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Abstract

Formulating a statistical inverse problem as one of inference in a Bayesian model has

great appeal, notably for what this brings in terms of coherence, the interpretability of

regularisation penalties, the integration of all uncertainties, and the principled way in

which the set-up can be elaborated to encompass broader features of the context, such

as measurement error, indirect observation, etc. The Bayesian formulation comes close

to the way that most scientists intuitively regard the inferential task, and in principle

allows the free use of subject knowledge in probabilistic model building. However,

in some problems where the solution is not unique, for example in ill-posed inverse

problems, it is important to understand the relationship between the chosen Bayesian

model and the resulting solution.

Taking emission tomography as a canonical example for study, we present results

about consistency of the posterior distribution of the reconstruction, and a general

method to study convergence of posterior distributions. To study efficiency of Bayesian

inference for ill-posed linear inverse problems with constraint, we prove a version of the

Bernstein–von Mises theorem for nonregular Bayesian models.
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Bayesian inference, nonregular likelihood, tomography.
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1 Introduction

Inverse problems are almost ubiquitous in applied science and technology, and because of the

need for rigorous analysis to characterise such problems, derive numerical solutions and assess

their performance – not to mention intrinsic mathematical interest, they have long been the

subject of intense mathematical study. In the corresponding ‘direct problem’, (macroscopic,

global) observational data are predicted from the (microscopic, local) model parameters of

the system. The inverse problem aims to draw conclusions about model parameters from

data: it is the home ground of statistical inference in the context of stochastic modelling.

This paper is a contribution to the theory of inverse problems from a statistical, indeed

Bayesian, perspective. Motivated by important problems in tomographic reconstruction,

taken as a canonical example, we consider the asymptotic performance of Bayesian procedures

in the small-noise limit, for a new class of models that we call generalised linear inverse

problems, and discuss further opportunities for theoretical analysis.

In the remainder of this Introductory section, we develop further background for our

approach, by setting out our perspective on linear/Gaussian inverse problems.

1.1 Ill-posed problems and regularisation

Inverse problems encountered in nature are commonly ill-posed: their solutions fail to satisfy

at least one of the three desiderata of existing, being unique, and being stable. Thus, in the

case of linear inverse problems, the focus is not on a unique solution x of

y = Ax, (1)

for given matrix A and data vector y, but rather on the corresponding space of solutions.

Even when the solution x to (1) exists and is unique for each possible y, lack of stability

means that the solution can be extremely sensitive to small errors, either in the observed

y or in numerical computations for solving the equations. This has obvious deleterious

consequences for the practical value of solutions. To circumvent this, the inverse problem is

typically regularised, that is, re-formulated to include additional criteria, such as smoothness

of the solution:

x = argminy=Axpen(x),

where pen(x) is a suitable scalar penalty functional.

If the data is observed with error

y = Ax+ error,

then, allowing for the possibility of lack of existence or uniqueness, we might replace the

natural least-squares formulation

x = argmin||y − Ax||2
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of the inverse problem by

x = argmin||y − Ax||2 + ν pen(x) (2)

where ν a positive constant determining the trade-off between accuracy and smoothness.

Such solutions make sense, and are commonly used, whether we regard the error in the

data used as deterministic or stochastic in nature. The least-squares set up is rather natural,

but from a statistical perspective corresponds to a Gaussian likelihood, and, as we shall see

below, this may be replaced by certain other distributions without material change to the

subsequent analysis.

1.2 Inverse problems from a Bayesian perspective

Smoothness, or other ‘regular’ behaviour of the solution to an inverse problem, is a prior

assumption on the unknown x, information about the model parameters known or assumed

before the data are observed. To use such information is thus to accept that the required so-

lution must combine data with prior information. In a statistical context the best-established

principle for doing this is the Bayesian paradigm, in which all sources of variation, uncertainty

and error are quantified using probability.

From this perspective, the solution to (2) is immediately recognisable – it is the maximum

a posteriori (MAP) estimate of x, the mode of its posterior distribution in a Bayesian model

in which the data y are modelled with a Gaussian distribution with expectation Ax, with

constant-variance uncorrelated errors, and in which the prior distribution of x has negative

log-density proportional to pen(x).

However, the Bayesian perspective brings more than merely a different characterisation

of a familiar numerical solution. Formulating a statistical inverse problem as one of inference

in a Bayesian model has great appeal, notably for what this brings in terms of coherence,

the interpretability of regularisation penalties, the integration of all uncertainties, and the

principled way in which the set-up can be elaborated to encompass broader features of the

context, such as measurement error, indirect observation, etc. The Bayesian formulation

comes close to the way that most scientists intuitively regard the inferential task, and in

principle allows the free use of subject knowledge in probabilistic model building. For an

interesting philosophical view on inverse problems, falsification, and the role of Bayesian

argument, see Tarantola (2006).

1.3 Convergence of the posterior distribution

Mathematical analysis of inverse problems usually takes the form of asymptotic arguments

concerning how well the true solution (the value of x assumed to generate the data) can
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be recovered in the presence of noise, as the size of that noise goes to zero. In a statistical

setting, the noise is a random variable, it size might be the variance, and we are concerned

with convergence of random variables or their distributions – in the case of a Bayesian

analysis, the focus is on the posterior distribution of x.

Convergence of the posterior distribution on a finite-dimensional parameter space, with

identifiable likelihood and with the true parameter being the interior point of the parame-

ter space, follows from the Doob’s martingale convergence theorem (see Doob (1949), and

van der Vaart (1998), for the case the sample size grows to infinity). The rate of convergence

follows from the Bernstein–von Mises theorem (van der Vaart 1998) which in fact states a

stronger result, that the posterior distribution centred at the true parameter and rescaled by√
n converges to the Gaussian distribution as the sample size n grows to infinity, provided

the likelihood is identifiable with finite Fisher’s information matrix, the prior is continuous

at the true point and the true value of the parameter is an interior point of the parameter

space. Moreover, the limit is independent of the choice of the prior distribution.

However, to the best of our knowledge, the rates of convergence of the posterior distri-

bution on a finite-dimensional parameter space in the case of non-identifiable likelihood and

with the true parameter lying on the boundary of the parameter space, studied here, have

not been considered previously. The particular example of the lack of identifiability of the

likelihood considered here is the ill-posedness of the linear inverse problem. As we shall see,

in the case of non-identifiable likelihood, the choice of the prior distribution strongly influ-

ences the limit of the posterior distribution as well as the rate of convergence on the subspace

where the likelihood is not identified. Also, we will show that the rate of convergence may

change if the limiting point lies on the boundary of the parameter space. We shall identify

the assumptions on the posterior distribution necessary for convergence which can be used

as a guidance to narrow down the set of potential prior distributions.

There are different approaches to quantify the convergence rates. One of them is to

consider the concentration rate of the almost sure convergence of the posterior distribution

which is the smallest εσ such that

P(d(x, x⋆) > εσ | Y ) → 0 almost surely

considered by Ghosal et al. (2000), Walker (2004), van der Vaart and van Zanten (2008) and

Rousseau (2010) in the context of nonparametric models.

Another approach, considered by Hofinger and Pikkarainen (2007) in the context of linear

inverse problems, is to metrise weak convergence of the posterior distribution as a random

variable µpost(ω) = p(x|Y (ω)) using the Ky Fan metric (Fan 1944); see Section 4.2. This

type of convergence is weaker than almost sure convergence, and the convergence rates in this

metric are slower than the parametric rate with the mean square error loss. In particular,

there is an extra logarithm in the rate which is unavoidable.
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The setting for Hofinger and Pikkarainen (2007) is the Gaussian linear inverse problem in

the form (2), with a particular quadratic penalty (Gaussian prior). Their main result (The-

orem 11) provides an upper bound on the Ky Fan metric between the posterior distribution

and its (degenerate) limit, as an explicit function of the size of the noise, the parameters of

the model and prior, and quantities relating the prior mean to the null space of the matrix

A. This result is used to prove a limit theorem (Theorem 13) on the convergence of this

Ky Fan metric to 0, in a small-noise, high-prior-precision limit, and to give the rate of this

convergence (Theorem 15).

We adopt the Hofinger and Pikkarainen (2007) paradigm in the present paper, which

extends their results to a broader class of assumed probability distributions for the data, to

linear constraints on the solution, and to more general prior distributions, and to the case of

the solution of the exact linear inverse problem being on the boundary.

We motivate our study by presenting in Section 2 a nonlinear inverse problem important

in medical imaging, and in Section 3 a geometrical view of the results in the linear/Gaussian

case. Section 4 establishes the class of models we study and in Section 5 we formulate our

theorems on rates of convergence of the posterior distribution. In Section 6 we study local

behaviour of the posterior distribution in a neighbourhood of the limit that is formulated as

a version of Bernstein–von Mises theorem. Their proofs are deferred to the Appendix.

2 Motivation

A general formulation for nonlinear inverse problems would replace Ax = y by A(x) = y, for

some suitably smooth transformation or operator A, together with an assumed probability

distribution for Y (ω). Mathematical analysis of such problems is typically far more difficult

and technical than for the linear case. However, a more modest generalisation is enough to

formulate and analyse a broad range of nonlinear statistical inverse problems of considerable

practical importance. The model class we consider is formally defined in Section 4.1; here

we consider an important motivating example.

2.1 Single photon emission computed tomography

Single photon emission computed tomography (SPECT) is a medical imaging technique in

which a radioactively-labelled substance, known to concentrate in the tissue to be imaged,

is introduced into the subject. Emitted particles are detected in a device called a gamma

camera, forming an array of counts. Tomographic reconstruction is the process of inferring

the spatial pattern of concentration of the radioactive isotope in the tissue from these counts.

The Poisson linear model

yt ∼ Poisson(Atx) (3)
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independently for different t, is close to reality for the SPECT problem (there are some dead-

time effects and other artifacts in recording). Here x represents the spatial distribution of the

isotope, typically discretised on a grid, x = {xs}, and y the array of detected photons, also

discretised y = {yt} by the recording process. The array A = (ats) quantifies the emission,

transmission, attenuation, decay and recording process; ats is the mean number of photons

recorded at t per unit concentration at pixel/voxel s.

See Green (1990) for further detail about the model, and an approach based on EM esti-

mation for MAP reconstruction of x, in a Bayesian formulation in which spatial smoothness

of the solution is promoted by using a pairwise difference Markov random field prior. Later,

Weir (1997) proposed fully Bayesian reconstruction.

Since Poisson distributions form an exponential family, this model can be seen as a

generalised linear model (Nelder and Wedderburn 1972), with identity link function, and

since A is ill-posed we can call this a generalised linear inverse problem.

We formalise the notion of ‘small-noise limit’ for this Poisson model in a practically-

relevant way, by supposing that the exposure time for photon detection is extended by a

factor T , and then consider the rate of detection of photons, letting T → ∞. Thus the

data-generation model becomes

Yt|xtrue ∼ Poisson(T Atxtrue)/T ,

independently, for t = 1, 2, . . . , n. To preserve the appearance of results from Hofinger and Pikkarainen (2007)

as far as possible, we write T −1 = σ2 → 0.

