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Abstract

This paper analyses comparative statics for two classes of n-player games
of incomplete information with continuous action spaces. The two classes are
defined by differences in the payoff and behaviour of the weakest type: the lowest
value bidder or highest cost firm. We show that in “weakly competitive games”,
including all-pay auctions and some oligopoly models, weak types will respond
to a stochastically higher distribution of types by playing less aggressively. In
“strongly competitive” games, all types play more aggressively. Furthermore,
we show that a decrease in dispersion of types, in the sense of a refinement of
second order stochastic dominance, although also associated with an increase in
competitiveness, may in addition result in less aggressive play by strong types in
both strongly and weakly competitive games.
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1 Introduction

Orderings of distributions have long been of interest to economists. Those working in
welfare economics rank income or wealth distributions in terms of inequality or disper-
sion, and tend to use (generalized) Lorenz order, while those working on decision making
under risk and uncertainty tend to use stochastic dominance relationships. Stochastic
dominance relationships have been also of use in games of incomplete information. How-
ever, even a strong ordering of two random variables - first order stochastic dominance
- can be insufficient to ensure unambiguous comparisons in some games of incomplete
information (see, for example, Maskin and Riley, 2000a, footnote 14). As a consequence,
several strengthenings of first order stochastic dominance have been introduced, includ-
ing the monotone likelihood ratio order used for a wide class of examples (Athey, 2002)
and the monotone probability ratio order (also known as conditional stochastic dom-
inance or the reverse hazard rate order) used in auctions (Lebrun, 1998; Maskin and
Riley, 2000a). These orderings of distributions allow comparative statics in games of
incomplete information involving changes in distributions of general rather than specific
functional form.

In this paper, we extend these types of comparative static result in two ways. First,
we identify two classes of games that have qualitatively different comparative statics
predictions. Specifically, there is a difference in response by weak types, for example, low
value bidders or high cost firms, to a change in the distribution of types in the sense of a
strong refinement of stochastic dominance. In the equilibrium of “strongly competitive”
games (such as standard first-price auctions) even weak types are motivated, so that a
stochastically higher distribution of types leads to more aggressive play by all. On the
contrary, in “weakly competitive” games (such as all-pay auctions and some oligopoly
models) weak types are discouraged, so that in the more competitive environment they
compete less hard. For example, in a model of price dispersion due to Bagwell and
Wolinsky (2002), a stochastically lower distribution of costs will lead high-cost firms to
charge higher prices but low cost firms to decrease prices.

Second, while being powerful analytical tools, monotone orderings are very restric-
tive, ruling out many interesting cases. Being refinements on first order stochastic
dominance, they offer no predictions for changes in the distributions that satisfy second
order but not first order dominance. Informally speaking, this involves transforma-
tions leading to valuations (or signals, etc.) being “less dispersed” but not necessarily
“higher” than before. There has been little work on the comparative statics arising
from a change in distributions in terms of dispersion. For example, in oligopoly games
incomplete information typically represents a degree of uncertainty about opponents’
costs. What happens if there is a decrease in the level of uncertainty? With this ques-
tion in mind, we employ a refinement of second order stochastic dominance based on
the unimodality of the likelihood ratio, introduced by Ramos, Ollero and Sordo (2000).
Intuitively, one would expect that such decrease in dispersion of types would lead to
uniformly more aggressive play - for example, all firms would price lower than previ-
ously. We show that in fact in a an oligopoly model, while most types lower prices, such
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a change may result in low cost firms raising prices. Similarly, in first price auctions,
a reduction in dispersion in the sense of the new orderings prompts most types to bid
more aggressively, but the highest types may bid less.

The hypothesis that more precise information should lead to uniformly more aggres-
sive bidding and higher selling prices has been investigated in the context of common
values by Kagel and Levin (1986) and in subsequent literature for specific functional
forms of preferences and distributions of signals. More recently, Goeree and Offerman
(2003) investigated the effects of more precise information on the competitive bidding in
a framework that nests both private and common value cases. Yet, the major drawback
of this literature is that providing agents with “more precise information” has been
frequently analyzed by considering two uniform distributions with different support.
While being analytically convenient, this assumption is restrictive. We show that the
unimodal ratio orderings could serve as an alternative technique allowing to analyze
more general pairs of distributions.

It is worth reminding that measures of stochastic dominance are not confined to
the economics of information. Since the famous work of Atkinson (1970) they have
also been important in the literature on social welfare and the comparisons of income
distributions (see Lambert (1989) for a survey). However, the ordering more commonly
used in this literature is (generalized) Lorenz dominance, even though it is equivalent
to second order stochastic dominance (Thistle, 1989), and, thus, both measures can
be interpreted in terms of inequality. More recently, income inequality and games of
incomplete information have been considered together (Hopkins and Kornienko, 2004;
Samuelson, 2004) in the context of strategic social interaction, where the question has
been whether increasing equality leads to greater social competition. It is hoped that
this paper will be of some interest to researchers in both fields as well as in their
intersection.

We start with an introduction of our classification of games of incomplete informa-
tion into strongly and weakly competitive games. The next two sections introduce some
technical tools necessary for our comparative statics results. Section 3 presents a useful
theorem which is, in effect, a two-equation counterpart of Karlin’s (1968) variation-
diminishing property, while Section 4 briefly surveys refinements of second-order sto-
chastic dominance orderings. In Section 5, we use the new refinements to analyze the
effect of changes in dispersion in games of incomplete information. Section 6 gives
several examples.

2 Strongly and Weakly Competitive Games of In-
complete Information

In this section, we introduce two classes of games, which we call strongly competitive
and weakly competitive. They are differentiated on the basis of a seemingly innocuous
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condition on the payoff of the lowest ranked agent. However, as we will see, this small
difference will lead to quite different outcomes, both in terms of equilibrium behaviour
and in comparative statics.

