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ABSTRACT37
Since the discovery of cortisone in the 1940s and its early success in treatment of 38
rheumatoid arthritis, glucocorticoids have remained the mainstay of anti-inflammatory 39
therapies. However, cortisone itself is intrinsically inert. To be effective, it requires 40
conversion to cortisol, the active glucocorticoid, by the enzyme 11! -hydroxysteroid 41
dehydrogenase type 1 (11! -HSD1). Despite the identification of 11! -HSD in liver in 42
1953 (which we now know to be 11! -HSD1), its physiological role has been little 43
explored until recently. Over the past decade, however, it has become apparent that 44
11! -HSD1 plays an important role in shaping endogenous glucocorticoid action. Acute 45
inflammation is more severe with 11! -HSD1-deficiency or inhibition, yet in some 46
inflammatory settings such as obesity or diabetes, 11! -HSD1-deficiency/inhibition is 47
beneficial, reducing inflammation. Current evidence suggests both beneficial and 48
detrimental effects may result from 11! -HSD1 inhibition in chronic inflammatory 49
disease. Here we review recent evidence pertaining to the role of 11! -HSD1 in 50
inflammation.51
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52
Introduction53
The discovery of the anti-inflammatory effects of cortisone, a glucocorticoid hormone, 54
by Hench and colleagues in the 1940s, opened the door to the longest and most 55
successful drug development programme in history. Glucocorticoids remain the most 56
widely prescribed treatment for inflammatory disease. They potently affect both 57
immune and non-immune cells, shaping their responses. Glucocorticoid actions are 58
highly dependent on context and can be very different during acute and chronic 59
inflammation. In the short term at least, many of their effects promote the resolution of 60
inflammation. Several years ago, we hypothesised that the glucocorticoid metabolising 61
enzyme, 11! -hydroxysteroid dehydrogenase type 1 (11! -HSD1), is induced early 62
during an inflammatory response and shapes its subsequent trajectory [1]. How well 63
has that hypothesis stood the test of time? Reasonably well as it turns out, but not in 64
quite the way we had envisaged.65

66
Glucocorticoids and inflammation67
Synthetic glucocorticoids exert potent anti-inflammatory and immunosuppressive 68
effects and are widely prescribed to treat both acute and chronic inflammation. Yet the 69
well known side effects of glucocorticoid excess include type 2 diabetes, visceral 70
obesity, hypertension and atherosclerosis which are themselves, somewhat 71
paradoxically, inflammatory conditions. Quite how glucocorticoids provoke 72
inflammatory metabolic diseases at the same time as suppressing chronic inflammatory 73
conditions such as rheumatoid arthritis or inflammatory bowel disease remains unclear. 74
It is likely to involve more complex mechanisms than the commonly held view that the 75
“adverse” metabolic effects involve gene activation by glucocorticoid receptor (GR), 76
whereas the “beneficial” anti-inflammatory effects rely on gene repression. Fully 77
understanding how glucocorticoids cause “metabolic inflammation” will be crucial for 78
the development and optimal exploitation of future anti-inflammatory therapies, which 79
could manipulate glucocorticoid action in a more sophisticated manner than current 80
therapies.81

82
Understanding the role of endogenous glucocorticoids during inflammation is key to 83
achieving this aim. Endogenous glucocorticoids are vital to survive trauma or certain 84
bacterial infections; they suppress pro-inflammatory cytokine production, binding to 85
GR in immune cells to prevent potentially lethal overshoot of immune responses [2, 3]. 86
Acutely, circulating pro-inflammatory cytokines are a potent stimulus to the 87
hypothalamic-pituitary-adrenal (HPA) axis to increase endogenous glucocorticoid 88
production [4, 5]. However, this normal response is lost or attenuated in chronic 89
inflammation [6].  In this respect, the treatment of chronic inflammatory disease with 90
exogenous glucocorticoids can be regarded as replacement therapy for an inadequate 91
endogenous glucocorticoid response [7]. 92

93
Acute inflammation is an immediate response of the body to injury or infection that 94
serves to remove the injurious stimulus, then restore homeostasis by removal of dead 95
and damaged cells/tissues and engagement of repair processes. It is initiated at the site96
of injury by the release of proinflammatory mediators such as bioactive amines, lipids 97
and cytokines: typically tumour necrosis factor (TNF)-!  and interleukin (IL)-1. These 98
cause vasodilation, increase vascular permeability allowing exudation of plasma, and 99
elicit leukocyte recruitment, activation and emigration from the microcirculation to the 100
damaged tissue. The initial response is typically predominated by neutrophils, which 101
are replaced by monocytes/macrophages during the resolution and repair stages. 102
Resolution of acute inflammation requires the engagement of mechanisms early in the 103
inflammatory response that shape the subsequent resolution (reviewed, [8-10]). Chronic 104
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inflammation results from persistence of the initiating stimulus with associated 105
lymphocyte and macrophage activation. Excessive tissue damage contributes to 106
continuing inflammation, failure of resolution and dysregulated repair processes such 107
as angiogenesis and fibrosis and can thus form a “vicious” cycle. Whilst acute 108
inflammation frequently occurs and is contained entirely at the local level, chronic 109
inflammation invariably involves a systemic response. 110