2.2 Prior distributions

From the beginning of Bayesian image analysis (Geman and Geman 1984; Besag 1986), use

has been made of prior distributions for image scenes that express generic, qualitative beliefs

about smoothness, yet do not rule out abrupt changes for real discontinuities (for example,

at tissue type boundaries in the case of medical imaging).

In common with much of the literature, we will concentrate here on Markov random

field prior distributions. The ‘true image’ xtrue in emission tomography corresponds to a

physical reality, the discretised spatial distribution of concentration of a radioactive isotope.

Of course, this is non-negative, so we impose a constraint, written xtrue ∈ X ⊂ Rp in general.

The first prior model we consider is Gaussian, apart from possible truncation by the

constraint,

p(x) ∝ exp

{
− 1

2γ2
||x− x0||2B

}
, x ∈ X ,

where ||u||2B = uTBu and B is a non-negative definite matrix. An important special case is

where x0 = 0 and B satisfies Bss′ = 1 if s and s′ are neighbouring pixels (written s ∼ s′),
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otherwise Bss′ = 0. Then we have ||x−x0||2B =
∑

i∼j(xs−xs′)
2, a pairwise-interaction model.

In this and other important cases B is singular.

A second prior model is a log cosh pairwise-interaction Markov random field (Green 1990):

p(x) ∝ exp

(
−δ(1 + δ)

2γ2

∑

s∼s′

log cosh((xs − xs′)/δ)

)
, x ∈ X .

Here the parameter δ is considered to be fixed.

This model has some attractive properties. While giving less penalty to large abrupt

changes in x compared to the Gaussian, it remains log-concave. It bridges the extremes

δ → ∞, the Gaussian model just mentioned, and δ = 0, the corresponding Laplace pairwise-

interaction model, sometimes called the ‘median prior’.

These distributions are improper since they are invariant to perturbing x by an arbitrary

additive constant, but lead to proper posterior distributions, save in exceptional pathological

circumstances.

3 Geometrical perspective

In this paper, we study inference for x given observed y, in the limit as a noise parameter σ2

(in the SPECT example, 1/T ) goes to 0. We generally assume an identity link function, so

that y becomes concentrated on Axtrue as σ
2 → 0.

Because of the ill-posed/ill-conditioned character of the problem, we cannot expect con-

sistency in inference about xtrue based on the likelihood alone. Even as σ2 → 0, so that

y converges to ‘exact data’ yexact = Axtrue, we will not be able to distinguish between

{x : Ax = Axtrue}.
One of the roles of the prior in the Bayesian approach is to resolve this ambiguity (as well

as generally improve reconstruction through ‘regularisation’, even without σ2 → 0). We recall

the ‘physical’ constraint in the SPECT problem, that x is component-wise non-negative, that

is, x ∈ X ⊂ Rp, since it quantifies the isotope concentration.

Insight into the interplay between the possibly ill-posed likelihood and the possibly de-

generate prior, and the role of the constraint x ∈ X can be obtained from a geometrical view

of the problem.

3.1 Gaussian likelihood and prior

Here we focus on the Gaussian prior p(x) ∝ exp(−1/(2γ2)||x−x0||2B) and Gaussian likelihood

y|x ∼ N (Ax, σ2I). This is the setting of Hofinger and Pikkarainen (2007), except that we

will allow B to differ from the identity and even be singular.
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In the limit as σ2 → 0, we are interested in solutions of Ax = yexact, where yexact = Axtrue,

under the influence of the prior p(x) ∝ exp(−1/(2γ2)||x−x0||2B). To obtain convergence to a

degenerate limit, we will need γ2 → 0 as well (though, as shown by Hofinger and Pikkarainen (2007)

for the case B = I, at a slower rate than σ2).

Thus the posterior is proportional to

exp(−1/(2σ2)||y − Ax||2 − 1/(2γ2)||x− x0||2B) subject to x ∈ X .

Let us first ignore any constraint on x, or equivalently assume X = Rp. By standard

manipulations, we can write this posterior as

x|y ∼ N
(
(ATA+ νB)−1(ATy + νBx0), σ

2(ATA+ νB)−1
)
, (4)

assuming the inverse matrix exists. As σ2 → 0 and γ2 → 0 in such a way that ν = σ2/γ2 → 0,

the posterior converges to the point

x⋆ = argminx∈X :Ax=yexact||x− x0||2B (5)

Suppose that A is a real n × p matrix, and B a real symmetric non-negative definite

p× p matrix, both possibly of deficient rank. A rank condition is needed to ensure that the

information from the likelihood and prior together define a proper posterior, and determine

x⋆ uniquely.

Proposition 1. Suppose that A is a real n×p matrix, and B a real symmetric non-negative

definite p×p matrix, both possibly of deficient rank. Suppose also that the p×2p block matrix

[B : ATA] has full rank p (or equivalently, the rows are linearly independent). Then for all

ν > 0, ATA + νB is nonsingular.

It follows that there exists a nonsingular real matrix P , not necessarily orthogonal, such

that P TBP , P TATAP , and P T (ATA+ νB)P (for all ν > 0) are all diagonal.

Furthermore, the limit as ν → 0 of ν(ATA + νB)−1 is a well-defined finite non-negative

definite matrix C, and ν(ATA + νB)−1 − C = O(ν).

The proof is in Appendix A.1.

This last result gives us a full description of the posterior variance matrix as σ2 → 0,

γ2 → 0 while ν = σ2/γ2 → 0: recalling that the posterior variance (in the Gaussian case)

is σ2(ATA + νB)−1, we see that in the limit, those components corresponding to αi = +∞
scale as γ2 and the remaining ones as σ2. (This is before transformation by P , which scales

and skews the result, but in a way independent of γ2 and σ2.) We see from the fact that

P TATAP = diag(1/(1 + αiν0)) that the number of αi not equal to +∞ is just the rank of

ATA.

In summary, the posterior distribution is Gaussian, with variance scaling differently in

different directions. If q is the rank of A, then asymptotically the variance has q eigenvalues

scaling like σ2 and the remaining (p−q) like the (larger) γ2. Geometrically, contours of equal

posterior density are concentric ellipsoids in Rp.
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3.2 Constrained case, and KKT theory

When X is a proper subset of Rp, the concentric ellipsoids are truncated by the constraints

x ∈ X . In the case of interest in SPECT, where we have simply componentwise non-

negativity contraints, the ellipsoids are truncated into the non-negative orthant. As σ2 and

γ2 become small, there are clear qualitative differences in the impact of this truncation

according to whether the centre (ATA + νB)−1(ATy + νBx0) of the ellipsoid lies in the

interior of the orthant, on its boundary, or outside it. Since y becomes close to yexact as

σ2 → 0, in the limit this is the same as the question of where does x⋆ lie.

Equation (5) is a quadratic programming problem, and could be solved numerically by

standard software.

We can get a theoretical handle on the solution through Karush–Kuhn–Tucker theory

(Kuhn and Tucker 1951). In the non-negativity constrained case, X = R
p
+, to minimise

||x− x0||2B subject to x ≥ 0 and Ax = yexact it is necessary and sufficient to find (x⋆, µ, λ) ∈
Rp × Rp × Rn such that

B(x⋆ − x0)− µ+ ATλ = 0

x⋆ ≥ 0

Ax⋆ = yexact

µ ≥ 0

for all s, µs = 0 or x⋆
s = 0

Ax=yAx=yexact
 AT 

x0

x*

Figure 1: Illustrating the geometry in the case p = 2, n = 1, with B = I. Contours of

posterior when γ2 > σ2 > 0.

The feasible set X ⋆ = {x ∈ X : Ax = yexact} is a closed convex set, and x⋆ may be an

interior point, or satisfy one or more of the constraints xs ≥ 0. In the case where all entries
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of A are non-negative (in accordance with physical reality), and for each s there is at least

one t with Ats > 0 (and if not, then xs is unidentifiable, so might as well be omitted from

the model), X ⋆ is a bounded polyhedron (or polytope). Otherwise, X ⋆ may be unbounded.

If γ2 remains bounded away from 0 as σ2 → 0, then, in the limit, the posterior has

support X ⋆.

3.3 Geometry in a more general case

The form of (5) strongly suggests that analogous properties for the limit of the posterior

should hold in a much broader class of models. Provided that σ2 → 0 and γ2 → 0 in such

a way that ν = σ2/γ2 → 0, we would expect similar limiting behaviour so long as (a) the

likelihood is maximised on {x : Ax = yexact} as σ → 0, and (b) the prior becomes close to

Gaussian as γ → 0; subject to these the precise form of the likelihood and prior should be

irrelevant. These observations motivate the model formulation of the next section.

In a general setting, more delicate, analytic, arguments will be needed to quantify the

convergence precisely, and these are given in the following sections. However, the broad

qualitative features of the solution for the Gaussian–Gaussian case (Section 3.1) continue to

hold: the posterior becomes increasingly concentrated near the hyperplane {x : Ax = yexact},
with σ2 dominating its squared variation about this hyperplane, while the variance parallel

to the hyperplane is of order γ2. The effect of the truncation onto x ∈ X depends on whether

in the absence of the constraint, the maximum of the posterior would lie in the interior of

X , on its boundary, or outside it.

4 Model formulation and preliminaries

4.1 General Bayesian model

We assume that the joint density of the observable responses Y taking values in Y ⊂ Rn

(with respect to Lebesgue or counting measure) takes the form

p (y| x) = F (y, Ax, τ) = Cy, τ exp

{
1

τ
f̃y(Ax)

}
, y ∈ Y , (6)

that is, that the distribution depends on x ∈ X only via Ax, where τ is a scalar dispersion

parameter; in the Gaussian model, τ is the variance σ2. The observed data are generated

from this distribution, with x = xtrue, and we aim to recover xtrue as τ → 0.

We assume a continuous bijective link function G : Y → Rn and write G(yexact) = Axtrue.

(In generalised linear models – see Example 3 below – commonly G has identical component

functions.)
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We adopt a Bayesian paradigm, using a prior distribution with density given by

p (x) ∝ exp(g(x)/γ2), x ∈ X ⊂ R
p, (7)

where γ2 is a scalar dispersion parameter for the prior that may depend on τ ; we relate this

to the data dispersion parameter τ by γ2 = τ/ν, and express most of our results below in

terms of τ and ν. Thus the posterior distribution satisfies

p (x| y) ∝ exp([f̃y(Ax) + ν g(x)]/τ), x ∈ X , (8)

Denote fy(x) = f̃y(Ax) and hy(x) = −fy(x)− ν g(x), so that p (x| y) ∝ e−hy(x)/τ .

We make the following assumptions about the error distribution:

1. If Y ∼ F (y,G(yexact), τ), then Y
P→ yexact as τ → 0.

2. For all µ0 ∈ G−1(AX ), f̃µ0(η) has a unique maximum over AX at η = G(µ0),∇ηf̃µ0(G(µ0)) =

0 and ∇2
ηf̃µ0(G(µ0)) is of full rank.

(Throughout, we use ∇i =
∂
∂xi

as the differentiating operator, and ∇ = (∇1, . . . ,∇p)
T as

the gradient. Similarly, ∇ij and ∇ijk are operators of the second and third derivatives, with

∇2 = (∇ij) being the matrix of second derivatives.)