We consider symmetric games of incomplete information with n players. Each player
has a type z drawn from a common distribution F (z), which is twice differentiable with
strictly positive density on its support [z, z̄]. Each agent takes an action x, which in
different games could be a bid, a price or a choice of effort. This is chosen from a
continuous action space which we take to be some subset of the real line. Strategies will
therefore be of the form x(z), a mapping from type to action. We go on to consider the
effects of changes in the distribution F (z) on the symmetric equilibrium strategy.

For simplicity, we examine the class of games which possess a single “prize” for the
highest bid or action. This is sufficiently broad to include a wide range of auctions and
contests. If an agent of type z wins with bid x, she gains a payoff U(z−x). Otherwise,
she has a payoff of U(−Ix), where I an indicator function that is one when a losing
agent pays his bid (as in all-pay auctions and contests) and zero if he does not (as
in standard auctions). We assume that U(·) is twice continuously differentiable with
U 0 > 0 and U 00 ≤ 0. Suppose all agents adopt the same strictly increasing differentiable
strategy x(z), then the expected utility of an agent of type z who bids x(ẑ), that is, as
if she had type ẑ will be

V (x(ẑ), z, z−i) = Fn−1(ẑ)U(z − x(ẑ)) +
³
1− Fn−1(ẑ)

´
U(−Ix(ẑ)) (1)

Differentiating with respect to ẑ, setting ẑ to z and rearranging, we obtain the following
differential equation

x0(z) =
h(z)(U(z − x)− U(−Ix))

U 0(z − x)F n−1(z) + U 0(−Ix)(1− Fn−1(z)) , (2)

where h(z) = (n− 1)f(z)F n−2(z). Solutions to this differential equation will constitute
symmetric equilibria for games of this class.

The boundary condition for this differential equation will be the equilibrium strategy
of the weakest agent, the one with type z. In fact, as we will now see, it is possible
to divide these games of incomplete information into two broad classes on the basis
of her behaviour. In the first class, which includes the classic first price auction, in
equilibrium weak types bid (close to) the maximum possible. In the second class, in
complete contrast, in equilibrium the lowest type bids nothing or supplies zero effort.

The criterion for determining whether a game is weakly or strongly competitive is
the nature of the payoff to the weakest type. In a symmetric equilibrium, the lowest
type always comes last. We consider the payoffs for that lowest type z. From (1), we
have in symmetric equilibrium V (x(z), z, z−i) = U(−Ix(z)). If this payoff is constant
and fixed, that is, if I = 0, then we call the game “strongly competitive”. For example,
in a standard first price auction, the lowest bidder will receive a zero payoff. If the
equilibrium payoff of the lowest type depends on her action, then we call the game
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“weakly competitive”. For example, in an all-pay auction, the lowest bidder will never
win the prize, but her payoff will be U(−x), where x is her bid. We now show that the
equilibrium behaviour of the low types in the two classes of game is quite different. Let
x be the minimum feasible bid, typically zero.

Lemma 1 Consider an n−player bidding game of incomplete information with types
drawn from a continuous non-zero density on [z, z̄]. Suppose I = 0, then, for any
symmetric strictly increasing equilibrium strategy x(z) necessarily limz→z x(z) = z. The
weakest type is consequently indifferent between any action in the range [0, z]. Suppose
I = 1, then in a symmetric equilibrium x(z) = x.

Proof: If I = 0, suppose that limz→z x(z) = x0 < z. Then, the lowest type could choose
an action x̂ in (x0, z) such that F (x−1(x̂)) > 0. This represents a profitable deviation.
If indeed limz→z x(z) = z, then V (x, z, z−i) = 0 for any feasible action x ∈ [0, z], and so
the weakest type is indifferent. If I = 1, the equilibrium payoff to the lowest type, that
is U(−x(z)) is decreasing in x. So, clearly x is optimal.
While the above result indicates that it is possible for the weakest agent to choose

a bid of zero in both strongly and weakly competitive games, in general play by weak
agents will be very different. By continuity of the equilibrium strategy, in weakly com-
petitive games, agents with types close to z will bid close to zero, but in strongly
competitive games, they will bid close to the maximum rational amount. Furthermore,
as we will see later in Section 5, the comparative static effect of an increase in compet-
itiveness is opposite in the two classes. In weakly competitive games, low types supply
even less effort in a more competitive environment.

Another consequence of the above Lemma is that in the strongly competitive case,
in a sense equilibrium cannot be unique. As is well known in the analysis of first price
auctions (see, for example, Maskin and Riley (2003)), behaviour at the lower boundary
is not uniquely defined, as the weakest agent always makes zero profit and is indifferent
over all possible bids. However, behaviour on the interior of the type space can be
shown to be unique.

Proposition 1 The differential equation (2) with boundary condition limz→z x(z) = z
for I = 0 and boundary condition x(z) = 0 for I = 1 has a unique solution on (z, z̄)
and this is the unique symmetric equilibrium on (z, z̄).

Proof: In the Appendix.

There are similar considerations for procurement auctions and oligopoly games.
Suppose n firms each have constant marginal cost c but the exact level of that cost
is private information. Each is an independent draw from a distribution F (c) with a
continuous positive density on [c, c̄]. The firms compete on price in a simultaneous move
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game. We assume there is a finite maximum price p̄.1 Let D1(p) be the demand to the
firm who names the lowest price and D0(p) be the demand otherwise. We assume that
D1 is discontinuously higher than D0, or limp↑p̂D1(p) > D0(p̂) ≥ 0 for all p̂ ≤ p̄ . The
classic example of such a market is Bertrand competition, where D1 is strictly positive
but D0 is zero. We give another oligopoly model later in Section 6.2, where both D0
and D1 are positive. In either case, the expected profit for a firm charging p(ĉ) when
all other use the strictly increasing continuous strategy p(c) will be

V (p(ĉ), c, c−i) = (1− F (ĉ))n−1 (p(ĉ)−c)D1(p(ĉ))+
³
1− (1− F (ĉ))n−1

´
(p(ĉ)−c)D0(p(ĉ)).

(3)
We find again that in strongly competitive games, the weak agents, here the high cost
firms, are in a desperate situation and are reduced to charging at cost. In contrast, in
weakly competitive games, weak agents charge the maximum price.