111
Glucocorticoids limit acute inflammation. They repress a large number of112
proinflammatory genes, including pro-inflammatory cytokines and chemokines, cell 113
adhesion molecules and enzymes involved in the initiation and/or maintenance of 114
inflammation, many of which are over-expressed in chronic non-resolving 115
inflammation. Conversely, they activate a number of genes encoding anti-inflammatory 116
mediators, such as IL-10 and annexin I (reviewed, [11-13]). Thus, acutely, 117
glucocorticoids inhibit the initial vasodilation and increased vascular permeability 118
during inflammation. They also alter the balance between survival and apoptosis of 119
leukocytes as well as their distribution between the circulation and immune tissues and 120
they decrease leukocyte emigration into sites of injury [13-18]. Importantly, 121
glucocorticoids potently influence the differentiation and phenotype of immune cells, 122
especially monocytes/macrophages and T lymphocytes, thereby polarising, or shaping, 123
immune responses [19]. Glucocorticoid treatment of human monocytes promotes an 124
anti-inflammatory, pro-resolution phenotype, characterised by high migratory and 125
phagocytic capacity, expression of CD163 (haemoglobin scavenger receptor) and high 126
production of IL-10 [20-23]. Similarly, in mice, pro-resolving macrophage functions 127
are enhanced by glucocorticoid treatment [24, 25], thus shaping the trajectory of an 128
inflammatory response and its outcome. Because glucocorticoids inhibit production of 129
“Th1” cytokines, which promote a cell-mediated immune response (activation of 130
phagocytes, antigen-specific T lymphocytes) whilst preserving or promoting “Th2” 131
cytokine production (aiding antibody production), they also shape the adaptive immune 132
response.133

134
Most research on the anti-inflammatory actions of glucocorticoids has utilised 135
dexamethasone, a potent synthetic glucocorticoid with powerful immunosuppressive 136
properties. However, the endogenous glucocorticoids, cortisol (the main glucocorticoid 137
in humans) and corticosterone (in rats and mice), are immunomodulatory rather than 138
immunosuppressive [14, 26], particularly when administered at physiologically relevant 139
concentrations. Indeed, low doses of corticosterone stimulate whereas higher doses 140
suppress macrophage activity [27]. This could, in part, reflect the higher affinity 141
binding of endogenous glucocorticoids to the mineralocorticoid receptor (MR) 142
(dexamethasone poorly activates MR [28]) than to GR as both are expressed in 143
macrophages [27, 29, 30]. However, whereas knock-down or antagonism of GR in 144
macrophages abrogates responses to both high and low doses of corticosterone, knock-145
down or antagonism of MR has little effect [27], suggesting GR-mediated effects, at 146
least in the rat macrophages tested. The interplay between GR and MR in macrophage 147
function and polarisation is likely to be complex (see below).148

149
11! -hydroxysteroid dehydrogenases modulate glucocorticoid action150
Endogenous glucocorticoids differ from dexamethasone in another important respect; 151
dexamethasone is not inactivated by 11! -HSD activity [31] whereas endogenous 152
glucocorticoids are substrates for the 11! -HSDs, which are important modulators of 153
physiological glucocorticoid action [32]. The 11! -HSD “shuttle” interconverts active 154
glucocorticoids (cortisol, corticosterone) with their 11-keto forms (cortisone, 11-155
dehydrocorticosterone), which bind poorly to receptors and are therefore intrinsically 156
inert. In intact cells, 11! -HSD1 exhibits oxo-reductase activity, converting cortisone 157
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and 11-dehydrocorticosterone into active cortisol and corticosterone respectively,158
increasing intracellular glucocorticoid levels. In contrast, 11! -HSD2 is exclusively a 159
dehydrogenase, inactivating cortisol and corticosterone. Expression of 11! -HSD2 is 160
largely restricted to mineralocorticoid-target tissues, most notably the distal nephron of 161
the kidney where it protects the non-selective MR from activation by glucocorticoids, 162
conferring aldosterone-specificity upon MR, which is otherwise a high affinity 163
glucocorticoid receptor [33, 34]. Of the synthetic glucocorticoids in widespread use as 164
anti-inflammatory drugs, it is worth noting that some, including 165
prednisone/prednisolone, are excellent substrates for the 11! -HSDs. 166

167
11! -HSD1 is widely expressed, including in immune cells, where its activity is 168
dynamically regulated depending on cell activation state (reviewed, [35]). 11! -HSD1 is 169
up-regulated upon activation of monocytes/macrophages, neutrophils or lymphocytes 170
[35, 36] (and see Figure 1). Circulating leukocytes in mice and healthy humans do not 171
express 11! -HSD2 [1, 37]. Both 11! -HSD isozymes are regulated by pro-inflammatory 172
signalling in non-immune cells (see below for details). 173

