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ARTICLE OPEN

Altered DNA methylation associated with a translocation
linked to major mental illness
Daniel L. McCartney1, Rosie M. Walker1, Stewart W. Morris1, Susan M. Anderson1, Barbara J. Duff2, Riccardo E. Marioni1,3, J. Kirsty Millar1,
Shane E. McCarthy4, Niamh M. Ryan1, Stephen M. Lawrie 2, Andrew R. Watson2, Douglas H. R. Blackwood2, Pippa A. Thomson 1,3,
Andrew M. McIntosh 1,2,3, W. Richard McCombie4, David J. Porteous1,3 and Kathryn L. Evans1,3

Recent work has highlighted a possible role for altered epigenetic modifications, including differential DNA methylation, in
susceptibility to psychiatric illness. Here, we investigate blood-based DNA methylation in a large family where a balanced
translocation between chromosomes 1 and 11 shows genome-wide significant linkage to psychiatric illness. Genome-wide DNA
methylation was profiled in whole-blood-derived DNA from 41 individuals using the Infinium HumanMethylation450 BeadChip
(Illumina Inc., San Diego, CA). We found significant differences in DNA methylation when translocation carriers (n= 17) were
compared to related non-carriers (n= 24) at 13 loci. All but one of the 13 significant differentially methylated positions (DMPs)
mapped to the regions surrounding the translocation breakpoints. Methylation levels of five DMPs were associated with genotype
at SNPs in linkage disequilibrium with the translocation. Two of the five genes harbouring significant DMPs, DISC1 and DUSP10,
have been previously shown to be differentially methylated in schizophrenia. Gene Ontology analysis revealed enrichment for
terms relating to neuronal function and neurodevelopment among the genes harbouring the most significant DMPs. Differentially
methylated region (DMR) analysis highlighted a number of genes from the MHC region, which has been implicated in psychiatric
illness previously through genetic studies. We show that inheritance of a translocation linked to major mental illness is associated
with differential DNA methylation at loci implicated in neuronal development/function and in psychiatric illness. As genomic
rearrangements are over-represented in individuals with psychiatric illness, such analyses may be valuable more widely in the study
of these conditions.

npj Schizophrenia  (2018) 4:5 ; doi:10.1038/s41537-018-0047-7

INTRODUCTION
We previously reported a single, large family where a balanced
translocation between chromosomes 1 and 11 [t(1;11)] shows
genome-wide significant linkage for SZ, rMDD and BD.1,2 On
chromosome 1, the translocation disrupts the protein coding gene
Disrupted in schizophrenia 1 (DISC1) and the antisense non-coding
gene Disrupted in Schizophrenia 2 (DISC2). On chromosome 11, the
translocation disrupts the non-coding gene DISC1 Fusion Partner 1
(DISC1FP1).3,4 DISC1 is expressed in the brain throughout
development and adulthood, where it plays a role in multiple
processes including neurogenesis and neuronal migration, inte-
gration, maturation and signalling.5 Lymphoblastoid cell lines
from carriers of the translocation show a ~50% reduction in DISC1
protein expression, implicating haploinsufficiency as a potential
pathogenic mechanism.3

It is known that chromosomal translocations can be associated
with altered chromatin organisation coupled with transcriptional
deregulation, and that these effects can extend a considerable
distance beyond the breakpoint locations.6–8 DNA methylation is
an important key component of chromatin structure that is
associated with the regulation of gene expression.9 Altered
methylation is present in individuals with SZ and BD, both in

MZ twins who are discordant for illness10 and in case/control
comparisons of each of these illnesses.11–13 In light of this
evidence, we hypothesised that investigating DNA methylation in
the t(1;11) pedigree may further our understanding of the
aetiology of illness in this family.
To assess whether altered DNA methylation exists and, there-

fore, might contribute to illness in t(1;11) carriers, we profiled
genome-wide methylation in whole-blood-extracted DNA from 17
translocation carriers and 24 family members without the
translocation (non-carriers). We compared methylation levels in
carriers to those in non-carriers, to address the hypothesis that
inheritance of the translocated chromosomes is associated with
differential DNA methylation.