Lemma 2 Consider an n−player pricing game of incomplete information with types
drawn from a continuous non-zero density on [c, c̄]. Suppose D0(p) is zero for all
p. Then, for any symmetric strictly increasing equilibrium strategy p(c) necessarily
limc→c̄ p(c) = c̄. Suppose D0(p) is not zero, then in a symmetric equilibrium p(c̄) = p̄.

Proof: This is readily derivable from the proof to Lemma 1.

3 A Useful Theorem

In this section, we present a quite general result that will be useful in the comparative
static analysis of games of incomplete information. Typically, in auctions, signalling
games and pricing games, where players choose an action from a continuum, the equi-
librium will be a solution to a differential equation. It is not always possible to find
analytic solutions to such equations. However, it can be possible to obtain results on
comparative statics, if one can place some restrictions on the behaviour of the solutions
to the relevant differential equation. Suppose there are two solutions, each representing
a different value of an exogenous parameter or a different distribution of types. The
theorems in this section enable the comparison of the two solutions by limiting the
number of times that they can cross.

We have already seen that there exist games of incomplete information where the
equilibrium strategy x(z) can be calculated as a solution to a differential equation (2).
If we look at two specific cases, either the standard auction case of I = 0 or when I = 1
but agents are risk neutral, then we can write the corresponding differential equation
in the following form:

x0(z) = ψ(x(z), z)m(z), x(z) = x. (4)
1For example, consumers have a unit demand for the good, provided the price does exceed their

reservation price p̄.
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We assume ψ andm are continuously differentiable positive functions. That is, ψ(·, ·) >
0,m(·) > 0. This implies that x0(z) > 0 on (z, z̄), so that the solution x(z) is increasing.
We also assume ψ1 ≤ 0, ψ is decreasing in x. This is natural in many games, where ψ(·)
will be derived from an agent’s utility function, and x represents a bid in an auction, or
effort in a contest. The function m(z) will typically depend on exogenous parameters
and/or the distribution of types. Changes in either will, therefore, change m(z). The
theorem below shows the implications of such changes for the equilibrium strategy x(z).2

Finally, let S(f) be the number of sign changes of the function f(z).

Theorem 1 Let xF (z) and xG(z) denote the solutions to the differential equation (4)
for functions mF (z) and mG(z), respectively, with xF (z) = xG(z). Then if mF (z) −
mG(z) > 0 on some interval (z, z + δ), δ > 0, then xF (z) − xG(z) > 0 on this interval
as well. Moreover, if xF (z) and xG(z) do cross for z ≥ z + δ, then at every point of
crossing xF (z) crosses xG(z) from above (below) only if mF (z)−mG(z) < (>)0 at the
point of crossing, so that S(xF (z)− xG(z)) ≤ S(mF (z)−mG(z)).

Proof: In the Appendix.

We also present a complementary result for a different class of games. Typically,
they involve firms whose strategies are mappings from costs to prices. This involves
several differences from the previous setup. First, we adopt appropriate notation, so
that a player’s type is now c and her action p. Second, we assume that ψ is increasing
(and not decreasing) in the player’s action p. Finally, as we have seen in the previous
section, the boundary condition will typically be set at the upper boundary, rather
than the lower. So, let p(c) be the solution over some interval [c, c̄] to the following
differential equation:

p0(c) = ψ(p(c), c)m(c), p(c̄) = p̄ (5)

where ψ and m are continuously differentiable positive functions. That is, ψ(·, ·) >
0,m(·) > 0. We also assume ψ1 ≥ 0, ψ is increasing in p. The proof for the following
theorem can readily be derived from the proof to the preceding result.

Theorem 2 Let pF (c) and pG(c) denote the solutions to the differential equation (5) for
functions mF (c) and mG(c), respectively, with pF (z̄) = pG(z̄). Then if mF (c)−mG(c) >
0 on some interval (z̄ − δ, z̄), δ > 0, then pF (c)− pG(c) < 0 on this interval. Moreover,
if pF (c) and pG(c) do cross for c ≤ c̄− δ, then at every point of crossing pF (z) crosses
pG(z) from below (above) only if mF (z)−mG(z) > (<)0 at the point of crossing, so that
S(pF (z)− pG(z)) ≤ S(mF (z)−mG(z)).

2This theorem is, in effect, a two-equation counterpart of Karlin’s (1968) variation-diminishing
property.
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4 Ordering Distributions in Terms of Dispersion

Ordering distributions in terms of stochastic dominance is now a common tool in the
economics of information. However, the concentration up to now has been on first order
stochastic dominance and its refinements. Clearly, those working on income distribu-
tions, since the seminal work by Atkinson (1970), have had greater interest in second
order stochastic dominance (equivalent to the generalized Lorenz order - see Thistle
(1989)), which allows ordering of distributions in terms of dispersion or inequality. In
this section, we briefly survey the results for a refinement of second order stochastic
dominance, introduced in the context of the analysis of income distributions, which we
will then go on to use in comparative statics.

In what follows, we consider two distinct non-negative variables X and Y with finite
means µX and µY respectively, having distribution functions F and G, respectively,
with F and G both having support [z, z̄] with 0 ≤ z < z̄. Assume that F and G are
twice continuously differentiable and the densities f and g are strictly positive on the
corresponding supports. We employ the following definition of unimodality.3

Definition 1 A function f(z) is unimodal around ẑ if f(z) is strictly increasing for
z < ẑ and f(z) is strictly decreasing for z > ẑ.

The following order of distributions was first introduced by Ramos, Ollero and Sordo
(2000). They show that this order implies second order stochastic dominance (equiva-
lently generalised Lorenz dominance).