174
11! -HSD1 expression in monocytes/macrophages depends on cell activation state175
Monocytes and macrophages are essential during an inflammatory response. In 176
response to diverse environmental signals, “resting” or naïve macrophages adopt 177
distinct phenotypes. These are broadly categorised based on in vitro experiments into 178
two states, M1 (or classically activated) and M2 (or alternatively activated) (reviewed 179
[38, 39]). M1 macrophages, induced by interferon-!  and Toll-like receptor (TLR) 180
activation (eg by lipopolysaccharide, LPS), are vital for host defence, expressing pro-181
inflammatory cytokines, inducible nitric oxide synthase (iNOS) and demonstrating 182
strong microbicidal activity. M2 macrophages, polarised with IL-4 and/or IL-13, 183
restore homeostasis in the repair phase of inflammation. They are also vital for parasite 184
elimination. Other stimuli induce M2-like anti-inflammatory phenotypes, distinct from 185
IL-4/IL-13 polarised macrophages. Macrophage phenotype in vivo may be more 186
complex and heterogeneous [40], especially macrophages with M2-like characteristics, 187
reflecting the diversity of signalling and context in vivo. Glucocorticoids restrain M1 188
macrophages, dampening pro-inflammatory cytokine expression, and in naïve 189
monocytes/macrophages, induce a highly phagocytic, highly motile, M2-like phenotype 190
[21, 24, 41]. Conditional deletion of GR in macrophages increases pro-inflammatory 191
cytokine production and mortality following LPS administration [3, 42]. Conversely, 192
conditional deletion of MR in macrophages promotes polarisation to an alternatively 193
activated (M2) phenotype [43], suggesting a possible reciprocal relationship between 194
GR and MR activation in macrophages. There is therefore considerable potential for 195
11! -HSD1 (which can potentially supply ligand to either receptor) to modulate 196
monocyte/macrophage phenotype by increasing intracellular glucocorticoid levels, even 197
in the absence of elevated circulating glucocorticoid levels.198

199
Expression of 11! -HSD1 is low in circulating mouse leukocytes but is higher in 200
macrophages [44]. Though negligible in non-stimulated human monocytes, 11! -HSD1 201
expression is induced upon differentiation into resting or naïve (ie unstimulated) 202
macrophages [37]. M1 polarisation of naive macrophages with LPS further induces 203
11! -HSD1 (Figure 1). In contrast, polarisation to an M2 phenotype with IL-4 has little 204
effect on 11! -HSD1 expression [45, 46]. However, in human monocytes differentiated 205
into macrophages in the presence of IL-4 (which may induce a distinct anti-206
inflammatory macrophage phenotype from M2 polarisation of resting macrophages), 207
11! -HSD1 activity is as high or higher than in M1, and is further increased by 208
peroxisome proliferator-activated receptor (PPAR)-!  activation [47]. In contrast, in 209
mouse bone marrow-derived macrophages (resting macrophages) PPAR!  agonists 210
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down-regulate 11! -HSD1 expression [47]; whether this reflects a mouse/human species 211
difference or the different macrophage phenotypes (resting mouse macrophages versus212
human macrophages differentiated in the presence of IL-4) is currently unclear. 213
Nevertheless these studies illustrate a complex dependence of 11! -HSD1 expression 214
upon macrophage activation state. The significance is currently unknown but might 215
reflect (or influence) differences in energy metabolism between glycolytic M1 and 216
oxidative M2 macrophages [48, 49]. Recent evidence suggests manipulation of glucose 217
metabolism in macrophages directly alters polarisation [49]. Whether alterations in 218
11! -HSD1 expression influence macrophage glucose metabolism, for example through 219
the coupling of 11! -HSD1 oxo-reductase activity to hexose 6-phosphate activity in the 220
endoplasmic reticulum (see below) is an important question to address as it may 221
directly affect polarisation or the extent of activation of macrophages. Dynamic 222
regulation of 11! -HSD1 in macrophages could therefore be crucial to the ability to 223
shape an ongoing inflammatory response, either through intracellular regeneration of 224
glucocorticoids or indirectly by diversion of glucose-6-phosphate (Figure 2). Evidence 225
for dynamic regulation of 11! -HSD1 during an inflammatory response in vivo comes 226
from the rapid induction of 11! -HSD1 activity in neutrophils and 227
monocytes/macrophages during sterile peritonitis in mice; 11! -HSD1 activity decreases 228
as the inflammation resolves [1, 36]. The latter is possibly an active process; 11! -229
HSD1 activity is rapidly down-regulated in macrophages that have phagocytosed 230
apoptotic neutrophils [35], a highly pro-resolution process [50]. This reasoning led to 231
the hypothesis that the early induction of 11! -HSD1 in macrophages increases 232
glucocorticoid action within these cells, promoting an anti-inflammatory phenotype and 233
leading to more rapid resolution of inflammation [1, 51].234