RESULTS
Assessment of differential methylation between t(1;11) carriers
and non-carriers
DNA methylation was compared between 17 t(1;11) carriers and
24 non-carriers by linear regression, fitting age, gender and eight
significant surrogate variables identified as covariates. Prior to
analysis, we assessed for confounding between translocation
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carrier status and age, gender and estimated cellular proportions.
Unpaired t-tests and Fisher’s exact tests were performed to
identify whether age and gender, respectively, were significantly
associated with group status. A significant between-group
difference in age was observed between t(1;11) carriers and
non-carriers, with carriers being older (p= 0.045; Supplementary
Table 1). No significant differences were observed between
gender (p= 1; Supplementary Table 2). Differences in cell
composition were assessed for statistical significance using a
Student’s t-test. No significant between-group differences were
observed (p ≥ 0.407; Supplementary Table 3). Significant differ-
ential methylation was observed at 13 loci (false discovery rate
(FDR) q < 0.05; Fig. 1, Table 1). Four of these sites were in the DISC1
gene, three mapping to the gene body and one to the 3′
untranslated region (3′UTR). With the exception of one site on
chromosome 10 (cg24508974), all differentially methylated sites

mapped to either chromosome 1 or 11. Of the 12 sites on
chromosomes 1 and 11, all but one were hypomethylated in t
(1;11) carriers. The most distal differentially methylated sites were
situated approximately 10 Mb and 31 Mb from the translocation
breakpoints on chromosomes 1 and 11, respectively (Fig. 2; Table
1). The most significant single differentially methylated position
(DMP) (cg09186051) was in intron 9 of DISC1 and intron 2 of DISC2
(JK Millar, personal communication), approximately 30 kb telo-
meric of the chromosome 1 breakpoint.

Gene Ontology analysis
Although only 13 probes remained significant at a false discovery
rate of 5%, it is possible that the multiple non-significant
differences in methylation affecting other genomic loci affect
common biological pathways and processes. In order to establish

Fig. 1 Manhattan plot for DNA methylation comparison between t(1;11) carriers and non-carriers. Figure shows –log10 p-values for differential
methylation between t(1;11) carriers and non-carriers (y-axis) plotted against chromosomal position (x-axis). The horizontal red line represents
the –log10 p-value threshold for genome-wide significance (FDR q= 0.05)

Table 1. Significantly differentially methylated positions between t(1;11) carriers and non-carriers

Probe ID Hg19 coordinates Gene Beta difference Fold-change t p-value q-value

cg09186051 Chr1:231981906 DISC1;TSNAX-DISC1 −0.07 −1.31 −11.81 1.17 × 10−13 5.20 × 10−8

cg26728851 Chr11:76430375 GUCY2E −0.03 −1.63 −9.72 2.09 × 10−11 4.64 × 10−6

cg15157974 Chr1:232144702 DISC1;TSNAX-DISC1 −0.04 −1.27 −9.04 1.30 × 10−10 1.92 × 10−5

cg05656812 Chr1:232021560 DISC1;TSNAX-DISC1 −0.06 −1.33 −8.44 6.73 × 10−10 7.46 × 10−5

cg06928246 Chr1:227974645 NA −0.07 −1.56 −7.99 2.41 × 10−09 0.0002

cg16177633 Chr1:232172585 DISC1;TSNAX-DISC1 −0.03 −1.20 −7.23 2.13 × 10−08 0.0016

cg18815120 Chr1:231512676 EGLN1 −0.12 −2.10 −6.99 4.29 × 10−08 0.003

cg25899154 Chr11:72897143 NA −0.07 −1.28 −6.75 8.73 × 10−08 0.005

cg02771260 Chr11:59836817 MS4A3 −0.13 −1.79 −6.66 1.13 × 10−07 0.006

cg24508974 Chr10:103330391 NA 0.01 1.17 6.61 1.32 × 10−07 0.006

cg21875980 Chr1:231553510 EGLN1 0.06 1.40 6.54 1.64 × 10−07 0.007

cg26355502 Chr1:221916303 DUSP10 −0.01 −1.30 −6.24 4.05 × 10−07 0.01

cg00965168 Chr1:227974541 NA −0.05 −1.42 −6.10 6.03 × 10−07 0.02

Table summarises significantly differentially methylated sites between t(1;11) carriers and non-carriers (FDR q ≤ 0.05). In order of column appearance are probe
identifiers, Hg19 genomic coordinates, UCSC reference gene names (“NA” denotes intergenic regions), between-group difference in mean beta value, fold-
change between groups, moderated t-statistic, p-value for differential methylation and FDR-adjusted p-value (q-value)
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whether the genes most affected by differential methylation were
enriched for particular biological functions, Gene Ontology (GO)
analysis was performed on a list of genes ranked by uncorrected
p-value from the DMP analysis (n= 20,752). Among the top-
ranked genes, 62 GO terms showed significant enrichment (q ≤
0.05; Supplementary Table 4). These included several neurologi-
cally relevant terms, for example, the most significant was “neuron
projection” (q= 3.72 × 10−6, n= 131 genes).