Definition 2 Two distributions F , G satisfy the Unimodal Likelihood Ratio (ULR)
order and we write F ÂULR G if the likelihood ratio L(z) = f(z)/g(z) is unimodal and
E[X] ≥ E[Y ]. 4

In simpler terms, if F ÂULR G then distribution F is either stochastically higher than
G or it is more equal. Consider a simple example. SupposeG(z) is a uniform distribution
so that its density g(z) is a constant, then L(z) will be unimodal if f(z) is unimodal,
that is, it is less dispersed than g(z). It is well-known (see, for example, Dharmadhikari
and Joag-Dev (1988)) that all logconcave functions are unimodal.5 Thus, if logL(z) is
concave and µX ≥ µY , then F ÂULR G. From our definition of unimodality, there is a
unique value of z which we denote ẑL which maximizes the likelihood ratio L(z), with

3This is a slight strengthening of standard definitions of unimodality - for example, by Dharmad-
hikari and Joag-Dev (1988, Chapter 1) and by An (1998). In the first source, a function f(z) is
unimodal if

R z
z
f(t)dt is convex on (z, ẑ) and concave on (ẑ, z̄). In the second, the function f(z) has to

satisfy the following: for all δ > 0, the set Dδ = {z ∈ Ω : f(z) ≥ δ} is a convex set in Ω.
4Note that the condition on the means rules out the possibility that the mode is at the lower bound

and that Y first order dominates X.
5For review of logconcave and logconvex functions see An (1998).
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ẑL ≤ z̄. If the mode of the ratio is located at the upper bound, that is, ẑL = z̄, we
arrive at a monotone order as a special case.

Definition 3 The two distributions F , G satisfy the Monotone Likelihood Ratio (MLR)
order and we write F ÂMLR G, if the ratio of their densities L(z) is strictly increasing.

Milgrom (1981) introduced the MLR order to the economics of information. More
recently, Athey (2002) employs the MLR order to obtain monotone comparative statics
in games of incomplete information. As Milgrom (1981) points out, many well known
families of distributions, for example, the normal and the exponential satisfy the MLR
order. A similar set of families of distributions satisfy ULR order. One can easily verify
that, for example, if F and G are both normal or both lognormal, with µX ≥ µY and
with F having strictly lower standard deviation then F ÂULR G.
It is well-known that the MLR order implies first order stochastic dominance and

other refinements of first order stochastic dominance, such as the hazard rate order and
the reverse hazard rate order (see, for example, Krishna (2002, Appendix B). Similar
relationships can be shown for the ULR order. Define the following ratios6

P (z) =
F (z)

G(z)
, H(z) =

1− F (z)
1−G(z) . (6)

Proposition 2 If L(z) is unimodal with maximum at ẑL then P (z) is unimodal with a
maximum at ẑP ≥ ẑL and H(z) is unimodal with a maximum at ẑH ≤ ẑL.

Proof: This is Metzger and Rüschendorf (1991, Theorem 2.3 and 2.3 (c)).

The ratio σ(z) = f(z)/F (z) is known as the “reverse hazard rate” in the statistics
literature (see, for example, Shaked and Shanthikumar (1994)). Note that if P 0(z) > 0
then

σF (z) =
f(z)

F (z)
>
g(z)

G(z)
= σG(z). (7)

There is a similar relation between H(z) and the hazard ratio, which for a distribution
function F (z) is, of course, defined as λ(z) = f(z)/(1 − F (z)). That is, it is the ratio
of the density to the survival function, 1− F (z). Note that if H 0(z) > 0 then

λF (z) =
f(z)

1− F (z) <
g(z)

1−G(z) = λG(z). (8)

Therefore, combined with Proposition 2, these relations lead to the following corollary,
which will prove useful for comparative statics.

Corollary 1 Suppose F ÂULR G then (i) σF (z) > σG(z) almost everywhere on (z, ẑP ),
and σF (z) < σG(z) almost everywhere on (ẑP , z̄); (ii) λF (z) < λG(z) almost everywhere
on (z, ẑH), and λF (z) > λG(z) almost everywhere on (ẑH , z̄).

6The monotonicity of ratio P (z) was considered by Maskin and Riley (2000a) under the name of
conditional stochastic dominance.
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5 Comparative Statics

In this section we will show how ratio orderings of distributions allow comparative static
predictions in many games of incomplete information. Some work has been done on
comparative statics for auctions by Lebrun (1998) and Maskin and Riley (2000a), and,
for a wider class of examples, by Athey (2002). For a very general specifications for the
primitives, that is, preferences and the distributions of types, these researchers derive
sufficient conditions for the existence of monotone comparative statics - conditional
stochastic dominance and monotonicity of the likelihood ratio, respectively. In other
words, a “higher” distribution of valuations in a sense of either of the orderings should
lead to a uniformly more aggressive bidding.

Here, we extend this type of result in two ways. First, we show that in many games
of incomplete information, such a monotone shift in types is not in fact sufficient for
monotone comparative statics. For example, there are plausible models of oligopoly
where a stochastically lower distribution of costs will lead some firms to charge higher
prices. This is not to say, however, that there are no meaningful results. Rather, we
give simple conditions for when games permit monotone comparative statics and, in the
games that do not, we identify which classes of agents will adopt higher strategies and
which lower.

Second, we allow for a different type of change in the distribution of types which
potentially has a number of applications. What happens if the distribution of types
becomes less dispersed? For a private value auction, this would mean that the group of
bidders becomes more homogenous. The obvious hypothesis is that bidding will be more
competitive. This is certainly the case for equilibrium bidding functions calculated for
particular functional forms in auctions with affiliated values in Kagel and Levin (1986).
However, we show that in general this is not true, even under quite strong regularity
conditions. That is, there are plausible circumstances in which more precise information
will induce some agents to bid less.

Earlier we introduced two classes of games, strongly and weakly competitive. We will
now show that, in addition to the different boundary conditions, these classes of games
have qualitatively different comparative statics. Specifically, we examine the effect of
a more competitive distribution of types in the sense of the ULR order, introduced in
the previous section, on equilibrium strategies. Remember that dominance the ULR
order implies that the dominant distribution is either higher or less dispersed than the
dominated. We find that such a change in the distribution will lead to higher effort for
low types in strongly competitive games (where I = 0), but to lower effort for low types
in games that are weakly competitive (where I = 1).