Assumption 2 implies that the likelihood is regular in Ax. Various conditions are sufficient

for a distribution to satisfy this assumption, for example, the following:

2†. G(EY ) = Ax and ∃α > 0 and v(τ): ∀ i, E (|Yi − EYi|α) 6 v(τ) such that v(τ) → 0 as

τ → 0.

Then, a variant of Chebyshev’s inequality implies convergence.

Example 1. Assumption 2 is satisfied even for a location-scale Cauchy distribution t1(µ, σ)

with, say, α = 1/2:

E|Y − µ|1/2 = √
σ

∫ ∞

0

2
√
x

π(1 + x2)
dx,

which is finite and goes to 0 as σ → 0. However, assumption 1 is not satisfied for the Cauchy

distribution (or indeed any rescaled/recentered distribution with polynomial decay) since the

density cannot be cast in the form (6) for any choice of τ .

Example 2. Both assumptions are satisfied for the power exponential (Subbotin) distribu-

tions F (y, µ, σ) = Cσ,β exp{−[(y−µ)2]β/2/σβ} (β > 0), with τ = σβ and f̃y(µ) = [(y−µ)2]β/2.

Example 3. In the generalised linear models of Nelder and Wedderburn (1972), an impor-

tant class of nonlinear statistical regression problems, responses yt, t = 1, 2, . . . , n are drawn
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independently from a one-parameter exponential family of distributions in canonical form,

with density or probability function

p(yt;µt, τ) = exp

(
ytb(µt)− c(µt)

τ
+ d(yt, τ)

)
,

using the mean parameterisation, for appropriate functions b, c and d characterising the

particular distribution family. The parameter τ is a common dispersion parameter shared by

all responses. The expectation of this distribution is E(yt;µt, τ) = µt = c′(µt)/b
′(µt). Both

assumptions are satisfied for this example.

As the link function G is continuous and monotonic, we could consider a linear inverse

problem Ax = ỹexact where ỹexact = G(yexact), Ỹ = G(Y ) and Ỹ = G(Y). The expressions

with respect to x do not change, however, the Ky Fan distance ρK(Y, yexact) is replaced with

ρK(Ỹ , ỹexact). Hence, to simplify the notation, we assume below that the link function is the

identity.

We will assume that X = [0,∞)p. We could assume that parameter x is restricted

to an arbitrary convex polyhedron; this could be reduced to [0,∞)p by a linear change of

variables. In fact, the results below apply to X such that for any x ∈ X , [B(x, δ)∩X−x]/τ →
Rk × [0,∞)m × (−∞, 0]p−k−m as τ, δ → 0 and δ/τ → ∞.

4.2 Metrics for quantifying convergence

Definition 1. The Ky Fan metric between two random variables ξ1 and ξ2 in a metric space

(Y , dY) is defined by

ρK(ξ1, ξ2) = inf{ε > 0 : P(dY(ξ1(ω), ξ2(ω)) > ε) < ε}.

Convergence in this metric is equivalent to convergence in probability (Dudley 2003).

Hence, weak convergence of the posterior distribution µpost (as a random variable) to δx⋆ ,

the point mass at x⋆, is equivalent to its convergence in the Ky Fan metric, where the metric

space (Y , dY) is a space of probability distributions equipped with the Prokhorov metric.

Definition 2. The Prokhorov metric between two measures on a metric space (X , dX ) is

defined by

ρP(µ1, µ2) = inf{ε > 0 : µ1(B) ≤ µ2(B
ε) + ε ∀ Borel B}

where Bε = {x : infz∈B dX (x, z) < ε}.

In particular, convergence in this metric is equivalent to convergence in distribution

(Dudley 2003), and so weak convergence of the posterior distribution can be studied as

convergence of the Ky Fan metric ρK(µpost, δx⋆).
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4.3 Boundary and local geometry

Now we describe the local geometry of the posterior distribution around the point x⋆ where

x⋆ = argmaxx∈X :Ax=yexactg(x).

We assume that the prior distribution is such that x⋆ is a unique solution. We relax the

assumption that x⋆ is a regular point, by allowing it to lie on the boundary of X .

The definition above implies that if x⋆ is an interior point of {x ∈ X : Ax = yexact}, then

0 =

(
∂

∂zi
g(x⋆ + (I − PAT )z)|z=0

)p

i=1

= (I − PAT )∇g(x⋆), (9)

where PAT is the projection on the range of A. However, if x⋆ is on the boundary, the

gradient ∇g(x⋆) may not be zero. In case of a truncated distribution of X this corresponds

to the maximum lying outside of X (see Section 3 for further insight into the geometry of

the boundary). Denote the set of coordinates where this vector is non-zero by

S = {i : [∇g(x⋆)]i 6= 0},

and the projection on the S coordinates by PS, i.e. (PS)ii = 1 if i ∈ S and (PS)ij = 0 for all

other i, j. We assume that

rank
([

AT : PS

])
= rank(A) + rank(PS)

(where [AT : PS] is the block matrix putting AT and PS side by side); this simply prevents

degeneracy.

We consider the spaces A = {v : Av = 0} and C = {v : PSv = 0} (the null spaces of A

and PS), and their intersection. Let r0 = rank(A), r2 = rank(C) and set r1 = p− r0 − r2 (so

that r0 + r1 + r2 = p). By the rank–nullity theorem, and using the rank assumption above,

the dimensions of A, C and A ∩ C are respectively r1 + r2, r0 + r1 and r1.

Define three vector spaces by V0 = C∩ (A∩C)⊥, V1 = A∩C, V2 = A∩ (A∩C)⊥; here, the
orthogonal complements in the definitions of V0 and V2 are with respect to the same fixed

choice of inner product as the projection operators defined earlier. It follows that Vi has

dimension pi, i = 0, 1, 2, Rp = V0 ⊕V1 ⊕V2, and we can write any v = x− x⋆ in Rp uniquely

in the form v = v0 + v1 + v2, where vi ∈ Vi, i = 0, 1, 2.

In the regular, non-boundary case where x⋆ is in the interior of X , then S is empty, PS

has rank 0, r0 = rank(A), r1 = p− rank(A) and r2 = 0.

Now consider the following projections and compositions of projections:

Q0 = (I − PS)PAT :PS
, Q1 = (I − PAT :PS

), Q2 = (I − PAT )P[AT :PS ].

For each i = 0, 1, 2, Qi is diagonalisable, and we can let Ui denote a p × pi matrix of

orthogonal eigenvectors corresponding to the non-zero eigenvalues where pi = rank(Qi).

13



Note that p2 = r2 but p0 ≤ r0 (and hence p1 ≥ r1); p0 = r0 only if matrix ATVyexact(x
⋆)A is

of the same rank as matrix ATA.

Now let U be the block matrix

U = [U0 : U1 : U2] .

Note that U is not orthogonal – the centre block is orthogonal to the first and last block, but

the first and last blocks are not orthogonal to each other. These three blocks form bases for

Vi, i = 0, 1, 2, and U itself is a basis for Rp. Any v = x−x⋆ in Rp can be expressed uniquely

as v = Uw, and U−1 and w can be partitioned conformably as

U−1 =



(U−1)0

(U−1)1

(U−1)2


 , and w =



w0

w1

w2




where (U−1)i is a pi × p matrix, wi ∈ Rpi and Uiwi = vi ∈ Vi for each i. We will also denote

(U−1)01 =

(
(U−1)0
(U−1)1

)
, U01 = [U0 : U1] and p01 = p0 + p1. In particular, (U−1)k Uk = Ipk for

k = 0, 1, 2 and (U−1)01 U01 = Ip0+p1.

Introducing the matrices of second derivatives:

Vy(x) = −∇2f̃y(Ax),

B(x) = −∇2g(x),

Hy(x) = ∇2hy(x) = ATVy(x)A+ νB(x),

the following quantities will be used in approximating the posterior distribution:

HH01,01 = U01Hy(x
⋆)UT

01, (10)

x0 = HH−1
01,01∇hy(x

⋆), (11)

b = |U2∇g(x⋆)|, (12)

bmin = min
i

bi. (13)

4.4 Quadratic approximation of log p(x | y)
We approximate hy(x) = −τ log p(x | y) by a quadratic function of x on B(x⋆, δ) for an

appropriate δ using Taylor expansion:

hy(x) = hy(x
⋆) + (x− x⋆)T∇hy(x

⋆) +
1

2
(x− x⋆)T∇2hy(x

⋆)(x− x⋆) + ∆h(δ).

We will need the following assumptions. Introduce the following neighbourhood of yexact in

Y :

Yloc = {y ∈ Y : ||y − yexact|| ≤ ρK(Y, yexact)}.

14



By the definition of ρK(Y, yexact), P(Yloc) ≥ 1− ρK(Y, yexact).

Assume that

1. ∃τ0 > 0: ∀τ 6 τ0,
∫
X e−hy(x)/τdx < ∞ for all y ∈ Y ;

2. fy, g ∈ C3(B(x⋆, δ)) for all y ∈ Y ;

3. ∃Cf, 3, Cg, 3 < ∞ such that for all x ∈ B(x⋆, δ), for all y ∈ Yloc and all 1 6 i, j, k 6 p,

|∇ijkfy(x)| 6 Cf, 3, (14)

|∇ijkg(x)| 6 Cg, 3; (15)

4. (a) ∃Mf, 0,Mf, 1,Mf, 2 < ∞ such that for all 1 6 j1, . . . , jd 6 p with d = 0, 1, 2, and

for all y ∈ Yloc,

|∇j1,...,jdfy(x
⋆)−∇j1,...,jdfyexact(x

⋆)| 6 Mf, d||y − yexact||; (16)

(b) ∃Mf, 3 < ∞ such that for all x ∈ B(x⋆, δ) and all 1 6 i, j, k 6 p and for y ∈ Yloc,

|∇ijkfy(x)−∇ijkfyexact(x)| 6 Mf, 3||y − yexact||. (17)

The last two assumptions are satisfied if ∇dfµ0(x) is differentiable in µ0 and this derivative

is bounded on Yloc, with

Mf, d = sup
y∈Yloc

|∇y∇d
xfy(x

⋆)| for d = 0, 1, 2,

Mf, 3 = sup
y∈Yloc

sup
x∈B(x⋆,δ)

|∇y∇3
xfy(x)|.

We choose δ such that the approximation error ∆h(δ) of hy(x) goes to 0, and that the

integral of e−hy(x)/τ over X \ B(x⋆, δ) is negligible compared to the integral over B(x⋆, δ).

Assume that δ > 0 satisfies the following conditions as τ → 0:

δ > ||x0||, δ2 ≪ ||x0||,
λmin(HH01,01)δ

2

τ
→ ∞ with high probability, (18)

δ → 0,
δ4

τ
→ 0,

δν

τ
→ ∞.

4.5 Choice of δ

Consider the integral of e−hy(x)/τ over B(x⋆, δ).

Lemma 1. Under the assumptions on fy, g and δ, and assuming that HH−1
01,01 exists,

∫

B(x⋆,δ)

e−hy(x)/τdx =
τ (p+p2)/2e−hy(x⋆)/τ+xT

0 HH−1
01,01x0/(2τ)(2π)p01/2

νp2 [det(HH01,01)]1/2
∏p2

i=1 bi
det(U)[1 + oP (1)].