Assessment of differentially methylated regions
Nominally significant probes (p ≤ 0.05; n= 24,149) were included
in the differentially methylated region (DMR) analysis, identifying
123 DMRs (q ≤ 0.05; Supplementary Table 5). The most significant
DMR was located in TNXB (p= 2.5 × 10−13). Overlap was assessed
between genes containing DMRs (n= 94) and findings of
genome-wide association studies (GWASs) of SZ, BD and major
depressive disorder.14–20 Twenty-two of the DMRs identified were
within the major histocompatibility complex (MHC; Fig. 3), which
has been implicated in the pathogenesis of SZ through a large-
scale GWAS.16 In addition, we identified DMRs within two
additional genes (IGSF9B, CNTN4) that showed genome-wide
association with SZ in the same study. No overlap was observed
between DMR genes and GWAS findings in BD or MDD.14,15,17–21 A
graphical summary of all DMRs identified is available in
Supplementary File 2.

Assessment of the role of genetic variation in regulating DNA
methylation
A recent study22 identified a large number of loci at which
methylation level was associated with genotype at a single-

nucleotide polymorphism (SNP) either in cis or in trans with the
methylation site (methylation quantitative trait loci; meQTL).
Seven of our 13 significant DMPs (q < 0.05) were associated with
a meQTL observed in this study.22 We attempted to replicate the

Fig. 2 Manhattan plots for DNA methylation comparison between t(1;11) carriers and non-carriers at translocation breakpoint regions. Figure
shows –log10 p-values for differential methylation between t(1;11) carriers and non-carriers (y-axis) plotted against chromosomal position (x-
axis) for chromosome 1 (a) and chromosome 11 (b). The horizontal red line represents the –log10 p-value threshold for genome-wide
significance (FDR q= 0.05). The vertical black line denotes the translocation breakpoint

Fig. 3 Differentially methylated regions (DMRs) on chromosome 6.
Figure shows –log10 p-values for differentially methylated regions
identified in t(1;11) carriers (y-axis) plotted against chromosomal
position in Mb (x-axis) for chromosome 6
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findings for these seven probes and found that five were
significant meQTLs in our study (p < 0.05 Table 2). All five loci
were located on chromosome 1 or 11 and were significantly
associated with the translocation (p < 0.05; Table 2).

DISCUSSION
We characterised genome-wide DNA methylation in whole-blood-
derived DNA from 41 members of a family in which a
translocation, t(1;11), segregates with major mental illness,
including SZ, rMDD and BD. The overlapping genetic architecture
of these disorders has previously been established through the
identification of disease-associated variants,15 as well as transcrip-
tomic23 and methylomic11 case–control differences. There are
multiple mechanisms by which the translocation might confer risk
for psychiatric illness; our goal was to investigate whether it was
associated with altered DNA methylation, which has been
previously implicated in psychiatric illness.
Comparison of DNA methylation in t(1;11) carriers and non-

carriers identified 13 significant DMPs. All but one mapped to the
regions surrounding the translocation breakpoints: nine occurred
within five genes, while the remainder were intergenic. Four
significant DMPs mapped to the DISC1 gene, which is interrupted
by the translocation and has been implicated in neurodevelop-
ment, cognitive function and susceptibility to psychiatric illness.24–
27 Differential methylation in two of the five genes, DISC1 and
DUSP10, was also observed in a recent study of differential
methylation associated with SZ13 although it should be noted that
different probes were implicated. Two DMPs identified here
mapped to the EGLN1 gene, which encodes prolyl hydroxylase
domain-containing protein 2 (PHD2). PHD2 regulates the tran-
scription factor HIF-1α, the master transcriptional regulator of the
cellular response to hypoxia,28 which is an obstetric and
developmental risk factor for SZ.29–31