235
11! -HSD1 in acute inflammation; regulation236
In most animal models of acute inflammation 11! -HSD1 activity is up-regulated in the 237
inflamed tissue, whereas 11! -HSD2 (if expressed at all) is down-regulated. This is true 238
of the inflamed colon and the arthritic joint [52-54], but not the vasculature [55]. This 239
switch in the balance of 11! -HSD1 and 2 activities is predicted to increase 240
paracrine/autocrine glucocorticoid action, though this has not been directly tested. 241
Induction of 11! -HSD1 (and repression of 11! -HSD2) at inflamed sites is probably due 242
to local release of the pro-inflammatory cytokines IL-1 and TNF! ! which stimulate 243
transcription of the 11! -HSD1 gene promoter through increased binding of the 244
transcriptional regulators CCAAT/enhancer binding protein (C/EBP)-!  and nuclear 245
factor kappa-light-chain-enhancer of activated B cells (NF-! B) [56-58] and repress the 246
11! -HSD2 gene promoter through an early growth response (EGR)-1 and NF-! B-247
dependent mechanism [59]. Normally glucocorticoids antagonise TNF-!  or IL-1248
action, but they act together with the pro-inflammatory cytokines to synergistically 249
increase 11! -HSD1 expression in a variety of cell types [60-63]. This is predicted to 250
amplify the effect of glucocorticoid within a given cell or tissue, more rapidly 251
promoting the repair and resolution phase. Whether 11! -HSD1 expression in 252
inflammatory cells is regulated by similar mechanisms is an interesting question. 253
Neither TNF-!  nor IL-1!  affect 11! -HSD1 activity in monocytes [37] and the 254
signalling pathways that regulate macrophage 11! -HSD1 expression have not been 255
characterised. C/EBP! , a key regulator of 11! -HSD1 transcription in a variety of cell 256
types [56, 57, 64-68], mediates M2 polarisation and arginase expression [69] yet also 257
plays a role in pro-inflammatory cytokine expression in M1 macrophages [70]. 258
However, genetic deletion of C/EBP!  abolishes both the liver-enriched inhibitor 259
protein (LIP) and liver-enriched activator protein (LAP) C/EBP!  isoforms, the balance 260
of which potently influences 11! -HSD1 mRNA levels in vivo [71] and also regulates 261
osteoclast differentiation [72], a process akin to macrophage differentiation. The 262
C/EBP! -LIP:LAP ratio is regulated by mTOR [73], an integrator of cellular nutrient 263
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and energy metabolism, that is downstream of phosphatidylinositol 3-kinase (PI3K) 264
and Akt, both capable of polarising macrophages [74, 75]. Plausibly, the C/EBP! -265
LIP:LAP ratio differs according to the activating stimulus and may govern the 266
expression level of 11! -HSD1 in polarised macrophages. The coupling within the 267
endoplasmic reticulum of 11! -HSD1 activity to the supply of NADP(H) cofactor 268
generated by hexose-6-phosphate dehydrogenase (H6PD) [76-78] is particularly 269
intriguing in this respect, as it raises the possibility that cellular glucose availability and 270
flux through the endoplasmic reticulum pentose phosphate pathway (the first 2 steps of 271
which are catalysed by H6PD) controls 11! -HSD1 activity [79] which may therefore 272
differ irrespective of expression levels in M1 and M2 macrophages.273

274

11! -HSD1 in acute inflammation; function275

Based on the expression of 11! -HSD1 in macrophages, its induction early during an 276
inflammatory response and the well-known anti-inflammatory effects of 277
glucocorticoids, it was anticipated that 11! -HSD1 deficiency or inhibition would 278
attenuate local glucocorticoid production and thus worsen acute inflammation. This is 279
indeed what is seen in 11! -HSD1-deficient (Hsd11b1-/-) mice, with more severe LPS-280
induced endotoxaemia (classically repressed by glucocorticoids [3, 80]), an earlier 281
onset of inflammation in the K/BxN serum transfer model of inflammatory arthritis and 282
more inflammatory cells (both neutrophils and monocytes/macrophages) recruited in 283
sterile peritonitis or pleuritis and in the injured myocardium following myocardial 284
infarction [81-83] (and see Figure 2). This increase in inflammation could reflect 285
greater recruitment and/or delayed clearance/apoptosis of neutrophils [1, 84]. In support 286
of the latter, Hsd11b1-/- mice show delayed macrophage acquisition of phagocytic 287
capacity for apoptotic neutrophils as well as an increase in the number of free apoptotic 288
neutrophils during sterile peritonitis, although surprisingly the peritonitis resolves at the 289
same time as in wild-type mice [1]. Also surprising was the finding that despite the 290
increased inflammation early following myocardial infarction or possibly because of it, 291
heart function post-infarction is much better preserved in Hsd11b1-/- mice than in 292
controls. Underlying the improved recovery from myocardial infarction is an increased 293
angiogenic response to injury [85], probably as a consequence of an earlier 294
accumulation of reparative M2 (Ym1+) macrophages and higher levels of the pro-295
angiogenic cytokine IL-8 in the hearts of Hsd11b1-/- mice [82]. It will be important to 296
determine how generally this accelerated switch in macrophage phenotype from M1 to 297
M2 applies to inflammation in Hsd11b1-/- mice; so far it has only been reported in 298
myocardial infarction and M2-like polarisation is not a general feature of 11! -HSD1-299
deficient macrophages, at least in vitro [1, 81] or in vivo, in adipose tissue of high fat 300
fed obese mice [86]. Despite the lack of detectable difference in adipose tissue 301
macrophage phenotype, an increased angiogenic response to tissue ischemia is also 302
seen in adipose tissue of obese Hsd11b1-/- mice and underlies their resistance to some 303
of the adverse metabolic consequences of obesity [87], suggesting the pro-angiogenic 304
phenotype may be at least partly independent of macrophages.305