15



See Proposition 2, in the Appendix, for further details and the proof.

Now we need to choose δ satisfying the conditions of the lemma such that the integral over

the remaining space X \ B(x⋆, δ) is negligibly small compared to the integral over B(x⋆, δ)

for small τ , i.e. that

∆0(B(0, δ)) =

∫
X\B(x⋆,δ)

e−[hy(x)−hy(x⋆)]/τdx
∫
B(x⋆,δ)

e−[hy(x)−hy(x⋆)]/τdx
(19)

=

∫
X\B(x⋆,δ)

e−[hy(x)−hy(x⋆)]/τdx

τ (p+p2)/2ν−p2ex
T
0 HH01,01x0/(2τ)(2π)p01/2[det(HH01,01)]−1/2

∏p2
i=1 b

−1
i

[1 + o(1)]

= o(1) as τ → 0

under the assumptions of Lemma 1. This condition (19) is satisfied, for instance, under the

following assumptions on hy.

Assume that there exists a function q > 0 such that for x ∈ X \B(x⋆, δ), hy(x)−hy(x
⋆) ≥

q(||x− x⋆||), and q(r) ≥ crα for r > δ and some c = c(δ) > 0, α ∈ (0, 3).

Then, it is sufficient to choose δ satisfying
∫ ∞

cδα/τ

zp/α−1e−zdz ≪ ατ−p/αcp/ατ (p+p2)/2ν−p2
∏

b−1
i (2π)p01/2[det(HH01,01)]

−1/2, (20)

which is satisfied, if c(δ) ≍ const, e.g. with δ = [−τ log τ ]1/((1+a)α) for some a > 0. In this

case, it is possible to choose δ satisfying conditions (18) for appropriate a and ν if α < 3.

Therefore, we can use the following lemma.

Lemma 2. Assume that there exists a function q : R+ → R+ such that for ||x − x⋆|| > δ,

hy(x)− hy(x
⋆) ≥ q(||x− x⋆||), and q(r) ≥ crα for some c = c(δ) > 0 and α ∈ (0, 3).

Then, for δ satisfying (18) and (20),
∫

X
e−(hy(x)−hy(x⋆))/τdx = [1 + o(1)]

∫

B(x⋆,δ)

e−(hy(x)−hy(x⋆))/τdx

as τ → 0.

In particular, if c(δ) ≍ const, the above condition is satisfied with δ = [−τ log τ ]1/((1+a)α)

for any a > 0.

If we assume that q(r) ≥ c log r, c ≥ τ(p+1), then, to have
∫
B(x⋆,δ)

e−(hy(x)−hy(x⋆))/τdx ≫∫
X\B(x⋆,δ)

e−(hy(x)−hy(x⋆))/τdx, δ must satisfy

δc/τ−p(c/τ − p) ≫ τ (p+p2)/2ν−p2
∏

[bi]
−1(2π)p01/2[det(HH01,01)]

−1/2,

or, equivalently,

δ ≫ exp

{
τ
logC

c
+ τ log τ

p(1 + p2/p)

2c

}
,

where C =
∏
[bi]

−1(2π)p01/2[det(HH01,01)]
−1/2. If c(δ) is a constant independent of δ, the

fourth condition of (18), that δ → 0, is not satisfied.
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5 Rates of convergence of posterior distribution in Ky

Fan metric

As we have seen in Section 3, the rate of contraction of the posterior distribution (in terms

of Ky Fan distance) varies between PATX and (I − PAT )X and is determined by the second

order behaviour of the logarithm of the posterior density. We shall also show below that, if

x⋆ is on the boundary, the contraction rate in PS(I − PAT )X is different and is determined

by the first order asymptotics.

Denote by µpost(ω) the posterior distribution ofX given y = Y (ω). We consider the metric

space (X , ℓ2) equipped with the Euclidean metric ||x−z|| =
√∑p

i=1(xi − zi)2, X ⊂ Rp. Then,

the posterior measure µpost(ω) can be viewed as a measure on the metric space (X , ℓ2). The

corresponding metric space for the observations is (Y , ℓ2), Y ⊂ Rn equipped with metric

generated by ℓ2 norm.

In the next section we evaluate the level of concentration of the posterior distribution

µpost around x⋆. We start with the concentration of the posterior distribution µpost(ω) for a

fixed ω (i.e. for a particular data set) in the Prokhorov metric, and then, using the lifting

theorem (Theorem 3), we use bounds thus obtained to derived a bound on the Ky Fan

distance between the posterior distribution and the limit over all ω. We consider separately

the cases where x⋆ is an interior point of X and where it is on the boundary of X . In the

results below, it is assumed that the dimension p is fixed and is independent of τ .

Throughout this section we use the error ∆0(B(0, δ)) defined by (19), and constants κp

and Cp defined by (42) that feature in the upper bound on the Ky Fan metric between the

Gaussian distribution and its mean (Lemma 3 in the Appendix).

5.1 Prokhorov distance, fixed ω

Define λmin pos(M) to be the minimum positive eigenvalue of a matrix M , and λmin, P (M) =

min||v||=1, P v=v ||Mv|| to be the smallest eigenvalue of a matrix M on the range of a projection

matrix P .

Theorem 1. Suppose we have a Bayesian model given in Section 4.1, and let the assumptions

stated in Section 4.4 hold.

Assume that (I − PAT )∇g(x⋆) = 0 and [ATVY (ω)(x
⋆)A : B(x⋆)] is of full rank.

Then, ∃τ0 > 0 > 0 such that for ∀ τ ∈ (0, τ0],

ρP(µpost(ω), δx⋆) 6 max

{
2∆0

1 + ∆0

,
Mf1||Y (ω)− yexact||+ ν||PAT ∇g(x⋆)||

λmin,pos(ATVY (ω)(x⋆)A)

+

√

− τ

λmin(ω)

(
Cp log

(
τ

λmin(ω)

)κp
)
(1 + ∆⋆(δ, 0, Y (ω)))

}
, (21)

17



where λmin(ω) = λmin(HY (ω)(x
⋆)) and ∆⋆ is defined by (37).

The first term in the sum represents the bias of the posterior distribution, and the second

term is the Prokhorov distance between N (0, τHY (ω)(x
⋆)−1) and the point mass at zero.

The maximum reflects the fact that there are two “competing” tails: Gaussian on the ball

B(x⋆, δ) and the tail of the posterior distribution outside the ball.

This theorem implies that to have convergence of the posterior distribution to δx⋆ , we

must have (a) convergence of the data so that ||Y − yexact||
Pxtrue→ 0, (b) ν = τ/γ2 → 0, i.e.

the prior distribution needs to be rescaled in a way dependent on the scale of the likelihood,

and (c) τ/λmin(HY (ω)(x
⋆)) → 0. If the matrix ATVY (ω)(x

⋆)A is of full rank, then, for small

τ , λmin(HY (ω)(x
⋆)) is close to the constant λmin(A

TVyexact(x
⋆)A) with high probability, hence

the latter condition is satisfied as τ → 0. However, if ATVY (ω)(x
⋆)A is not of full rank,

then, for small enough ν and τ , λmin(HY (ω)(x
⋆)) = νλmin,I−P

AT
(B(x⋆)); hence, we must have

τ/ν = γ2 → 0.

This is summarised in the following corollary.

Corollary 1. For weak convergence of the posterior distribution to the point mass at x⋆ as

τ → 0 for a fixed ω, we must have ν = τ/γ2 → 0.

1. If the matrix ATVY (ω)(x
⋆)A is not of full rank, then we must also have γ → 0.

2. If the matrix ATVY (ω)(x
⋆)A is of full rank, however, the scale of the prior distribution

γ may be taken a positive constant.

Now we consider the case where x⋆ is a boundary point of X and (I − PAT )∇g(x⋆) 6= 0.

Theorem 2. Suppose we assume the Bayesian model defined in Section 4.1, and let the

assumptions on fy, g and δ stated in Section 4.4 hold.

Assume that U01[A
TVY (ω)(x

⋆)A : B(x⋆)]UT
01 is of full rank.

Then, ∃τ0 > 0 such that for ∀ τ ∈ (0, τ0] and small enough τ/ν and for any a ∈ (0, 1),

ρP(µpost(ω), δx⋆) 6 max

{
2∆0

1 + ∆0
,

Mf1||Y (ω)− yexact||+ ν||PAT ∇g(x⋆)||
λmin,pos(U01ATVY (ω)(x⋆)AUT

01)
[a+

√
1− a2]−1

+

√

− τ

λmin, 01(ω)
log

(
Cp01

(
τ a2

λmin, 01(ω)

)κp01
)
(1 + ∆⋆(δ, p2, Y (ω)))

− τ

νbmin
log

(
τp2

νbmin

√
1− a2

)
(1 + ∆⋆⋆(δ, p2, Y (ω)))

}
, (22)

where λmin, 01(ω) = λmin,U01(HY (ω)(x
⋆)) and ∆⋆ and ∆⋆⋆ are defined by (37).

To have convergence of the posterior distribution to δx⋆ for a fixed ω when x⋆ is on

the boundary, a similar argument as in the case when x⋆ is an interior point applies (with
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ATVyexact(x
⋆)A and HY (ω)(x

⋆) replaced by U01A
TVyexact(x

⋆)AUT
01 and U01HY (ω)(x

⋆)UT
01 respec-

tively), but also we must have τ/ν = γ2 → 0. Hence, in this case to have the convergence

we must assume that ν = τ/γ2 → 0 and γ → 0 as τ → 0.

The value of a balances the parts of the Prokhorov distance attributable to Gaussian

and exponential tails on B(x⋆, δ) (see the proof of the theorem for details). In the ill-posed

case, the Gaussian Prokhorov rate is slower than the exponential one, hence we can choose

a in such a way that a ≈ 1 and log
(
−γ2/

√
1− a2

)
→ ∞ as γ → 0, e.g. we can choose

1− a2 = γ2, i.e. a =
√
1− γ2. If U01A

TVy(x
⋆)AUT

01 is of full rank, then the exponential rate

−γ2 log γ is slower than the Gaussian one τ
√− log τ , hence we can choose a ≈ 0 such that

the rate τ
√

− log(a2τ) remains slower, e.g. a = τ 1/4.

These theorems give an upper bound on the Prokhorov distance between the posterior

distribution and the limit for any particular instance of observed data Y (ω). To “lift” the

result obtained to a bound on the Ky Fan distance over all ω, we use the following gener-

alisation of the lifting theorem of Hofinger and Pikkarainen (2007) to the case of different

bounds for different outcomes ω.

Theorem 3. Let random variables X1, X2 and Y1, Y2 be defined on the same probability

space (Ω,F ,P) with values in metric spaces (X, dx) and (Y, dy), respectively, and suppose the

sample space Ω is partitioned into two parts, Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅.
Assume that there exist positive nondecreasing functions Φ1 and Φ2:

∀ω ∈ Ωk, dx(X1(ω), X2(ω)) 6 Φk(dy(Y1(ω), Y2(ω))), k = 1, 2

i.e. we have different upper bounds on Ω1 and Ω2.