Theorem 3 Suppose there are two distributions F,G such that F (z) ÂULR G(z). Let
xF (z) and xG(z) be the corresponding solutions to the differential equation (2). Then
(i) if I = 0 (so that the game is strongly competitive), xF (z) > xG(z) on (z, ẑP ) where
ẑP is where the ratio P (z) = F (z)/G(z) has its maximum; (ii) if I = 1 (so that the
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game is weakly competitive), there exists an ² > 0 such that xF (z) < xG(z) on (z, z+ ²).

Proof: In the Appendix.

Since the monotone likelihood ratio (MLR) order is a special case of the ULR order,
the above result implies that in weakly competitive games even a strongly monotone
increase in types will induce a reduction in bidding or effort by some agents. However,
note that in strongly competitive games the above result implies a strong competitive
response. For example, under the MLR order, the point ẑP is at the upper bound z̄.
That is, in strongly competitive games, xF (z) > xG(z) almost everywhere. It is, there-
fore, even more surprising that this is not the case in all games. The following section
gives several examples, and develops what exactly does happen in weakly competitive
games.

6 Some Examples

In this section we consider a few examples of different classes of games and demonstrate
that they indeed have different comparative statics.

6.1 Class 1: Strongly Competitive Games

In this subsection, we examine some familiar examples of strongly competitive games
of incomplete information. Here, the lowest type makes zero profit, and a monotone
increase in the distribution of types leads to a monotone increase in the equilibrium
strategy.

The first example is the independent private value first price auction where the value
a bidder places on the object for sale is simply her type, z. Assume the type for each
agent is an independent draw from the same distribution F (z) with support [z, z̄]. In
this model, if all other agents adopt the same strictly increasing strategy x(z), then the
expected utility of an agent of type z who bids x(ẑ) would be

V (x(ẑ), z, z−i) = U(z − x(ẑ))Fn−1(ẑ)
where U(·) is the agent’s Von Neumann-Morgenstern utility function, with U(0) nor-
malised to zero. We differentiate the above expression with respect to ẑ, set the result-
ing derivative to zero, and note that a symmetric equilibrium then requires that we set
x(ẑ) = x(z). The first order conditions then give rise to the differential equation

x0(z) =
(n− 1)f(z)
F (z)

U(z − x)
U 0(z − x) , (9)

which is a special case of the differential equation (4) with ψ(x(z), z) = U(z−x)/U 0(z−
x) and m(z) = (n− 1)f(z)/F (z), (a positive multiple of) the reverse hazard ratio. The
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standard boundary condition in the independent private value case is that limz→z x(z) =
z. Note that if U(·) is strictly increasing and (weakly) concave then ψ1 < 0 and ψ2 > 0.

We show next that the unimodal likelihood ratio order can be used to obtain com-
parative statics for general utility functions. In particular, it implies that more accurate
information will always lead to more aggressive bidding for those with relatively low
signals, and may lead to less aggressive bidding for only those with relatively high sig-
nals. To be more precise, if F (z) ÂULR G(z), so that F (z) and G(z) cross at most
once at some point z̃ on the interior of their support, then the corresponding bidding
functions will cross no more than once and only to the right of z̃. Moreover, if the
functions cross, they cross to the right of the maximum of P (z) = F (z)/G(z). In other
words, equilibrium bidding functions xF (z) and xG(z) behave as shown in Figure 1.

Proposition 3 Suppose xF (z) and xG(z) are the equilibrium bidding functions for dis-
tributions F (z) and G(z), respectively. If F (z) ÂULR G(z), then either xF (z) > xG(z)
almost everywhere, or there exists a point z∗ > argmaxP (z) = ẑP such that xF (z∗) =
xG(z

∗), xF (z) > xG(z) for all z ∈ (z, z∗) and xF (z) < xG(z) for all z ∈ (z∗, z̄).

Proof: The proof follows directly from Theorem 1 by observing that differential equation
(16) is a special case of differential equation (4) and that, by Corollary 1, σF (z) > σG(z)
on (z, ẑP ) and σF (z) < σG(z) on (ẑP , z̄).

The intuition behind the failure of monotonicity disclosed in Proposition 3 can
be expressed in the following tradeoff. As the distribution of types becomes more
compressed, the marginal return to raising one’s bid rises, inducing more aggressive
bidding. However, for those with types above z̃, the point of intersection of F (z) and
G(z), the probability of winning has risen as F (z) > G(z) for z > z̃. This has the
opposite effect. Thus monotonicity may fail for some z above z̃. This behaviour is
illustrated in Figure 1. One can also remark that this second effect is increasing with
the competitiveness of the auction, that is, the more risk averse are bidders or the larger
the number of participants.

Lebrun (1998) and Maskin and Riley (2001a) showed that if the two distributions
satisfy the monotone probability ratio property, one can obtain monotone comparative
statics in asymmetric first-price auctions.7 Similarly, Athey (2002) uses the monotone
likelihood ratio order to obtain monotone comparative statics. The corollary below is a
similar result for symmetric first-price auctions. If the maximum of the likelihood ratio
is at the upper bound, i.e. ẑL = z̄, then the ratio is monotone and the above proposition
implies that the solutions will not cross.

Corollary 2 Suppose xF (z) and xG(z) are the equilibrium bidding functions for distri-
butions F (z) and G(z), respectively. If F (z) ÂMLR G(z), then xF (z) > xG(z) almost
everywhere.

7The monotone probability ratio order, also known as the reverse hazard rate order, is implied by
the monotone likelihood ratio order. See Krishna (2002, Appendix B).
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Figure 1: Comparative Statics for a Strictly Competitive Game

Another special case of this approach is the effect of a change in an exogenous
parameter. As a very simple example, an increase in n the number of bidders in the
first price auction will lead to an upward shift in the function m(z), as in this context
m(z) is defined as (n − 1)f(z)/F (z). Then, by Theorem 1, the equilibrium bidding
function must rise everywhere on (z, z̄]. This result, that an increase in the number
of bidders in the first price auction will lead to more aggressive bidding is well-known.
However, it does illustrate that a parameter shift can be treated as a special and simple
case of these comparative statics techniques.