How is the improved recovery of Hsd11b1-/- mice from inflammation following 306
myocardial infarction reconciled with our original hypothesis? As predicted by the 307
hypothesis, deficiency in 11! -HSD1 causes greater release of pro-inflammatory 308
cytokines from LPS-treated macrophages [1, 81], suggesting an exaggerated M1 309
macrophage phenotype. However, the earlier switch to an M2 phenotype was 310
unexpected. Whether this reflects a switch to M2 phenotype in situ or recruitment of a 311
distinct subset of monocytes is currently unknown. It is possible that this is a 312
consequence of prolonged activation of the HPA axis in Hsd11b1-/- mice. However,313
these mice show little perturbation of plasma corticosterone levels, even following 314
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stress, on this genetic background [88], so the earlier switch is unlikely to be mediated 315
by plasma glucocorticoids. Moreover, as discussed above, intracellular amplification of 316
glucocorticoid signalling by 11! -HSD1 is predicted to accelerate repair and resolution 317
processes, not attenuate them. Several key factors implicated in macrophage 318
polarisation [89] are differentially expressed in Hsd11b1-/- mice. The Src homology 2-319
containing inositol-5’-phosphatase (SHIP)-1 negatively regulates the PI3K pathway. It 320
represses the generation of M2 macrophages [74] yet restrains LPS-induced (M1) 321
activation of bone marrow-derived (naïve) macrophages [90]. Moreover, elevated 322
SHIP1 expression induces endotoxin tolerance [90] with reduced pro-inflammatory 323
cytokine production with subsequent endotoxin challenge [90]. The increased LPS-324
responsiveness of thioglycollate elicited peritoneal (TEP) macrophages from Hsd11b1-/-325
mice was attributed to elevated SHIP1 levels as a consequence of higher levels of 326
TGF! ![81] though SHIP1 levels appear to decrease more rapidly following LPS in 327
Hsd11b1-/- macrophages than in wild-type. In spleenic macrophages, basal SHIP1 levels 328
are normal in Hsd11b1-/- mice, but unlike wild-type spleenic macrophages, those from 329
Hsd11b1-/- mice fail to down-regulate SHIP1 following LPS [81]. Whether this induces 330
endotoxin tolerance [90] to a greater extent in Hsd11b1-/- macrophages is something 331
that requires testing. Thus, SHIP1 appears abnormally regulated in Hsd11b1-/-332
macrophages, though why is currently unclear. Nevertheless, these somewhat confusing 333
data illustrate that M1/M2 macrophage polarisation in Hsd11b1-/- mice may be highly334
dependent upon the macrophage population and context. 335

Hypoxia-inducible factor (HIF1)-! , which promotes M1 polarisation, is decreased in 336
adipose tissue of Hsd11b1-/- mice, whereas levels of PPAR!  (which promotes the M2 337
phenotype) are increased [87, 91]. Whether these factors are differentially expressed in 338
macrophages of Hsd11b1-/- mice will be important to determine. 339

The outcome of acute inflammation is not invariably improved in Hsd11b1-/- mice. At 340
the stage when arthritis has largely resolved in wild-type mice following K/BxN serum 341
transfer, joints of Hsd11b1-/- mice show greater periarticular fibrosis, more extensive 342
exostoses and ganglion cyst formation. Following carageenan-induced pleurisy, 343
Hsd11b1-/- mice show persistence of inflammation at a stage when it is resolving in 344
wild-type controls, as well as lymphoid aggregates within the lung and formation of 345
fibrous adhesions between lung lobes, the latter not present in control mice [83]. 346
Whether these disadvantageous features result from greater inflammation in Hsd11b1-/-347
mice, an earlier switch to a pro-repair (pro-fibrotic) M2 phenotype, a greater response 348
of the non-immune tissue or a combination of all of these will be an interesting 349
question for the future. Moreover, the consequences of more extended inflammation 350
will be interesting to determine. The preliminary findings in arthritis and carageenan 351
induced pleurisy suggest that 11! -HSD1-deficiency or inhibition may aggravate 352
diseases associated with a dysregulated angiogenic and pro-fibrotic phenotype, 353
including rheumatoid arthritis. 354

355
Chronic inflammation356
Chronic inflammation results from a failure to resolve acute inflammation. 357
Atherosclerosis, diabetes, metabolic syndrome and Alzheimer’s disease are all now 358
recognised as chronic inflammatory diseases. Even simple obesity is frequently 359
associated with low level chronic inflammation within the adipose tissue. The elevation 360
in systemic pro-inflammatory cytokines during chronic inflammation might be 361
expected to activate the HPA axis. However, plasma cortisol is normal in both the 362
“classic” inflammatory diseases (rheumatoid arthritis, inflammatory bowel disease etc) 363
and in the “metabolic” inflammatory diseases (atherosclerosis, metabolic syndrome, 364
diabetes), at least until these become complicated by additional pathologies. HPA axis 365
activity may be elevated in metabolic inflammation, with increased clearance of 366
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glucocorticoids maintaining normal plasma cortisol levels [92] but possibly increasing 367
plasma cortisone levels (and thus 11! -HSD1 substrate), though this has only been 368
indirectly measured. In rheumatoid arthritis and other inflammatory diseases however, 369
the HPA axis appears relatively suppressed, especially given the level of systemic 370
inflammation expected to activate the axis [4, 93]. Edwards has recently hypothesised 371
that this apparent deficiency in HPA activation is a result of the systemic increase in 372
TNF-!  in chronic inflammation inducing a widespread increase in 11! -HSD1373
expression, including in the hypothalamus, thus amplifying negative feedback by 374
glucocorticoids on the HPA axis [93]. Whether this is indeed the case requires 375
experimental testing, but consistent with this hypothesis, whole body conversion of 376
cortisone to cortisol (relative to cortisol to cortisone) is increased in patients with 377
inflammatory disease [94] suggesting altered balance of 11! -HSD activities in favour 378
of 11! -reductase (11! -HSD1).379