Only a subset of the CpG sites adjacent to the breakpoints
showed significant differential methylation. There are a number of
possible reasons for this observation, for example: genetic control
of methylation at specific CpG sites by meQTL in linkage
disequilibrium with the translocation; tissue-specific differential
methylation patterns and/or lack of power. With regard to meQTL,
7 of the 13 significant DMPs were previously reported to be
influenced by an meQTL in a study of lymphocyte DNA
methylation.22 We were able to replicate these findings for five
of these probes. The failure to replicate the remainder may be
attributable to limited statistical power (due to a small number of
homozygote carriers of the minor allele of the meQTL).
Using GO analysis, we investigated whether the genes

harbouring the most significantly differentially methylated loci
were enriched for particular biological processes. This pointed to

the possibility of the translocation conferring an effect upon
neurodevelopment in t(1;11) carriers. This is in keeping with
findings of structural and functional differences in both affected
and unaffected carriers of the translocation1,2,32 and of neurode-
velopmental abnormalities observed in SZ more widely.33

Between-locus correlation in DNA methylation is common at
neighbouring methylation loci. Differences in methylation across a
number of adjacent sites (even if not statistically significant
individually) may together confer a biologically meaningful
effect.34 We, therefore, carried out DMR analyses and identified
one gene, TNXB, as being particularly noteworthy. This gene
contained the top p-value-ranked DMR (51 probes spanning
approximately 1.6 kb) along with a second region (325 bp,
comprising eight probes). TNXB encodes Tenascin X, an extra-
cellular glycoprotein, predominantly expressed in connective
tissues. TNXB, in common with a number of the genes identified
in this study, is located within the extended MHC region, which
was identified as the most significant locus in a recent GWAS of
SZ.16 Evidence for altered immune function in psychiatric illness is
long established.35

Two additional DMRs were identified within genes associated
with SZ at the genome-wide significant level by the SZ Working
Group of the Psychiatric Genomics Consortium (PGC).16 These
were within the genes IGSF9B and CNTN4, both of which function
as cell adhesion molecules. Two large-scale epigenome-wide
association studies of SZ have recently been reported.12,13 These
studies reported significant differential methylation in RPTOR: a
gene in which we identified a DMR. RPTOR is a key component of
mTOR signalling, which has been implicated in synaptic
plasticity.36

None of the DMRs identified contained any of the 13 significant
DMPs identified when t(1;11) carriers were compared to non-
carriers. Of these 13 DMPs, 7 could not contribute to DMRs as the
nearest adjacent probe falls outside the maximum radius for the
DMR-calling “lasso”. This highlights a limitation of DMR analysis:
the identification of DMRs requires several parameters, such as the
minimum number of probes required to form a DMR and the
distance permissible between these probes, to be set. As there is a
dearth of experimental evidence linking the selection of DMR
parameters to the identification of biologically meaningful DMRs,
parameter setting is somewhat arbitrary. It is interesting to note,
for example, that three adjacent probes mapping to DISC1 (and
DISC2) met the criteria for significant differential methylation, but
were spaced slightly too far apart to be called as a DMR. Moreover,
in the majority of cases, the Infinium HumanMethylation450
BeadChip does not interrogate all adjacent CpGs that could
constitute a DMR. This issue could be addressed in the future by a
targeted follow-up approach (such as bisulfite sequencing). It is
important to note that all translocation carriers in this analysis

Table 2. Summary of meQTLs reported to regulate DNA methylation at differentially methylated loci identified between t(1;11) carriers and non-
carriers

Reported meQTL Probe ID Distance between probe and SNP Probe gene meQTL gene meQTL p-value