Another example is Bertrand competition with private information about costs, a
game which is strategically similar to a procurement auction (see Spulber (1995) for a
more complete treatment). In both cases, the player who names the lowest price wins the
prize (in the auction, the contract; in Bertrand competition, sales). Assume there are n
firms that compete on price to sell to N consumers. Each firm has private information
about its marginal cost c, which is an independent draw from the distribution F (c)
with support [c, c̄]. Each consumer seeks to buy one unit of the good, if the price
does not exceed a common reservation price p̄. Expected profits for a firm with cost c
from charging a price p(ĉ) when the other sellers use the symmetric strictly increasing
strategy p(c) are thus

V (p(ĉ), c, c−i) = N(p(ĉ)− c) (1− F (ĉ))n−1

This is Case 1, as in symmetric equilibrium, the highest cost firm cannot win the
contest and must make zero profits. A symmetric equilibrium will therefore satisfy the

12



differential equation

p0(c) = (p− c)(n− 1)
Ã

f(c)

1− F (c)
!
, lim

c→c̄ p(c) = c̄ (10)

So, in this case ψ(p, c) = (p− c) and m(z) = (n− 1)f(c)/(1− F (c)). The comparative
statics of this game are similar but reversed to those in the first price auction. Consider
a shift in the distribution of costs so that, for example, F (c) ÂMLR G(c). The next
result shows that such an increase in costs will lead to higher prices.

Proposition 4 Suppose pF (c) and pG(c) are the equilibrium price functions for distri-
butions F (c) and G(c), respectively. If F (c) ÂMLR G(c), then pF (c) > pG(c) almost
everywhere.

Proof: If F (c) ÂMLR G(c) by Corollary 1, f(c)/(1− F (c)) < g(c)/(1−G(c)) on (c, c̄).
The result then follows directly from Theorem 2.

6.2 Class 2: Weakly Competitive Games

In this section we examine several weakly competitive games of incomplete information,
where in equilibrium the lowest or weakest type makes no effort at all. Furthermore,
we will show that in this class of game an increase in competitiveness in the sense of a
stochastically higher distribution of types will lead to lower effort by low types.

For example, consider the following all-pay auction with private information.8 A
bidder of type z, receives a payoff of z−x if her bid x is the highest, and a payoff of −x
otherwise. Thus, an agent of type z bidding x(ẑ) when all other agents bid according
to the strictly increasing strategy x(z) will obtain an expected utility

V (x(ẑ), z, z−i) = F n−1(ẑ)z − x(ẑ)

Note that, in a symmetric equilibrium, the agent with the lowest type z will gain
an expected utility of −x. Clearly, the optimal bid in this case is zero. This game,
therefore, belongs in Class 2. We differentiate the above expression for expected utility
with respect to x̂ and set the derivative to zero. Then, in a symmetric equilibrium,
x̂ = x(z), giving rise to the following differential equation,

x0(z) = zh(z), x(z) = 0, (11)

where, again h(z) = (n− 1)f(z)F n−2(z). So, in this case ψ(x, z) = z and m(z) = h(z).
Alternatively, in a special case of the contests analysed by Moldavanu and Sela

(2001), n agents compete for a prize with fixed common value W . Each agent pays a
8See Krishna and Morgan (1997) for a more general treatment.
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cost cx to produce output x. The prize is awarded to the agent with the highest output.
Let c = 1 − z, where z is the agent’s type which is an independent draw from F (z)
with support [z, z̄] with z̄ < 1. Thus, an agent choosing x(ẑ) when all others adopt the
strictly increasing strategy x(z) will obtain an expected utility

V (x(ẑ), z, z−i) = Fn−1(ẑ)W − (1− z)x(ẑ).

A symmetric equilibrium in increasing strategies will therefore be a solution to the
differential equation

x0(z) =
W

1− zh(z), x(z) = 0 (12)

So, in this case ψ(x, z) =W/(1− z) and again m(z) = h(z).

Proposition 5 Suppose xF (z) and xG(z) are the equilibrium bidding functions arising
from the differential equations (10) or (11) for distributions F (z) and G(z), respectively.
If F (z) ÂULR G(z), then hF (z) crosses hG(z) at least once and possibly twice. This
implies that xF (z) < xG(z) on (z, ẑ−] where ẑ− is the first crossing point of hF (z)
and hG(z). Furthermore, xF (z) crosses xG(z) at least once and from below so that
xF (z̃) > xG(z̃) where z̃ is the unique crossing point of F (z) and G(z). If there is a
second crossing of hF (z) and hG(z), then xF (z) may cross xG(z) from above on (ẑ+, z̄)
where ẑ+ is the second crossing point of hF (z) and hG(z).

Proof: Note that in the proof of Theorem 3 we established that hF (z)/hG(z) was strictly
increasing on (z, ẑL), and that that hF (z) crosses hG(z) exactly once and from below.
The first claim then follows from Theorem 1.

The solutions xF (z) and xG(z) must cross. Note that from (10) and (11), we have
x(z̃) =

R z̃
z φ(z)dF

n−1(z) with φ(·) an increasing function (z and 1/(1− z) respectively).
By integration by parts x(z̃) = φ(z̃)F (z̃)−R z̃z F n−1(z)φ0(z)dz. Since F n−1(z) < Gn−1(z)
on (z, z̃) with equality at z̃ the result follows.

This comparative static result is illustrated in Figure 2. This shows an example
where F (z) represents a more compressed distribution than G(z). The above result
then suggest that low value bidders will bid less under the higher or more compressed
distribution F (z), but that the bidding function must cross over before the two dis-
tribution functions do so at z̃. A further crossing is illustrated in the Figure. This is
possible as hF (z) < hG(z) for z > ẑ+, but is not guaranteed.

Another example is given by Bagwell and Wolinsky (2002) who consider an incom-
plete information version of the Varian (1980) model of price dispersion. There are
n firms that compete on price to sell to N consumers. Each consumer seeks to buy
one unit of the good, if the price does not exceed a common reservation price p̄. A
proportion q of consumers are uninformed and purchase from a randomly chosen seller.
The other 1 − q only buy from the lowest priced firm. In the version of Bagwell and
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ẑ−

F (z)

G(z)

xF
xG

Figure 2: Comparative Statics for a Weakly Competitive Game.