380
Metabolic Syndrome, type 2 diabetes and atherosclerosis381
11! -HSD1 deficiency or inhibition is metabolically beneficial in rodent models of diet-382
induced obesity or diabetes. It improves hepatic and adipose insulin sensitivity, 383
attenuates hepatic gluconeogenesis, skews to a “cardioprotective” plasma lipid profile, 384
shifts hepatic lipid metabolism from lipogenesis to fatty acid oxidation and causes a 385
preferential gain of peripheral adipose tissue at the expense of visceral [86, 91, 95-101]386
(and see Figure 2). Similarly, in patients with type 2 diabetes, 11! -HSD1 inhibition 387
lowers plasma glucose and lipids, consistent with rodent studies. It also modestly 388
reduces blood pressure in human hypertension [102-104]. Intriguingly, an 11! -HSD1 389
inhibitor more effectively improved glucose homeostasis in obese mice when 390
administered close to the time of the diurnal peak of plasma glucocorticoid levels [105]. 391
Given that 11! -HSD1 mRNA probably does not vary with the circadian rhythm [105, 392
106] (though one study suggests it may in rats [107]), this is much more likely to reflect 393
high 11! -HSD1 substrate levels at peak HPA axis activity [108]. Indeed, 11! -HSD1 394
may contribute to normal circadian control of the HPA axis, at least in some genetic 395
backgrounds [88, 108]. 11! -HSD1 is expressed in the paraventricular nucleus of the 396
human hypothalamus, suggesting a conserved role in HPA axis regulation [109]. 397

398
Recent data suggest that the liver is not the sole or even predominant target of the 399
metabolically beneficial effects of 11! -HSD1-deficiency or inhibition; conditional 400
deletion of 11! -HSD1 in hepatocytes of mice produces only minimal improvements in 401
glucose homeostasis in diet-induced obesity [110]. Instead, increased glucocorticoid 402
activity in adipose tissue is implicated. In obese humans, numerous studies have 403
reported elevated 11! -HSD1 expression in subcutaneous adipose tissue (reviewed [92]) 404
and in human omental fat, 11! -HSD1 expression correlates with adipocyte hypertrophy 405
[111, 112], itself associated with a more pro-inflammatory state [113, 114]. In mice, a 406
two to three-fold elevation of 11! -HSD1 selectively in adipose tissue phenocopies the 407
metabolic syndrome, with central obesity, insulin resistance, dyslipidaemia and 408
hypertension [115, 116] whereas similar transgenic expression of 11! -HSD2 in 409
adipocytes (it is not normally expressed in adipocytes), presumably lowering intra-410
adipose glucocorticoid action, causes insulin sensitisation in high fat fed mice [117]. 411

412
11! -HSD1-deficiency protects against pro-inflammatory changes in adipose tissue in 413
obesity. Inflammatory cell (macrophages, lymphocytes) infiltration of mesenteric 414
adipose tissue is lower in high fat-fed 11! -HSD1-deficient mice than in controls, 415
probably due to reduced adipocyte secretion of the pro-inflammatory chemokine, 416
monocyte chemoattractant-1 (MCP-1) [86]. This is associated with higher levels of 417
AMP-activated protein kinase activation in this depot [86], likely to contribute to the 418
maintained lipid oxidation with obesity [118] in 11! -HSD1-deficiency. Whether these 419
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changes are a cause or a consequence of the increase in angiogenesis and reduction in 420
hypoxia and fibrosis recently described in the adipose tissue of these mice [87] is an 421
interesting question. Adipose tissue hypoxia is associated with a local pro-422
inflammatory environment and leads to fibrosis though not necessarily angiogenesis 423
[119-121], suggesting that it is the greater angiogenic response in Hsd11b1-/- mice that 424
is protective against adipose tissue hypoxia and fibrosis. PPAR! mRNA levels are 425
higher and the pro-angiogenic response to PPAR!  activation is much greater in 426
Hsd11b1-/- adipocytes than in controls, placing the adipocyte at the heart of the 427
response. Whether there are also beneficial roles for macrophage and/or vascular 11! -428
HSD1 is important to determine.429
As well as improving metabolic risk factors, deficiency in or inhibition of 11β-HSD1 430
also reduces atherosclerosis and systemic inflammation and lowers macrophage and T 431
cell infiltration of atherosclerotic lesions in Apoe-/- mice [122-124]. This is the converse 432
of what happens with 11β-HSD2-deficiency, which is pro-inflammatory in the 433
endothelium and accelerates atherosclerosis in Apoe-/- mice, an effect at least partly 434
mediated through activation of the MR as it is blocked by eplerenone, an MR 435
antagonist [125]. The atheroprotective effects of 11β-HSD1-deficiency are likely to be 436
mediated through both systemic (reduced circulating monocyte chemotactic protein 437
(MCP)-1 and number of pro-inflammatory Ly6Chi monocytes) and local (reduced aortic 438
vascular cell adhesion molecule (VCAM)-1 expression) mechanisms [124]. It is 439
interesting to speculate that reduced visceral adipose tissue inflammation may 440
contribute to the reduction in systemic inflammation – as in diet-induced obesity, 441
mesenteric adipose tissue MCP-1 mRNA levels are reduced in western diet-fed 11β-442
HSD1-deficient Apoe-/- mice [124].443