Then, the following inequalities hold:

ρK(X1, X2) 6 max{ρK(Y1, Y2) + P (Ω2),Φ1(ρK(Y1, Y2))},
ρK(X1, X2) 6 max{ρK(Y1, Y2),Φ1(ρK(Y1, Y2)),Φ2(ρK(Y1, Y2))}.

In our case, (X, dx) is the space of all distributions equipped with the Prokhorov metric,

and (Y, dy) is the metric space Y with the ℓ2 metric. Theorems 1 and 2 provide an upper

bound Φ1 on the event Ω1 where a random matrix HY (ω)(x
⋆) (or U01HY (ω)(x

⋆)UT
01) is of

full rank, and the first statement of the theorem is applied to obtain the Ky Fan rate of

convergence.

5.2 Consistency of the posterior distribution

Applying the lifting inequalities given in Theorem 3 together with Theorem 1, we obtain the

following bound on the Ky Fan distance.
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Denote

vmin = min
t: Vyexact tt(x⋆)>0

Vyexact tt(x
⋆), (23)

c1 =
Mf1

vminλmin,pos(U01ATAUT
01)

(24)

c2 =
||PAT∇g(x⋆)||

vminλmin,pos(U01ATAUT
01)

,

and, for small enough ρK(Y, yexact),

c̃k = ck

[
1− Mf2ρK(Y, yexact)

λmin pos(U01ATAUT
01)vmin

]−1

, k = 1, 2. (25)

Theorem 4. Suppose we assume the Bayesian model defined in Section 4.1, and that the

assumptions on fy, g and δ stated in Section 4.4 hold.

Assume that x⋆ is an interior point of X and that [ATVyexact(x
⋆)A : B(x⋆)] is of full rank.

Assume that as τ → 0, λmin(Hν) ≫ ρK(Y, yexact), where Hν = ATVyexact(x
⋆)A + νB(x⋆)

and that

∆⋆
0 ≪ max

{
ν, ρK(Y, yexact),

√

− τ

λmin(Hν)
log

(
τ

λmin(Hν)

)}
, (26)

where ∆⋆
0 is defined by (39).

Then, ∃τ0 > 0 such that for ∀ τ ∈ (0, τ0], and small enough ν and τ/ν,

ρK(µpost, δx⋆) 6 max {2ρK(Y, yexact), c̃1ρK(Y, yexact) + c̃2ν (27)

+

[
− τ

λmin(Hν)
log

(
Cp

(
τ

λmin(Hν)

)κp
)]1/2

(1 + ∆⋆,K(δ, 0))

}
,

where c̃1 and c̃2 defined by (25) with U01 = I, ∆⋆,K(δ, p2) is defined by (41).

Under the assumptions on τ , ν and δ given in Section 4.4, ∆⋆,K(δ, 0) = o(1) as τ → 0.

Assumption λmin(Hν) ≫ ρK(Y, yexact) is necessary so that λmin(HY (ω)(x
⋆)) can be bounded

from below by a positive value with high probability. In the well-posed case, this holds with

high probability; in the ill-posed case, this holds if ν ≫ ρK(Y, yexact). In the Gaussian or

Poisson cases, where ρK(Y, yexact) =
√
τ , this means that we assume that

√
τ/γ2 → ∞.

Theorem 5. Suppose we assume the Bayesian model defined in Section 4.1, and that the

assumptions on fy and g stated in Section 4.4 hold.

Denote λmin,01 = λmin,U01(Hν), where Hν = ATVyexact(x
⋆)A + νB(x⋆).

Assume that

• U01[A
TVyexact(x

⋆)A : B(x⋆)]UT
01 is of full rank,
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• prior dispersion γ2 satisfies τ3

γ8 → 0,

• for any a ∈ (0, 1) that may depend on τ and γ,

∆⋆
0 ≪ max

{
ν,

√
− τ

λmin,01
log

(
τ a2

λmin,01

)
, −τ

ν
log

(
τ

ν
√
1− a2

)}
,

where ∆⋆
0 is defined by (39).

Then, for small enough τ ,

ρK(µpost, δx⋆) 6 max

{
2ρK(Y, yexact),

c̃1ρK(Y, yexact) + c̃2ν

λmin,pos(U01ATVyexact(x
⋆)AUT

01)

+

√
− τ

λmin,01

(
κp log

(
τ a2

λmin,01

)
+ logCp

)
(1 + ∆⋆,K(δ, p2))

− γ2

bmin
log

(
γ2p2

bmin

√
1− a2

)
(1 + ∆⋆⋆,K(δ, p2))

}
, (28)

which holds for any a ∈ (0, 1) where ∆⋆,K(δ, p2) and ∆⋆⋆,K(δ, p2) are defined by (41), c̃1 and

c̃2 are defined by (25).

Under the assumptions on τ , ν and δ given in Section 4.4, ∆⋆,K(δ, p2) = o(1) and

∆⋆⋆,K(δ, p2) = o(1) as τ → 0.

Hence, in the case that the solution is on the boundary, the competing rates of convergence

are the Ky Fan distance for the data ρK(Y, yexact) and the rate of convergence of the posterior

distribution.

Recall that in the ill-posed case (if UT
01A

TVyexact(x
⋆)AU01 is not of full rank), λmin,01 ≍

ν · const, and in the well-posed case λmin,01 ≍ const.

5.3 Convergence of the data in Ky Fan metric

5.3.1 Examples

Now we consider some examples.

Corollary 2. Let the assumptions of Theorem 4 on the prior distribution hold, and Yt be

independent rescaled Poisson random variables, with ν = τ/γ2, τ = σ2.

1. If x⋆ is an interior point of X , then, for small enough σ and γ,

ρK(µpost, δx⋆) 6

[
C1

√
−τ log τ + C2

τ

γ2

+ C3,ατ
(1−α)/2γα

√
− log (τ (1−α)/2γα)

]
(1 + o(1)),
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where α = 0 if ATVyexact(x
⋆)A is of full rank and α = 1 otherwise, and the constants

are given by

C1 = 2||yexact||1/21 max

(
1,

Mf1||yexact||∞
λmin,pos(ATA)

)
,

C2 =
||yexact||∞

λmin,pos(ATA)
||PA∇g(x⋆)||,

C3,α =
(
κp[(1− α)λmin(A

TA) + αλmin,I−PA
(B(x⋆))]

)1/2
.

If α = 0, the fastest rate is σ
√− log σ, with γ = σ1/2[− log σ]−1/4.

If α = 1 and τ = σ2, the fastest rate is σ2/3
√− log σ, with γ = σ2/3[− log σ]−1/3.

2. If ATA is not of full rank and x⋆ is on the boundary of X , we have an additional term

of order −γ2 log (c3γ
2).

5.3.2 General inequalities

First we give upper bounds on the Ky Fan distance in terms of the moments of ||Y − µ||,
and then consider particular cases with independent observations.

Theorem 6. 1. If ∃α > 0: Eeα||Y−µ|| < ∞, then

ρK(Y, µ) ≤ Eeα||Y−µ||.

2. If ∃α > 0: E [||Y − µ||α] < ∞, then

ρK(Y, µ) ≤ [E||Y − µ||α] 1
1+α .

The proof is obvious, applying the Markov inequality to the corresponding function of

||Y − µ||.
Now we evaluate the Ky Fan distance in the following two particular cases: the rescaled

Poisson distribution corresponding to the tomography case (Section 2.1), and Yt = µt + σZt

where the distribution of Zt is independent of σ.

Example 4. A vector of rescaled independent Poisson random variables: Yt/τ ∼ Pois(µt/τ).

Apply the Chernoff-Cramer bound to obtain that for all t and all x, ε > 0,

P(||Y − µ|| > ε) 6 e−εx
Eex||Y−µ||

6 e−εx
Eex||Y−µ||1 = e−εx

∏

t

Eex|Yt−µt|

Now, Eex|Yt−µt| 6 Eex(Yt−µt) + Ee−x(Yt−µt). The cumulant function of a Poisson random

variable Z with parameter λ is logEeεZ = λ[eε − 1]; hence, for Yt = σ2τZ and λ = µt/τ , the

cumulant function of Yt − µt is

ct(x) = logEex(Yt−µt) = logEexτZ − xµt =
µt

τ
[exτ − 1− xτ ].

22



Hence, the cumulants of the rescaled Poisson distribution are κk = µtσ
2(k−1). Similarly,

logEe−x(Yt−µt) =
µt

τ
[e−xτ − 1 + xτ ] 6 ct(x) ∀x > 0.

Hence, denoting M = 2
∑

t µt, we have

P(||Y − µ|| > ε) 6 e−εxe2
∑

t ct(x) = exp{−εx+M [exτ − 1− xτ ]/τ}.

Since x > 0 is arbitrary, we can take x corresponding to the minimum of the upper bound,

which is achieved at x = τ−1 log(1 + ε/M), implying

P(||Y − µ|| > ε) 6 exp

{
−ε+M

τ
log
(
1 +

ε

M

)
+

ε

τ

}
6 exp

{
− ε2

2Mτ

(
1− ε

3M

)}
,

due to the inequality (1 + x) log(1 + x) − x > −x2

2
(1 − x

3
) for small enough x > 0. For

ε 6 3M/2 we have

P(||Y − µ|| > ε) 6 exp

{
− ε2

4Mτ

}
.

Using Lemma 4, for τ 6 1/(2eM), the solution of exp{−ε2/(4Mτ)} = ε satisfies

ε =
√

−2τM log(2τM)(1 + ω),

where ω = o(1) as σ → 0 and ω 6 0.

Theorem 7. Assume that Yt are independent, EYt = µt and Var(Yt) = wtτ .

1. Assume that ∃Ct > 1 such that κt,k, the kth cumulant of Yt, is bounded by |κt,k| 6
Ctwtτ

k−1 ∀k > 2 and Ct and wt are independent of τ . Denote M = 2
∑

t Ctwt.

Then, for τ 6 1/(2eM),

ρK(Y, µ) 6 2
√
−τM log(2τM)/2.

2. Assume that ∃K > 2: E|Yt|K < ∞ and ∀δ > 0 E|Yt|K+δ = ∞. Assume that E|Yt −
µt|K 6 τm(K)LK for some LK > 0 that may depend on µt or wt but not on τ , for some

m(K) > 0.

Then, for small enough τ ,

ρK(Y, µ) 6 [nτm(K)/2LK ]
1/(K+1).
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Proof. 1. Following the rescaled Poisson example, we have that the cumulant function for

Yt is bounded by

ct(x) = logEexYt = xµt +
x2

2
wtτ +

∞∑

i=3

xk

k!
κk 6 xµt +

x2

2
wtτ +

1

τ

∞∑

i=3

(xτ)k

k!
Ctwt

= xµt +
x2

2
wtτ +

Ctwt

τ
[exτ − 1− xτ − (xτ)2/2]

6 xµt +
Ctwt

τ
[exτ − 1− xτ ],

since Ct > 1. Similarly, logEexYt can be bounded in the same way. Hence, we have

P(||Y − µ|| > ε) 6 e−εxe2
∑

t ct(x) = exp{−εx+
M

τ
[exτ − 1− xτ ]}.

where M = 2
∑

t Ctwt. Now, this is the same upper bound as for the rescaled Poisson

distribution. Hence, we have the same inequality for the Ky Fan distance.