Wolinsky, each firm has private information about its marginal cost c, which is an inde-
pendent draw from the distribution F (c) which has support [c, c̄]. Expected profits for
a firm with costs c from charging a price p(ĉ) when the other sellers use the symmetric
strategy p(c) are thus

V (p(ĉ), c, c−i) =
N

n
(p(ĉ)− c)

³
q + n(1− q)(1− F (ĉ))n−1

´
.

This falls into Class 2 and gives rise to the differential equation

p0(c) = (p− c)
Ã
n(n− 1)(1− q)f(c)(1− F (c))n−2

n(1− q)(1− F (c))n−1 + q
!
, p(c̄) = p̄. (13)

Define R(c) = (1− F (c))n−1 and use r(c) = R0(c). Then, we have ψ(p, c) = p− c and
m(c) = −n(1− q)r(c)/(n(1− q)R(c) + q). Further define

P (c) =
n(1− q)RF (c) + q
n(1− q)RG(c) + q (14)

Proposition 6 Suppose pF (c) and pG(c) are the equilibrium pricing functions arising
from the differential equation (12) for distributions F (z) and G(z), respectively. If
F (z) ÂMLR G(z), then pF (c) < pG(c) on (ĉ, c̄) where ĉ is the crossing point of mF (z)
and mG(z) (maximum of P (c)).

Proof: It can be established by similar inequality to that in (17), that if F (z) ÂMLR G(z)
then the ratio rF (c)/rG(c) is increasing on (c, c̄). Note that P (c) = P (c̄) = 1 and that
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as F stochastically dominates G, we have F (c) ≤ G(c) and P (c) ≥ 1 for c ∈ (c, c̄). It
is easily checked that at any point where P 0(c) = 0, then P (c) = rF (c)/rG(c). And
since rF (c)/rG(c) is increasing there can be only one turning point for P (c), that is,
it is unimodal with a unique maximum at ĉ. Note that mF (c) > mG(c) if and only if
P 0(c) < 0. So, for c > ĉ, we have mF (c) > mG(c) and the result follows from Theorem
2.

We would expect a decrease in costs to make the market uniformly more competitive.
However, here a stochastically lower distribution of costs induces the high cost firms
(firms with costs greater than ĉ) to charge higher prices. The reason for this is the
presence of the uninformed consumers, who assure any firm a minimum demand of
qN/n, and make this game only “weakly competitive”. With a lower distribution of
costs, a firm at any given level of costs will be less likely to win the competition to
name the lowest price and attract the informed consumers. If one’s costs are high, the
chances of winning can be so low, that it may be better to give up the chase. Compare
this with the Bertrand model considered in the previous section (or equivalently this
model with q = 0). There, charging a high price ensures only zero profits.

Note, however, there is another change that produces a reduction in prices for all
firms. Since ∂m(c)/∂q = r(c)/(n(1 − q)R(c) + q)2 < 0 for c ∈ (c, c̄), a fall in q, the
proportion uninformed, leads to a rise in m(c) and lower prices almost everywhere by
a simple application of Theorem 2.

7 Conclusions

In this paper, we investigate two new types of comparative statics in games of incom-
plete information, both of which give rise to non-monotone results. First, we show that
refinements of second order stochastic dominance are suitable for comparative statics
in games of incomplete information, but are not in general sufficient for monotonicity.
Second, we identify a class of games, including all-pay auctions and an incomplete infor-
mation version of Varian’s (1980) model of price dispersion, where even a stochastically
higher distribution of types does not necessarily lead to uniformly more aggressive play.

In this paper, we surveyed some stochastic orderings used to rank distributions in
terms of dispersion. We also applied them to comparative statics analysis. We hope
that they will find further similar applications. First, there has been a recent interest in
the effect of changes in inequality in the degree of social competition (Samuelson (2004);
Hopkins and Kornienko (2004)). Second, we do not investigate asymmetric auctions
or other games in this paper. However, the orderings in terms of dispersion used here
should also be useful, for example, in determining the effects of one player having more
precise information than other bidders.
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Appendix

Proof of Proposition 1: First, we can write an agent’s expected utility conditional
on bidding x as ΠU(z− x) + (1−Π)U(−Ix) where Π is the probability of winning. It
can then be verified that by the assumption that U 00 ≤ 0, the agent’s indifference curves
in (x,Π) space have the single crossing property of Maskin and Riley (2003), whether
I = 1 or I = 0. Their Lemma 2 (also Proposition 1 of Maskin and Riley (2000a)),
which establishes that any best response in a first price auction with independent types
is monotone in one’s type, also can be applied in the all-pay case. Specifically, the proof
follows from the finding that the derivative of expected utility with respect to one’s
type ∂V/∂z is increasing in one’s bid x. Since in the games we consider here ∂V/∂z is
the same whether I = 1 or I = 0, and the case of I = 0 is covered by their original
result, the result also holds for I = 1.

Suppose that the symmetric equilibrium strategy x(z) is not strictly increasing so
that x̆ = x(z0) = x(z1) for some z0 < z1. Then, given that if all others adopt the
symmetric strategy x(z), Π(x̂) = F n−1(ẑ) is the probability of winning with a bid
x̂ = x(ẑ), we have Π(x̆) > limx↑x̆Π(x), that is, there is a discrete jump in the probability
of winning at x̆. But U is continuous in x, so there must exist an increase in x sufficiently
small that the consequent increase in the probability of winning will be greater than
any decrease in utility U . That is, there is a profitable deviation, which must be feasible
for an agent with type z1 as z1 > z0 ≥ x̆. Hence, a symmetric equilibrium strategy
must be strictly increasing.