444
“Classic” inflammatory diseases - rheumatoid arthritis445
If 11! -HSD1-deficiency is beneficial in chronic “cardiometabolic inflammation”, what 446
of the classical inflammatory diseases, in which a glucocorticoid-insufficient state is 447
suggested and glucocorticoid therapy remains highly effective? Inevitably, studies in 448
animals are predominantly short term, modelling the disease, whereas the disease in 449
patients frequently reflects years of accumulated damage and inflammation. These 450
situations may be quite different. Nevertheless, accumulating evidence in both patients 451
and animal models is consistent with dysregulated 11β-HSD1 in the inflamed joint in 452
rheumatoid arthritis as well as increased colonic expression of 11β-HSD1 at sites of 453
inflammation in inflammatory bowel disease (reviewed [35]). So far, studies in 454
inflammatory bowel disease have gone little beyond observation, though they do 455
suggest that at least some of the increase in 11β-HSD1 expression occurs in activated 456
lymphocytes that migrate from the inflamed colon to the draining lymph nodes [54]. 457
Studies in human patients with rheumatoid arthritis suggest differential regulation of 458
11β-HSDs in immune and mesenchymal cells. Comparison of cortisone and cortisol 459
levels in synovial fluid and serum suggest the balance favours intra-articular generation 460
of cortisol in the rheumatic joint [126] although it seems that even so, the overall 461
capacity to convert cortisone to cortisol may be reduced in the inflamed arthritic 462
synovium compared to non-inflamed. However, within inflamed rheumatic joints, 463
synovial inflammation still correlates with conversion of cortisone to cortisol [127]. 464
This complex relationship probably reflects the balance between high expression of 465
11β-HSD1 in synovial fibroblasts from arthritic patients (almost certainly as a result of 466
the pro-inflammatory cytokine environment) and expression of 11β-HSD2 in synovial 467
macrophages from patients with rheumatoid arthritis [126-128]. This latter finding 468
accords with other studies identifying 11β-HSD2 as a peripheral blood mononuclear 469
cell marker of early rheumatoid arthritis and highly expressed in the arthritic joint [129, 470
130]. 11β-HSD2-positive macrophages have also been described in the lungs of 471
patients who died of acute respiratory distress syndrome [131]. Similar cells 472
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(macrophages, lymphocytes) from healthy humans do not express 11β-HSD2 [37, 130], 473
nor has 11β-HSD2 been found in mouse leukocytes [1]. 11β-HSD2 expression in 474
leukocytes may reflect a species difference between mouse and human, or could, in 475
humans, reflect an adaptive response to chronic inflammation. The biological reason 476
for this apparently pro-inflammatory change is unknown but it is likely to cause 477
resistance to endogenous glucocorticoids, which might be overcome by 478
pharmacological levels of synthetic glucocorticoids like prednisolone or bypassed with 479
non-metabolised synthetic glucocorticoids like dexamethasone. 480

481
What might 11! -HSD1 inhibition do in chronic inflammatory disease? If the Edwards 482
hypothesis [93] is correct, then systemic inhibition of 11! -HSD1, particularly if 483
administered during the night (in humans), should correct the HPA axis abnormality 484
and boost the plasma cortisol levels. This might be enough to dampen down some of 485
the inflammation, though 11! -HSD1 inhibition would also deprive inflamed tissues of 486
the 11! -HSD1-mediated increase in intracellular glucocorticoid levels. Moreover, 487
given that cortisol also activates MR (in the absence of 11β-HSD2), this could further 488
exacerbate inflammation which could be particularly damaging within the vasculature 489
(see below). In chronic inflammatory disease, continuing tissue injury is frequently 490
associated with fibrosis and angiogenesis. Both may be exacerbated by 11! -HSD1491
inhibition. As mentioned above, 11! -HSD1-deficient mice show an increased 492
angiogenic response to adipose tissue hypoxia, to ischaemia following myocardial 493
infarction, in wound healing and in sub-cutaneously implanted sponges [85, 87]. They 494
also show a pro-fibrotic response to pleural inflammation and following inflammatory 495
arthritis [83]. Whilst it is currently unclear whether the increased fibrosis in 11! -HSD1-496
deficient mice will resolve completely during recovery from inflammation, it is likely 497
that if the injurious stimulus persists, fibrosis will be more severe with 11! -HSD1-498
deficiency or inhibition. In continuing liver injury, a population of macrophages with 499
“M2”-like properties drives the fibrotic response, probably mediated at least in part 500
through TGF! 1 [40]. Higher macrophage expression of TGF! 1 with 11! -HSD1-501
deficiency [81] may be an important contributor to the pro-fibrotic phenotype of these 502
mice.503

504
Glucocorticoid receptor or mineralocorticoid receptor activation?505
Activation of MR, most notably in the heart and vasculature, has pro-inflammatory and 506
pro-fibrotic consequences [132, 133]. Unlike synthetic glucocorticoids, most of which 507
show selectivity for GR over MR, endogenous glucocorticoids bind with higher affinity 508
to MR than to GR. Thus, MR is usually considered near saturated at circulating 509
glucocorticoid levels, even at the diurnal nadir [134]. Aldosterone activates MR 510
irrespective of which cells it is expressed in, but cortisol activation of MR is normally 511
prevented if 11! -HSD2 is co-expressed with MR. However, under conditions of 512
oxidative stress, endogenous glucocorticoids can activate MR, at least in the 513
cardiovascular system [135]. A crucial question therefore, central to the function of 514
11! -HSD1, is which receptor binds the ligand it generates, GR or MR? This may differ 515
according to tissues. MR is absent from liver, so in this tissue, 11! -HSD1 provides 516
ligand to GR. However, MR is expressed in some classical glucocorticoid targets, 517
including adipocytes and macrophages, normally in the absence of 11! -HSD2, where it 518
presumably functions as a glucocorticoid receptor. A pro-inflammatory role for 519
glucocorticoid-activated MR is suggested; eplerenone treatment of ob/ob mice 520
prevented the obesity-associated increases in MCP-1, TNF-!  and other inflammatory 521
markers in adipose tissue [136]. Whether the relevant cell is the adipocyte, however, is 522
unclear. Whereas MR activation (presumably by glucocorticoids) in macrophages 523
appears pro-inflammatory, macrophage-specific deletion of MR appears anti-524
inflammatory - it causes M2 polarisation of macrophages [43] and reduces cerebral 525