2. Apply the Markov inequality to the random variable ||Y − µ||K:

P(||Y − µ|| > z) 6
E||Y − µ||K

zK
6

E||Y − µ||KK
zK

6
nτm(K)/2LK

zK
.

Hence, an upper bound on the Ky Fan distance satisfies nτLK/z
K = z, i.e. z = [nτm(K)/2LK ]

1/(K+1).

The conditions in the first case are satisfied, for example, for the binomial distribution

Yt ∼ Bin(nt, pt), independently, since ct(x) = nt log(pte
x + qt) 6 ntpt(e

x − 1).

Here is an example for the second case.

Example 5. Suppose we have Yt following a t distribution with ν degrees of freedom, means

µt and scales
√
τwt. Then we can take K = ν − 2− δ for some δ > 0;

E|Yt − µt|K = [
√
τwt]

KνK ,

where νK is the Kth moment of the standard tν distribution, i.e. m(K) = K/2 and LK =

wK
t νK. Hence,

ρK(Y, µ) 6 τ 1/2−1/2(K+1)[nwK
t νK ]

1/(K+1).

Note that this bound holds if Yt can be written as Yt = µt + σwtZt where Zt are iid and

whose distribution is independent of τ .

6 Approximation of the posterior distribution

For completeness, we shall also show how the posterior distribution can be rescaled so that

it converges to a finite limit. This can be used to approximate the posterior distribution in

practice, for small values of τ .
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For a differentiable identifiable likelihood and prior distribution positive and continuous

at the “true” value of the parameter, the posterior distribution is asymptotically Gaussian

in the case where the “true” parameter is an interior point of the parameter space. This

result is known as the Bernstein–von Mises theorem. Van der Vaart (1998) gives a total

variation distance version of the theorem under mild additional assumptions on the error

model, adapted from Le Cam (1953) and Le Cam and Yang (1990). The theorem in fact

implies that, under the above conditions, the prior distribution has no influence on the

asymptotic distribution.

We extend the Bernstein–von Mises theorem in two directions. Firstly, the assumption

of identifiability of the likelihood is relaxed; a consequence is that the limit of the posterior

distribution, as well as the rate of convergence, depend on the choice of the prior distribution.

Secondly, the assumption that the “true” value of the parameter is an interior point of the

parameter space is relaxed, by assuming that it can lie on the boundary. In the latter case,

we show that the limiting distribution changes from Gaussian to a product of Gaussian and

exponential in different directions.

Now we make use of the three-part transformation of the re-centered variable x−x⋆ from

Section 4.3: w = U−1v = U−1(x − x⋆). Define the following scaling transform S = Sτ,γ:

X − x⋆ → R
p0+p1 × R

p2
+ : S = (S0,S1,S2), with

S0 = (U−1)0(x− x⋆)/
√
τ ,

S1 = (U−1)1(x− x⋆)/γ, (29)

S2 = (U−1)2(x− x⋆)/γ2.

Denote the posterior distribution of θ = S(x − x⋆) given Y (ω) by µ̃post(ω).

The limiting distribution is defined in terms of the following parameters:

Ω00 = U0∇2fyexact(x
⋆)UT

0 ,

B = ∇2g(x⋆),

and Bij = UT
i BUj , i, j = 0, 1, 2.

Now we can formulate a version of the Bernstein – von Mises theorem for this problem.

Theorem 8. Consider the Bayesian model defined in Section 4.1, and let the assumptions

on fy and g stated in Section 4.4 hold. Assume that condition (19) holds.

Assume that matrices Ω00 and B11 are of full rank, that B00 − B01B
−1
11 B10 ≥ 0, and that

τ

γ2
→ 0, γ2 = o(τ 1/3),

c = lim
τ→0

√
τ

γ2
< ∞, lim

τ→0

Var(Y)

τ
< ∞.
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Assume that the following limit exists for all ω: limτ→0[U
T
0 ∇fY (ω)(x

⋆)/
√
τ ] < ∞, and denote

a0(ω) = Ω−1
00

[
lim
τ→0

[UT
0 ∇fY (ω)(x

⋆)/
√
τ ] + cUT

0 ∇g(x⋆)
]
.

Denote by µ⋆ the following measure on Rp0+p1 × R
p2
+ :

µ⋆(ω) = Np0

(
a0(ω),Ω

−1
00

)
× Np1

(
0, B−1

11

)
× Expp2 (b) . (30)

Then, as τ → 0,

||PS(x−x⋆)|Y − µ⋆||TV

Pxtrue→ 0 as τ → 0.

An upper bound on the total variation distance is given in the proof of the theorem.

Remark 1. We assumed that ∇ηf̃yexact(η)|G(η)=yexact = 0, i.e. that the likelihood is regu-

lar with respect to the “natural” parameter. If this assumption does not hold, we have an

additional linear subspace determined by A and ∇ηf̃yexact(G
−1(yexact)) where the limit is ex-

ponential.

A Appendix: proofs

A.1 Proof of Proposition 1 in Section 3

Proof. For arbitrary ν > 0, suppose x ∈ Rp is such that (ATA+ νB)x = 0p, the zero vector

in Rp. We have to show that x = 0p. But (A
TA + νB)x = 0p implies xT (ATA + νB)x = 0,

and so by non-negative-definiteness of B and ATA, xTBx = 0 = xTATAx. But then Bx =

0p = ATAx, and so xT [B : ATA] = 0T2p. By the assumed full rank of this matrix, x must be

0p.

Now fix ν0 > 0. By Theorem 2 of ?, page 313, (with his A replaced by ATA+ν0B), there

exists a nonsingular real matrix P , not necessarily orthogonal, such that P T (ATA+ν0B)P =

I and P TBP is the diagonal matrix Λ of the solutions for λ to |B − λ(ATA + ν0B)| = 0

(which all satisfy 0 ≤ λ ≤ ν−1
0 ). But then P TATAP = I − ν0Λ and for any ν > 0,

P T (ATA+ νB)P = I + (ν − ν0)Λ, both of which are of course also diagonal.

The matrix P can depend on the choice of ν0, but evidently always diagonalises ATA,

B and any linear combination. Also, Λ depends on ν0, but since |B − λ(ATA + ν0B)| =
(1 − λν0)

p|B − αATA| where α = λ/(1 − λν0), the (diagonal) elements in Λ are λi =

αi/(1 + αiν0) where {αi} are the solutions to |B − αATA| = 0 (possibly some αi = +∞).

So P TBP = diag(αi/(1 + αiν0)), P
TATAP = diag(1/(1 + αiν0)) and for any ν, P T (ATA +

νB)P = diag((1 + αiν)/(1 + αiν0)). For the final assertions, note that ν(ATA + νB)−1 =

Pdiag(ν(1 + αiν0)/(1 + αiν))P
T , which converges to Pdiag(δi)P

T = C, say, where δi = ν0 if

αi = +∞, and 0 otherwise. Further, we can estimate the difference: ν(ATA+ νB)−1 − C =

Pdiag(ν(1+αiν0)/(1+αiν)− δi)P
T = νPdiag(φi)P

T +O(ν2), where φi = 0 if αi = +∞ and

otherwise φi = 1 + αiν0.
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A.2 Proofs of the results in Section 5

Proposition 2. Let assumptions on fy, g in Section 4.4 and assumptions (18) on δ hold.

Assume that U01[A
TVyexact(x

⋆)A : B(x⋆)]UT
01 is of full rank, and that τ/ν → 0 and ν → 0

as τ → 0.

Then, for any ε ∈ (c1ρK(Y, yexact)+c2ν, δ) such that
√
1− β εν/τ → ∞, for any β ∈ [0, 1]

∫
X\B(x⋆,ε)

e−hy(x)/τdx
∫
X e−hy(x)/τdx

6

[
1− Γ

(
(ε
√
β − ||H̄H−1

01,01HH01,01x0||)2λmin(H̄H01,01)

2τ
| p01

2

)

+ p2 exp

{
−ε

√
1− βνbmin

τ

}
(1 + ∆1)

]
1 + ∆2

1 + ∆0

+
∆0

1 + ∆0

,

and, in particular,
∫

B(x⋆,δ)

e−hy(x)/τdx ≥ τ (p+p2)/2

νp2[det(HH01,01)]1/2
[2π]p01/2 det(U)∏

i bi
exp

{
xT
0HH01,01x0 − 2hy(x

⋆)

2τ

}
[1 + ∆3],

where ∆1 and ∆2 are defined by

∆1(ε, δ) =
1−∏p2

i=1(1− e−(bi−δλmax(P1B(x⋆)))
√
1−β εν/τ )

p2e−(bmin−δλmax(U2B(x⋆)))
√
1−β εν/τ )

I(p2 6= 0), (31)

∆2(δ, p2, y) = −1 +
∏

i

[
1 + b−1

i δ[λmax(U2B(x⋆)) + 2δ
√
p p2Cg3/3]

1− b−1
i δ[λmax(U2B(x⋆)) + 2δ

√
p p2Cg3/3]

]
(32)

×
[
Γ

(
λmin(H̃H01,01)[δ − ||H̃H−1

01,01HH01,01x0||]2
2(1− γ)τ

| p01
2

)]−1 [
det(HH01,01 + δ

√
pD)

det(HH01,01 − δ
√
pD)

]1/2
(33)

× exp
{
δ
√
pxT

0HH01,01H̄H−1
01,01DH̃H−1

01,01HH01,01x0/τ
} p2∏

i=1

[
1− e−b̄iδν/(τ

√
γp2)
]−1

,

where D = diag (p0(Cf3 + 2νCg3)Ip0, 2νp1Cg3Ip1) /3 and ∆3 is defined in the proof of the

proposition.

