the knowledge in Ω1 was used to re-

parameterise the problem to construct the new parameterisation θ2. Other aspects of their knowledge

in Ω1, such as whether they perceived politicians to give sufficient weight to alternative technologies

were then considered relevant. Since this knowledge was irrelevant in iteration 1 and explicitly rele-

vant in iteration 2, it was therefore within set Ω1 but not Ω2, and that transfer of information out of Ω1

is the mathematical representation of inspiration.

In that example, the overall goal of the investigation did not change between iterations (the ul-

timate goal was still to estimate θ1). Within interrogation theory, the extent to which iteration k of

the elicitation achieved the overall goal might be assessed by calculating the inter-expert variation of

estimates of distribution pk(θ1). This could be represented by a supra-utility U = −V ar[θ1|y] where

the variance is calculated across experts. The high variance of results from iteration 1 represented a

low supra-utility, inspiring the investigator to change the questions Q in iteration 2. The results from

iteration 2 exhibit far lower inter-expert variation, producing a higher supra-utility.

Varying questions is an important flexibility in many interrogation scenarios, not least because this

potentially allows the interrogation system, including inspirational transitions, to be semi-automated.

For example, consider the area of machine learning. In the case of robotics, autonomous systems may

need to interrogate their surroundings by sensing and moving, then update all aspects of the subse-

quent problem to be solved, based both on their findings and on their overall objectives (Ramamoorthy

et al. 2013). Consider a robot with ‘senses’ of directional sight and directional hearing, with an overall

objective (embodied more precisely within its supra-utility): “Arrive at a source of a particular speci-

fied sound, while conserving as much battery power as possible”. Initially the relevant question might

be, “What is the optimal direction to move most directly towards the sound source?” Upon solving

the initial Design Problem, the robot decides to spend power on collecting data by both hearing and

visualising its environment (the experimental design). It performs that experiment and based on the

data it solves the Decision Problem of choosing an optimal answer (a direction), and moves towards

the sound. After a sequence of such steps, the robot senses that it approaches a barrier, on the other

side of which the sound appears to originate. The relevant interrogation question at that point may

change to, “Which direction of motion is most likely to result in circumnavigating the barrier, given

the robot’s limited motion capabilities?” Again a Design Problem would be solved to decide which

data to collect, and some information in Ωk (grey-scale values in a previously stored photograph) that

was thought to be irrelevant now has a specific interpretation (a barrier) and hence becomes relevant

– so is not included in Ωk+1. After solving the resulting Decision Problem to estimate an optimal

answer, the robot moves in one direction until it reaches the end of the barrier.

In the subsequent iteration it decides to perform an acoustic-only experiment to estimate the new
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direction of the sound source. Upon collecting the acoustic data and solving the source location inverse

problem it becomes clear that there are in fact at least two distinct sources of the sound. Based on the

supra-utility, the question is then updated to, “Which of the sources can be investigated with minimal

power consumption?” On solving the Design Problem, the robot may design a visual experiment to

identify objects that may be responsible for each sound source, then solve the Decision Problem to

decide which object could be approached with minimal power consumption (cost). Thereafter the

interrogation might change the question back to, “What is the optimal direction to move towards the

sound source?”, similarly to the initial iteration. The robot eventually arrives at a noise source and

stops, having achieved its objective.

An interrogation system that is formalised, numerically implementable, and which allows all of

questions, parameters and experiments to be updated sequentially, is thus crucial for certain applica-

tions, illustrating the importance of the theory presented herein. The supra-utility is key to being able

to make choices of appropriate questions at each iteration of the algorithm in Figure 2. Unexpected

occurrences during interrogations at one iteration (e.g., finding two noise sources instead of one) may

entirely change the most relevant questions at the next. This concept of ‘relevance’ must be defined

in terms of the overall objective or raison d’etre (above, of the robot), and this is embodied in the

supra-utility.

The decision about whether to stop a sequential interrogation may be controlled by many forms of

stopping criteria. In the example above, the stopping criteria may either be that the robot has reached

the sound source, or that battery power is too low to continue safely. In the elicitation or interrogation

of a human (in the common-parlance use of the word interrogation), a stopping criterion may embody a

trade-off between the fatigue that humans experience after several iterations making them more prone

to errors, against the value of additional knowledge that is expected to be gained in the next iteration.

Whatever the circumstances, the criterion used must depend on whether the overall interrogational

objective has been achieved (utility maximised), and this is also embodied within the supra-utility.

Interrogation theory therefore provides a useful overarching context for fields of inversion, design

and decision theory. These theories may thus be applied more efficiently, since interrogation theory

focusses experimental and inversion effort only on the parts of data and solutions that are relevant

to questions posed. However, interrogation theory also extends these fields theoretically, particularly

by the introduction and formalisation of (i) the target space which embodies relevant answers to our

particular questions, (ii) the changing state of knowledge in sequential studies, (iii) the potential to

consider different parameterisations of information, and (iv) the overall raison d’etre of the interro-

gation procedure which allows for inspirational changes in the questions posed. How each of these
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should be implemented in the case of specific problems in different areas of application will no doubt

be resolved in future studies.
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