Furthermore, in a symmetric equilibrium the equilibrium strategy x(z) will be con-
tinuous. Suppose not, so there is a jump upwards in the equilibrium strategy at some
z̆ so that limz→z̆ x(z) = x̂ 6= x(z̆). Note, that as x(z) is strictly increasing, despite the
discontinuity at z̆ we have limx→x(z̆)Π(x) = Π(x(z̆)) = Π(x̂). An individual of type
z̆+ ² for ² > 0 who decreases her bid from x(z̆+ ²) to min[x̂, x(z̆)], that is to the level at
the bottom of the jump, will gain a discrete increase in utility U . But by the continuity
of Π on [x(z̆), x(z̆ + ²)], there must exist an ² sufficiently small that the consequent
decrease in Π will be smaller than the increase in direct utility U . That is, there is a
profitable deviation. It is also possible to establish differentiability of x(z) using stan-
dard but lengthy arguments (see, for example, Maskin and Riley (1984)). Then, for any
z ∈ (z, z̄] the first order conditions for a maximum give rise to the differential equation
(2). Given the differentiability of x(z), F (z) and U(z), the right-hand side of (2) is
continuously differentiable. Existence and uniqueness of a solution then follows from
the fundamental theorem of differential equations.

Proof of Theorem 1: Let us write xF (z)− xG(z) as follows:

xF (z)− xG(z) =
Z z

z
[ψ(xF (t), t)mF (t)− ψ(xG(t), t)mG(t)]dt =

=
Z z

z
[ψ(xF (t), t)mF (t)− ψ(xF (t), t)mG(t) + ψ(xF (t), t)mG(t)− ψ(xG(t), t)mG(t)]dt =
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=
Z z

z
ψ(xF (t), t)[mF (t)−mG(t)]dt+

Z z

z
[ψ(xF (t), t)− ψ(xG(t), t)]mG(t)dt

and further rewrite the above as:

xF (z)−xG(z)+
Z z

z
[ψ(xG(t), t)−ψ(xF (t), t)]mG(t)dt =

Z z

z
ψ(xF (t), t)[mF (t)−mG(t)]dt

(15)

Let us first show that if xF (z) and xG(z) do cross on (z, z + δ), then xF (z) crosses
xG(z) from below. This easy to see from the equation (4), as it implies that at any
point z× such that xF (z×) = xG(z×), we have that

x0F (z×)
x0G(z×)

=
mF (z×)
mG(z×)

(16)

That is, as mF (z×) > mG(z×) for any z× ∈ (z, z + δ) we have x0F (×) > x0G(×). This
implies that there is at most a single crossing of xF (z) and xG(z) on (z, z + δ).

Consequently, there are three possible cases. First, xF (z) > xG(z) on (z, z + δ).
Second, xF (z) < xG(z) on (z, z + δ). Third, xF (z) < xG(z) on (z, z1) for z1 < z + δ
where z1 is the unique crossing point of the two solutions. Note that the second and
third possibilities both imply that xF (z) < xG(z) on (z, z+ ²) for some ² ∈ (0, δ]. Given
that mF (z) > mG(z) on (z, z + δ), the RHS of (14) is positive on the interval. In this
case, as xF (z) < xG(z) and ψ is decreasing in x, ψ(xF (z), z) > ψ(xG(z), z) on (z, z+ ²)
so that the LHS of (14) is negative for all z < z + ², which is a contradiction. Thus, if
mF (z) > mG(z) on (z, z + δ), only the first case is possible, that is, xF (z) > xG(z) on
(z, z + δ).

Lastly, examining equation (15), if xF (z) and xG(z) do cross, then at every point
of crossing z×, xF (z) crosses xG(z) from above (so that x0F (z×) < x0G(z×)) only if
mF (z×) < mG(z×) and xF (z) crosses xG(z) from below (so that x0F (z×) > x

0
G(z×)) only if

mF (z×) > mG(z×). This implies that any point of sign change in xF (z)−xG(z) is always
to the right of some point of sign change in mF (z)−mG(z), so that S(xF (z)−xG(z)) ≤
S(mF (z)−mG(z)).

Proof of Theorem 3: (i) If I = 0, and we take U(0) = 0 then the differential
equation reduces to (16). Now, by Corollary 1, we have f(z)/F (z) > g(z)/G(z) almost
everywhere on (z, ẑP ) and the result follows from application of Theorem 1.

(ii) If F ÂULR G then F (z)/G(z) is unimodal from Corollary 1, and F (z) < G(z) on
(z, z̃) with z̃ ≤ z̄. Clearly also Fn−1(z) < Gn−1(z) on (z, z̃). Now, hF (z) is the density
function for the distribution Fn−1(z) as hG(z) is for Gn−1(z). Since hF (z) and hG(z) are
both density functions and F n−1(z̃) = Gn−1(z̃), it cannot be that one density is always
bigger than the other on (z, z̃). The ratio hF (z)/hG(z) = f(z)Fn−2(z)/(g(z)Gn−2(z))
is increasing if

f 0(z)
f(z)

f(z)

F (z)
>
g0(z)
g(z)

g(z)

G(z)
(17)
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It is then easy to verify from Corollary 1 that if F ÂULR G, then hF (z)/hG(z) is
increasing on (z, ẑL). This implies that hF (z) crosses hG(z) exactly once and from
below. Thus, for some ² > 0, hF (z) < hG(z) on (z, z + ²). Now we would like to
apply Theorem 1, but we have the complication that here the function ψ = (U(z−x)−
U(−x))/(U 0(z−x)F n−1(z)+U 0(−x)(1−F n−1(z))) depends on the distribution function
F (z) as well as z and x, or here we have ψ(x(z), z, F (z)). However, if ψ is increasing in
F (z), as it is here, it can be shown that the argument proceeds as before. First, given
that F (z) < G(z) on (z, z̃) at any point of crossing of xF (z) and xG(z) in that interval,
xG must cross from below, and there can be only one such crossing. Thus, there are two
possibilities, either the result is proved, or there is an ² > 0 such that xF (z) > xG(z)
on (z, z + ²). But this would imply that ψ(xF (z), z, F (z)) < ψ(xG(z), z,G(z)) on that
interval, which together with hF (z) < hG(z), would imply that x0F (z) < x0G(z) on
(z, z + ²), which is a contradiction.
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