An upper bound on ∆2 is given by:

∆2(δ, p2, y) ≤ −1 +

[
1 + b−1

minδ[λmax(U2B(x⋆)) + 2δ
√
p p2Cg3/3]

1− b−1
minδ[λmax(U2B(x⋆)) + 2δ

√
p p2Cg3/3]

]p2
(34)

×
[
Γ

(
λmin(H̃H01,01)[δ − ||H̃H−1

01,01HH01,01x0||]2
2(1− γ)τ

| p01
2

)]−1 [
1 + δ

√
pλmax(DHH−1

01,01)

1− δ
√
pλmax(DHH−1

01,01)

]p01/2
(35)

× exp

{
δ
√
p||D1/2x0||22

τ [1 − δ2pλ2
max(DHH−1

01,01)]

}[
1− exp

{
− b̃minδν

τ
√
γp2

}]−p2

. (36)

Here λmin(HH01,01D
−1) = min

{
3λmin,PA,V

(AT Vy(x⋆)A+νB(x⋆))

Cf3+2νCg3
,
3λmin,I−PA,V

(B(x⋆))

2Cg3

}
.
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Proof of Proposition 2. Taylor decomposition of hy(x) at x
⋆ for x ∈ B(x⋆, δ) gives

hy(x) = hy(x
⋆) + (x− x⋆)T∇hy(x

⋆) +
1

2
(x− x⋆)THy(x

⋆)(x− x⋆) + ∆00(δ),

where

|∆00(δ)| =
1

6

∣∣∣∣∣
∑

ijk

∇ijkhy(xc)(xi − x⋆
i )(xj − x⋆

j )(xk − x⋆
k)

∣∣∣∣∣

≤ ||x− x⋆||1
6

[
Cf3||

(
U−1

)
0
(x− x⋆)||21 + νCg3

2∑

k=0

||
(
U−1

)
k
(x− x⋆)||1

]2

≤ δ
√
p

6

[
p0(Cf3 + 2νCg3)||

(
U−1

)
0
(x− x⋆)||22 + 4νp1Cg3||

(
U−1

)
1
(x− x⋆)||22

+4νCg3||
(
U−1

)
2
(x− x⋆)||21

]

for some xc ∈ 〈x, x⋆〉.
Denote b0 = HH01,01x0 = ∇hy(x

⋆). Make a change of variables v0 = (U−1)01 (x−x⋆)/
√
τ

and v2 = ν (U−1)2 (x− x⋆)/τ ≥ 0, the Jacobian is J = τ (p+p2)/2ν−p2 det(U) and we have
∫

B(x⋆,δ)

e−hy(x)/τdx ≥ J exp

{
−1

τ

[
hy(x

⋆)− ||HH
1/2
01,01x0||2/2

]}

×
∫

τ ||v0||2+τ2||v2||2/ν2≤δ2
exp

{
−1

2
||HH

1/2
01,01(v0 − τ−1/2x0)||2 − bT v2

}

× exp
{
−δ

√
pvT0 diag (p0(Cf3 + 2νCg3)Ip0, 4νp1Cg3Ip1) v0/6

}

× exp

{
−√

τvT0 U
T
01B(x⋆)U2v2 −

τ

2ν
vT2 U

T
2 B(x⋆)U2v2 − τδ

√
p
2Cg3

3ν
||v2||21

}
dv2dv0.

Note that UT
i Hy(x

⋆)U2 = νUT
i BU2 for any i.

For v0, v2 such that τ ||v0||2 + τ 2||v2||2/ν2 ≤ δ2,

√
τvT2 U

T
2 B(x⋆)U0v0 +

τ

2ν
vT2 U

T
2 B(x⋆)U2v2 ≤ λmax(U2B(x⋆))||v2||

[
τ 2

4ν2
||v2||2 + τ ||v0||2

]1/2

≤ λmax(U2B(x⋆))||v2||1δ.

Denoting

H̃H01,01 = HH01,01 + δ
√
pD,

b̃ = b+ δλmax(U2B(x⋆)) + δ2
√
pp2

2Cg3

3
,

we can bound the integral above by
∫

B(x⋆,δ)

e−hy(x)/τdx ≥ J exp

{
−1

τ

[
hy(x

⋆)− ||H̃H
−1/2
01,01b0||2/2

]}

×
∫

τ ||v0||2+τ2||v2||2/ν2≤δ2
exp

{
−1

2
||H̃H

1/2
01,01(v0 − τ−1/2H̃H−1

01,01b0)||2 − b̃T v2

}
dv2dv0.
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Hence,

∫

B(x⋆,δ)

e−hy(x)/τdx ≥ J exp

{
− 1

2τ

[
2hy(x

⋆)− ||H̃H
−1/2
01,01b0||2

]}

×
∫

τ ||v0||2+τ2||v2||2/ν2≤δ2
exp

{
−b̃T v2

}

× exp

{
−1

2
(v0 − τ−1/2H̃H−1

01,01b0)
T H̃H01,01(v0 − τ−1/2H̃H−1

01,01b0)

}
dv2dv0

≥ J exp

{
−2hy(x

⋆)− ||H̃H
−1/2
01,01 b0||2

2τ

}
∏

i

b̃−1
i [2π]p01/2[det(H̃H01,01)]

−1/2

×
p2∏

i=1

[
1− e−b̃iδν/(τ

√
αp2)
]
Γ

(
λmin(H̃H01,01)[δ − ||H̃H−1

01,01b0||]2
2(1− α)τ

| p01
2

)

= J exp

{
−2hy(x

⋆)− xT
0HH01,01x0

2τ

}∏

i

b−1
i [2π]p01/2[det(HH01,01)]

−1/2[1 + ∆3]

for some α ∈ [0, 1], since δν/τ → ∞, λmin(HH01,01)δ
2/τ → ∞, δ ≫ ||x0|| with high Pyexact

probability. Here ∆3 is defined by

∆3(δ, p2, y) = −1 +

p2∏

i=1

[
1 + δ

λmax(U2B(x⋆)) + 2δ
√
p p2Cg3/3

bi

]−1

× exp
{
−δ

√
p bT0HH−1

01,01DH̃H−1
01,01b0/(2τ)

} p2∏

i=1

[
1− e−b̃iδν/(τ

√
αp2)
]−1

×
[
Γ

(
λmin(H̃H01,01)[δ − ||H̃H−1

01,01b0||]2
2(1− α)τ

| p01
2

)]−1 [
det(I + δ

√
pHH−1

01,01D)
]−1/2

.

Similarly,

∫
B(x⋆,δ)\B(x⋆,ε)

e−hy(x)/τdx ≤ J exp
{
−hy(x

⋆)/τ + ||HH
1/2
01,01x0||2/(2τ)

}

×
∫

ε2≤τ ||v0||2+τ2||v2||2/ν2≤δ2
exp

{
−1

2
||HH

1/2
01,01(v0 − τ−1/2x0)||2 − bT v2

}

× exp

{
δp01

√
pvT0 Dv0

2
−√

τvT0 U
T
01B(x⋆)U2v2 −

τ

2ν
vT2 U

T
2 B(x⋆)U2v2

}

× exp

{
τδ

√
p
2Cg3

3ν
||v2||21

}
dv2dv0

≤ J exp

{
−1

τ

[
hy(x

⋆)− ||H̄H
−1/2
01,01b0||2/2

]}

×
∫

ε2≤τ ||v0||2+τ2||v2||2/ν2≤δ2
exp

{
−1

2
||H̄H

1/2
01,01(v0 − τ−1/2H̄H−1

01,01b0)||2 − b̄T v2

}
dv2dv0,
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where

H̄H01,01 = HH01,01 − δ
√
pD,

b̄ = b− δλmax(U2B(x⋆))− δ2
√
p p2

2Cg3

3
.

Assume that δ is small enough so that b̄i > 0 for all i and H̄H01,01 is positive definite.

The ring {ε2 ≤ τ ||v0||2 + τ 2||v2||2/ν2 ≤ δ2} is a subset of

{||v0||2 ≤ βε2/τ & ||v2||2 ≥ (ε2 − τ ||v0||2)ν2/τ 2} ∪ {βε2/τ ≤ ||v0||2}

for any β ∈ (0, 1), therefore

∫

ε2≤τ ||v0||2+τ2||v2||2/ν2≤δ2
exp

{
−b̄T v2 − ||H̄H

1/2
01,01(v0 − τ−1/2H̄H−1

01,01b0)||2/2
}
dv2dv0

≤ [2π]p0/2[det(H̄H01,01)]
−1/2

∫

||v2||2≥ε2(1−β)ν2/τ2
exp

{
−b̄T v2

}
dv2

+
∏

i

[b̄i]
−1

∫

||v0||2≥βε2/τ

exp

{
−1

2
||H̄H

1/2
01,01(v0 − τ−1/2H̄H−1

01,01b0)||2
}
dv0.

The integral over the exponential density can be bounded by

∫

||v2||2≥ε2(1−β)ν2/τ2
exp

{
−b̄T v2

}
dv2 ≤

∫

||v2||∞≥ε
√
1−βν/τ

exp
{
−b̄T v2

}
dv2

=
∏

i

[b̄i]
−1[1−

p2∏

i=1

(1− e−b̄i
√
1−β εν/τ )] =

∏

i

[b̄i]
−1p2e

−bmin
√
1−βεν/τ (1 + ∆1),

since
√
1− β εν/τ → ∞ as τ → 0, where

∆1(ε, δ, p2) = −1 +
1−∏p2

i=1(1− e−b̄i
√
1−β εν/τ )

p2e−bmin
√
1−β εν/τ

≤ −1 +
1− (1− e−b̄min

√
1−β εν/τ )p2

p2e−bmin
√
1−β εν/τ

= exp

{
δ
√
1− β εν/τ

[
λmax(U2B(x⋆)) + δ

√
p p2

2Cg3

3

]}
− 1

+

p2∑

k=2

1

p2

(
p2
k

)
(−1)k−1 exp(−[kb̄min − bmin]

√
1− β εν/τ).

Hence, ∆1 is small if
√
1− β εν/τ → ∞ and δ

√
1− β εν/τ → 0 as τ → 0.
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Combining these results together, we have

∫
B(x⋆,δ)\B(x⋆,ε)

e−hy(x)/τdx
∫
B(x⋆,δ)

e−hy(x)/τdx
≤

[
p2e

−bmin
√
1−β εν/τ (1 + ∆1)

+ 1− Γ

(
λmin(H̄H01,01)[

√
βε− ||H̄H−1

01,01b0||]2
2τ

| p0
2

)]

×
∏

i

[
1 + b−1

i δ[λmax(U2B(x⋆)) + 2δ
√
p p2Cg3/3]

1− b−1
i δ[λmax(U2B(x⋆)) + 2δ

√
p p2Cg3/3]

]

×
[
Γ

(
λmin(H̃H01,01)[δ − ||H̃H−1

01,01b0||]2
2(1− α)τ

| p0
2

)]−1 [
det(H̃H01,01)

det(H̄H01,01)

]1/2

× exp
{
δ
√
p bT0 H̄H−1

01,01DH̃H−1
01,01b0/τ

} p2∏

i=1

[
1− e−b̄iδν/(τ

√
αp2)
]−1

.

Now we take into account the error of approximating the integral over X by the integral

over B(x⋆, ε):

∫
X\B(x⋆,ε)

e−hy(x)/τdx
∫
X e−hy(x)/τdx

=

∫
B(x⋆,δ)\B(x⋆,ε)

e−hy(x)/τdx+
∫
X\B(x⋆,δ)

e−hy(x)/τdx
∫
B(x⋆,δ)

e−hy(x)/τdx+
∫
X\B(x⋆,δ)

e−hy(x)/τdx

=

∫
B(x⋆,δ)\B(x⋆ ,ε)

e−hy(x)/τdx

(1 + ∆0)
∫
B(x⋆,δ)

e−hy(x)/τdx
+

∆0

1 + ∆0
.

Choosing some fixed α, e.g. α = 1/2, we have the required statement.

Proof of Theorems 1 and 2. By Strassen’s theorem, for any x, ρP(µpost(ω), δx) = ρK(ξ, x)

where ξ ∼ µpost(ω). Hence, we find an upper bound on the Ky Fan distance between X | Y
and x⋆.

Denote ε0 =
√
βε and ε1 =

√
1− β ε for some β ∈ (0, 1). Then, ε0+ε1 = ε(

√
β+

√
1− β).