rs2486729* cg18815120 23 kb EGLN1 EGLN1 2.02 × 10−16

rs17154511* cg02771260 11 kb MS4A3 MS4A3 8.14 × 10−11

rs10899287* cg26728851 84 kb GUCY2E Intergenic 0.0002

rs545937* cg21875980 10 kb EGLN1 EGLN1 3.53 × 10−5

rs4366301* cg16177633 366 kb DISC1;TSNAX-DISC1 DISC1;TSNAX-DISC1 0.0009

rs6541279* cg15157974 391 kb DISC1;TSNAX-DISC1 TSNAX-DISC1 0.737

rs9419922 cg24508974 50 kb Intergenic Intergenic 0.548

From left to right, columns show the probe identifier, the corresponding probe’s associated gene, previously reported22 meQTL, the gene containing the
meQTL, and the p-value for the relationship between DNA methylation and meQTL genotype, adjusting for age and sex. meQTLs accompanied by an asterisk
(*) denote those that are significantly associated with t(1,11) carrier status (p ≤ 0.05)
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have a psychiatric diagnosis. While the translocation has been
significantly linked to psychiatric illness, it is not possible to
determine whether the DMR findings are directly linked to the
translocation or rather related to illness in these individuals. The
same argument could be made for the DMP findings. However,
the proximity of the strongest signals to the regions surrounding
the breakpoints are consistent with a role for the translocation in
the DMP analysis.
A limitation of this study is the use of blood-derived (as

opposed to brain-derived) DNA. Of relevance to this point, others
have reported that only 4.1% of 450k methylation array probes
were strongly correlated between blood and neocortex biopsied
at the point of surgical intervention for pharmaco-resistant
epilepsy.37 However, others report meQTLs to be consistently
detected across tissue types.38 This suggests that, should the
differences in methylation observed reflect the effects of variants
in linkage disequilibrium with the translocation, these methylation
differences might be consistently observed across tissue types. A
further caveat is the fact that at the time of blood draw some
individuals in the study will have been taking medication that may
have had an impact on DNA methylation. Between-group
differences in cell composition are a common concern in studies
involving blood-derived samples. However, we expect that the
eight variables identified by surrogate variable analysis should
account for cellular heterogeneity, among other unmodeled
factors.39 It is also important to acknowledge the limitations in
statistical power posed by a small sample. Although relatively
small in terms of sample size, the family-based design of the
current study should reduce the levels of genetic heterogeneity
observed in larger unrelated case–control comparisons, thus
increasing statistical power.
To conclude, we have found evidence for altered DNA

methylation in carriers of a translocation that is linked to an
increased risk of schizophrenia and other major psychiatric
illnesses.2 Further work is, however, required to determine the
cause(s) and consequences of these differences in DNA methyla-
tion, and thus whether and how they might relate to the adverse
effects of inheritance of the translocation. Given the existence of
other highly penetrant structural variants in psychiatric illness, it
will be of interest to determine whether this is a fruitful model for
future studies of these conditions.

METHODS
Sample information
Genome-wide DNA methylation was profiled in 41 members of the t(1;11)
family.2 Of these, 17 were carriers of the t(1;11) translocation and 24 were
non-carriers (t(1;11) carriers: 47% males, mean age= 49 years; t(1;11) non-
carriers: 50% males, mean age= 37 years). Unpaired t-tests and Fisher’s
exact tests were performed to identify whether age and gender,
respectively, were significantly associated with group status. Diagnostic
information is provided in Supplementary Table 6.

Study approval
The study was approved by the Multicentre Research Ethics Committee for
Scotland (09/MRE00/81). A detailed description of the study was given and
written informed consent was obtained from all individuals before
participation.

Sample preparation
Whole-blood-derived genomic DNA (500 ng) was treated with sodium
bisulphite using the EZ-96 DNA Methylation Kit (Zymo Research, Irvine,
CA), following the manufacturer’s instructions. Samples were analysed
using the Infinium HumanMethylation450 BeadChip (Illumina Inc., San
Diego, CA) at the Wellcome Trust Clinical Research Facility (WTCRF),
Western General Hospital, Edinburgh, UK. Samples were assigned to chips
such that, as far as possible, group and gender were balanced across chips.

Quality control, data pre-processing and normalisation
Raw intensity (.idat) files were read into R using the minfi package,40 which
was used to perform initial quality control assessments. Initial quality
control assessments were performed by inspecting plots of signal from the
internal control probes to assess the success of each stage of the
experimental process, for example, bisulphite conversion and probe
hybridisation. Signal from these control probes was acceptable for all
samples. Prior to normalisation, the data were filtered to remove poorly
performing probes as follows: Firstly, 30,969 probes that have been
predicted to hybridise to multiple genomic regions were removed.41 Next,
10,548 probes affected by genetic variation at the target CpG or the site of
single-base extension (for Type I probes) were excluded.41 Finally, 799
probes with more than five samples with a bead count of less than three
and/or ≥1% samples with a detection p-value of >0.05 were removed. The
criteria for sample removal were: (i) if a sample failed any of the quality
control assessments carried out in minfi; or (ii) ≥1% of sites had a detection
p-value of >0.05 in a given sample. No samples met the quality control
criteria for removal and the final data set consisted of 443,196 probes and
41 samples. Thirteen normalisation methods were compared based on
their ability to reduce technical variation, using the R package wateR-
melon,42,43 identifying the dasen method as the normalisation method that
best reduced technical variation in the data set.42 The data were then
normalised using this method, which involves adjusting the background
difference between Type I and Type II assays (by adding the offset
between Type I and II probe intensities to Type I intensities). Between-array
quantile normalisation was then performed for the methylated and
unmethylated signal intensities separately (Type I and Type II assays
normalised separately) and methylation beta values were calculated. Prior
to downstream analyses, M-values, defined as M= log2((M+ 100)/(U+
100)), where M represents the methylated signal intensity and U represents
the unmethylated signal intensity, were calculated for the normalised data.