Page 11 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

11

infarct area following ischaemia in mice, concomitant with reduced expression of M1 526
macrophage markers (TNF-! , IL-1, MCP-1 etc) but maintained M2 markers (Ym1, 527
Arg1) [137]. Thus, the consequences of 11! -HSD1-mediated glucocorticoid generation 528
could differ greatly, depending on cellular oxidation/stress state and the relative levels 529
of GR versus MR.530

531
532

SUMMARY AND CONCLUSIONS533
Consistent with the adverse metabolic effects of glucocorticoid excess, 11β-HSD1534
deficiency or inhibition is clearly beneficial in cardiometabolic disease. The extent to 535
which this is dependent on inhibition/deficiency within inflammatory cells will be 536
interesting to discover. Also, whether 11β-HSD1 deficiency/inhibition is beneficial in 537
other types of inflammation remains to be seen. Current evidence suggests that the 538
acute response to injury is more severe. The subsequent recovery phase may depend on 539
whether the injurious stimulus persists as in patients with rheumatoid arthritis (in which 540
case 11β-HSD1 deficiency/inhibition may worsen the disease), or whether recovery and 541
tissue remodelling occur, as for example follows myocardial infarction (when 11β-542
HSD1 deficiency/inhibition may aid recovery). The application of Cre/Lox technology 543
to generate tissue- and cell-specific “knock-out” of 11β-HSD1 will be invaluable in 544
dissecting the contributions of immune cells, particularly macrophages and neutrophils, 545
to the pro-angiogenic and pro-fibrotic phenotype. In the future, such studies could lead 546
to better targeting of glucocorticoid therapy, perhaps even targeting macrophages 547
separately from host tissues at specific temporal stages of disease. As already suggested 548
[1], targeted delivery of inactive glucocorticoid precursors to macrophages might 549
provide an effective future therapy for chronic inflammatory disease.550
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1055
FIGURE LEGENDS1056
Figure 1. 11! -HSD1 is induced upon macrophage differentiation1057
Expression of 11! -HSD1 is negligible in human monocytes, but is induced on 1058
differentiation into macrophages. Polarisation of macrophages to an M1 phenotype 1059
further induces 11! -HSD1 whereas polarisation to an M2 phenotype has no further 1060
effect on expression. Differentiation of monocytes into macrophages in the presence of 1061
IL-4 and/or IL-13 further induces 11! -HSD1 (see text for details). 1062
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1063
Figure 2. Macrophage polarisation is associated with a switch in energy metabolism1064
M1 macrophages show a predominantly glycolytic metabolism. High levels of glucose-1065
6-phosphate (G6P) may ensure a ready supply of NADPH cofactor to 11! -HSD1, 1066
driving high conversion of cortisone (E) to cortisol (F). M2 polarised macrophages are 1067
oxidative, with lower levels of glycolysis and lower levels of 11! -HSD1 converting E 1068
to F. Whether changes in energy metabolism drive changes in macrophage 11! -HSD1 1069
expression is currently unknown (see text for details). 1070

1071
Figure 3. Effects of 11! -HSD1 deficiency/inhibition on acute and chronic 1072
inflammation1073
Deficiency or inhibition of 11! -HSD1 worsens or exaccerbates acute inflammation, but 1074
may also promote its successful resolution. During chronic metabolic inflammation 1075
(obesity, atherosclerosis, diabetes), 11! -HSD1 deficiency/inhibition is beneficial, 1076
reducing inflammatory cell recruitment to sites of inflammation and promoting insulin 1077
sensitisation. However, during chronic non-resolving inflammation, the pro-angiogenic, 1078
pro-fibrotic phenotype of 11! -HSD1 deficiency/inhibition may worsen tissue damage 1079
(see text for details).1080

1081



Page 23 of 26

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 1

http://ees.elsevier.com/sbmb/download.aspx?id=54125&guid=0246d7b8-ad1d-4d4d-b780-9abca17070bc&scheme=1
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Figure 2

http://ees.elsevier.com/sbmb/download.aspx?id=54129&guid=06294893-2c5c-4088-856c-d18659870ee9&scheme=1
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Figure 3

http://ees.elsevier.com/sbmb/download.aspx?id=54130&guid=84e719b3-43de-431b-b125-a410fbcd689a&scheme=1
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Highlights
! ! 11! -HSD1 converts inert glucocorticoids into active forms, amplifying 

glucocorticoid action
! ! 11! -HSD1 is markedly induced by pro-inflammatory cytokines
! ! 11! -HSD1 deficiency/inhibition worsens acute inflammation
! ! 11! -HSD1 inhibition reduces inflammation in obesity or atherosclerosis
! ! an increased angiogenic response may underlie some of the benefits