Assessment of between-group differences in whole-blood cellular
composition
As variation in the cellular proportions of whole blood has the potential to
confound between-group comparisons of DNA methylation, we investi-
gated whether predicted cell proportions differed between t(1;11) carriers
and non-carriers. Estimated cell counts for B-lymphocytes, granulocytes,
monocytes, natural killer cells, CD4+ T-lymphocytes and CD8+ T-
lymphocytes were produced using the minfi estimateCellCounts() function,
which implements Jaffe and Irizarry’s modified version of Houseman’s
algorithm.39,44

Surrogate variable analysis
In order to account for latent, unmodelled sources of variation with
potentially confounding effects, surrogate variables were estimated and
fitted as covariates in the DMP analysis.45 Eight significant surrogate
variables were identified using the “be” method in the R package sva, after
specifying age and gender as covariates,46 and fitted as covariates in the
final regression model.

Assessment of DMPs
DMPs between groups were identified by linear regression using the R
package limma,47 adjusting for age, gender and significant surrogate
variables identified using the sva package.45 Summary statistics were
computed using limma’s eBayes() function,47 in which estimated probe-
wise variances were adjusted towards a common value. Normality of the
data was assessed by visual inspection of raw p-values in a
quantile–quantile plot (Supplementary Figure 18). Multiple testing correc-
tion was implemented using the Benjamini–Hochberg FDR,48 with a q-
value of ≤0.05 deemed to represent genome-wide significance.

Assessment of DMRs
DMRs were assessed using the champ.lasso() function available in the
ChAMP package.49,50 Probes with an uncorrected p-value of ≤0.05 in the
DMP analyses were submitted for DMR analysis. A DMR was defined as a
set of at least three contiguous nominally significant differentially
methylated positions located within a defined “lasso radius”, which was
set at the function’s default of a maximum of 2 kb. To account for the
probe spacing bias on the 450k array, the value of this “radius” was scaled,
using default parameters based on the genomic feature (e.g., CpG island,
intergenic region) associated with an underlying probe. The default
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minimum DMR separation threshold of 1 kb was also applied, below which
adjacent DMRs were merged.

GO analysis
Ranked list (by p-value) GO analysis was performed using GOrilla.51 In
common with other GO and pathway methods, GOrilla accepts each gene
identifier only once.52 Therefore, where genes were represented by
multiple probes, the lowest DMP p-value for any associated probe was
used to rank the gene for GO analysis. GOrilla utilises a “flexible threshold”
to determine enrichment at the top of the ranked list to define a “target
set” at the top of the list and a “background set” comprising all other genes
in the list. A hypergeometric test is performed to assign a p-value to each
GO category and a Benjamini–Hochberg FDR is then calculated to reflect
the number of GO categories assessed. GO categories with an FDR q-value
≤0.05 were considered statistically significant.

Assessment of meQTLs
A list of previously reported meQTLs and their associated CpGs22 was
interrogated to establish whether methylation at any CpG site showing
significant differential methylation in this study (q ≤ 0.05) was likely to be
regulated by an meQTL. For each meQTL, genotype information was
obtained from whole-genome sequence data for the family (Ryan et al.,
submitted).53 For those CpGs previously identified as being regulated by a
meQTL,22 linear regression was performed to assess the relationship
between minor allele count at the SNP concerned and methylation M-
values. A p-value of ≤0.05 was considered statistically significant.

Data availability
The code used in this analysis (including version information) can be
accessed by contacting the corresponding author.
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