Take ε0 > ||x0||. Using Proposition 2, we have that an upper bound on ε satisfies

∫
B(x⋆,δ)\B(x⋆,ε)

e−hy(x)/τdx
∫
B(x⋆,δ)

e−hy(x)/τdx
6

[
p2 exp

{
−ε1νbmin

τ

}
(1 + ∆1)

+1− Γ

(
(ε0 − ||H̄H−1

01,01b0||)2λmin(H̄H01,01)

2τ
| p01

2

)]
(1 + ∆̃2) + ∆̃0

≤ ε,

where ∆̃0 = ∆0/(1+∆0) and ∆̃2 = (1+∆2)/(1+∆0)−1. By an assumption of the Theorems,

∆0 ≪ c1ρK(Y, yexact) + c2ν.
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In particular, for some α ∈ (0, 1), with a = α/
√
β and ã = (1 − α)/

√
1− β, take the

smallest ε > 0 such that

∆̃0 ≤ ε,

1− Γ

(
(ε0 − ||H̄H−1

01,01b0||)21λmin(H̄H01,01)

2τ
| p0
2

)
≤ aε0

1 + ∆̃2

,

p1 exp

{
−ε1νbmin

τ

}
(1 + ∆1)(1 + ∆̃2) ≤ ãε1.

The last two inequalities imply that as τ/λmin(HH01,01) → 0, ε0 → 0 and ε20λmin(HH01,01)/τ →
∞. Similarly, as ν/τ → ∞, ε1 → 0. Hence, using Lemmas 3 and 4, we have that

ε0 ≤ ||H̄H−1
01,01HH01,01x0||+

√√√√− τ

(1 + ∆̃2)2λmin(H̄H01,01)
log

(
Cp01

(
a2τ

λmin(H̄H01,01)(1 + ∆̃2)2

)κp01
)
,

ε1 ≤ − τ

νbmin

[
log

(
τp2

ãνbmin

)
+ log

(
(1 + ∆1)(1 + ∆̃2)

)]
.

By Lemma 7,

||x0|| ≤
Mf1||y − yexact||+ ν||PAT∇g(x⋆)||

λminpos(ATVy(x⋆)A)
,

which we can substitute into the upper bound for ε0, and

||H̄H−1
01,01HH01,01|| = ||(I − δ

√
pHH−1

01,01D)−1|| =
[
1− δ

√
pλmax(DHH−1

01,01)
]−1

.

Now, the smallest ε > 0 such that ε ≥ ∆̃0 and satisfies the obtained upper bound on

ε = (ε0+ε1)/(
√
β+

√
1− β) is the upper bound if it is greater than ∆̃0. Otherwise, ε ≤ 2∆̃0.

The bound on ε0 with U01 = I and a = 1 gives the statement of Theorem 1, and adding

up the bounds on ε0 and ε1 divided by
√
β+

√
1− β gives the statement of Theorem 2, with

the errors denoted by

∆⋆(δ, p2, y) =
1 + ∆0

(1 + ∆2)(a+
√
1− a2)

[
1 + 2

log(1 + ∆2)− log(1 + ∆0)

log
(
λmin(H̄H01,01)/(a2τ)

)
]1/2

− 1, (37)

∆⋆⋆(δ, p2, y) =
log ((1 + ∆1)(1 + ∆2)/(1 + ∆0))

log
(
τp2/(νbmin

√
1− a2)

) .

To simplify the expressions, the results are stated with α = β, making a =
√
β and

ã =
√
1− β, i.e. a2 + ã2 = 1.

We assumed that ε < δ; in particular, the upper bound on ε is less than δ if ν4/τ =

τ 3/γ8 → 0 and −γ4 log γ/τ → 0 (the latter – in the ill-posed case).
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Proof of Theorems 4 and 5. Now we prove Theorems 4 and 5 in the notation defined in the

proof of Theorems 1 and 2.

We apply Theorem 3 with Ω1 = {ω : ||Y (ω) − yexact|| ≤ ρK(Y, yexact)} and Ω2 = Ω \ Ω1

with P(Ω2) ≤ ρK(Y, yexact) by the definition of Ky Fan distance, with the bounds given in

Theorems 4 and 5 which we modify to depend on y only via ||y − yexact||. For small enough

τ , the assumption of the theorems that U01[A
TVy(x

⋆)A : B(x⋆)]UT
01 is of full rank holds on

Ω1, as we shall show below.

The upper bound depends on y via ||y−yexact||, λmin(U01Hy(x
⋆)UT

01), λmin pos(A
TVy(x

⋆)A),

∆0 and ∆2.

We start bounding the eigenvalues from below. Denote HH⋆
01,01 = U01Hyexact(x

⋆)UT
01.

Since [UT
0 (Hy(x

⋆) − Hyexact(x
⋆)U0)]ij = [∇2fyexact(x

⋆) − ∇2fy(x
⋆)]ij ≥ −Mf2||y − yexact||, on

Ω1 we have, by Lemma 8,

λmin(H̃H01,01) ≥ λminU01(Hyexact(x
⋆))−Mf2ρK(Y, yexact)I(0)− δ

√
pλmax(DHH⋆−1

01,01),

where I(0) = 1 if the minimum eigenvalue is achieved on the subspace U0, and is zero

otherwise. For small enough τ and δ, on Ω1 the lower bound is positive.

Similarly, since ATVy(x)A = −∇2fy(x),

|[AT (VY (x
⋆)− Vyexact(x

⋆))A]ij | 6 Mf2||Y − yexact|| for all i, j,

hence λmin pos(A
TVY (x

⋆)A) ≥ λmin pos(A
TVyexact(x

⋆)A) − Mf2||Y − yexact||. Hence, since

||H̃H−1
01,01HH01,01|| ≤ 1, we have that

||H̃H−1
01,01b0|| ≤ ||HH−1

01,01b0|| ≤
Mf1||Y − yexact||+ ν||PAT∇g(x⋆)||

λminpos(ATVY (x⋆)A)

≤ c1||Y − yexact||+ c2ν

1−Mf2||Y − yexact||/λmin pos(ATVyexact(x
⋆)A)

,

where c1 and c2 are defined by (23).

To bound ∆2 on Ω1, we need to bound below the following expression for δ > ||H̃H−1
01,01b0||

on Ω1:

λmin(H̃H01,01)[δ − ||H̃H−1
01,01b0||]2 ≥ [λmin(HH⋆

01,01)−Mf2ρK(Y, yexact)] [δ − c̃1||Y − yexact|| − c̃2ν]
2,

where c̃k = ck [1−Mf2ρK(Y, yexact)/λmin pos(A
TVyexact(x

⋆)A)]−1 for k = 1, 2.

Note also, that on Ω1,

λmin(HH01,01D
−1) = min

{
3λmin,PA,V

(ATVy(x
⋆)A+ νB(x⋆))

p0(Cf3 + 2νCg3)
,
3λmin,I−PA,V

(B(x⋆))

2p1Cg3

}

≥ 3min

{
λmin,pos(A

TVyexact(x
⋆)A)−Mf2ρK(Y, yexact)

p0(Cf3 + 2νCg3)
,
λmin,I−P ⋆

A,V
(B(x⋆))

2p1Cg3

}

def
= λDH .
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Hence, on Ω1,

∆̃2(δ, p2, y) ≤ −1 +

[
1 + b−1

minδ[λmax(U2B(x⋆)) + 2δ
√
p p2Cg3/3]

1− b−1
minδ[λmax(UT

2 B(x⋆)) + 2δ
√
p p2Cg3/3]

]p2

×
[
Γ

(
[λmin(HH⋆

01,01)−Mf2ρK(Y, yexact)] [δ − c̃1||Y − yexact|| − c̃2ν]
2

τ
| p01

2

)]−1

×
[
1 + δ

√
p/λDH)

1− δ
√
p/λDH)

]p01/2 [
1− exp

{
− b̃minδν

τ
√

p2/2

}]−p2

× exp

{
δ
√
p(Cf3 + 2νCg3)[c̃1ρK(Y, yexact) + c̃2ν]

2

3τ [1 − δ2p/λ2
DH]

}
[1 + ∆⋆

0]
−1

def
= ∆⋆

2. (38)

This gives an upper bound on ∆̃2.

The upper bound increases in ∆0, hence we need to bound it from above. By Assumption

4a) in Section 4.4,
∫

X\B(x⋆,δ)

exp{−[hy(x)−hy(x
⋆)]/τ}dx ≤ e2Mf,0||y−yexact||/τ

∫

X\B(x⋆,δ)

exp{−[hyexact(x)−hyexact(x
⋆)]/τ}dx.

Using Lemma 7 and the lower bound on the minimum eigenvalue of HH01,01, we have, on

Ω1,

xT
0HH01,01x0 ≥

[ν||PAT∇g(x⋆)|| −Mf1ρK(Y, yexact)]
2

λminpos(ATVyexact(x
⋆)A)−Mf 2ρK(Y, yexact)

,

and, by Lemma 8, on Ω1,

det(HH01,01) ≤ det(HH⋆
01,01)[1 +Mf2ρK(Y, yexact)]

p0.

Hence, ∆0 is bounded on Ω1 from above by

∆⋆
0(B(0, δ)) =

νp2τ (p+p2)/2
∫
X\B(x⋆,δ)

exp
{
−hY (ω)(x)−hY (ω)(x

⋆)

τ

}
dx

exp
{

[c̄1ν−c̄2ρK(Y,yexact)]2

2τ

} (39)

×
∏

i(bi)[det(HH⋆
01,01)]

1/2[1 +Mf2ρK(Y, yexact)]
p0/2

[2π]p01/2[1 + ∆⋆
3]

, (40)

where ∆⋆
3 is a lower bound on ∆3 on Ω1 derived in a similar way.

Using λmin 01 = λminU01(Hyexact(x
⋆)) and ∆22 = Mf2ρK(Y, yexact)/λmin01, we have that, on

Ω1,

ε0 ≤ c̃1||Y − yexact||+ c̃2ν

1− δ
√
p/λDH

+

√

− τ

(1 + ∆⋆
2)

2λmin 01(1−∆22)
log

(
Cp01

(
a2τ

λmin01(1−∆22)(1 + ∆⋆
2)

2

)κp01
)
,

ε1 ≤ − τ

νbmin

[
log

(
τp2

νbmin

√
1− a2

)
+ log ((1 + ∆1)(1 + ∆⋆

2))

]
,
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since the function −x log x increases for x < 1/e.

The bound on ε0 increases in ||y − yexact||, and the bound on ε1 is independent of it.

Assume that ∆⋆
0/(1 + ∆⋆

0) is less than the upper bound on (ε0 + ε1)/(a +
√
1− a2) on Ω1.

Using the lifting Theorem 3, we have that, for small enough τ, ν,

ρK(µpost, δx⋆) ≤ max

{
2ρK(Y, yexact),

c̃1ρK(Y, yexact) + c̃2ν

a +
√
1− a2

+

√
τ [a +

√
1− a2]−1

√
(1 + ∆⋆

2)
2λmin01(1−∆22)

√

− log

(
Cp01

(
a2τ

λmin01(1−∆22)(1 + ∆⋆
2)

2

)κp01
)

− τ

νbmin

[
log

(
τp2

νbmin

√
1− a2

)
+ log ((1 + ∆1)(1 + ∆⋆

2))

]
[a +

√
1− a2]−1.

Denoting

∆⋆,K(δ, p2) =
(a +

√
1− a2)−1

(1 + ∆⋆
2)(1−∆22)1/2

[
1 + 2

log(1 + ∆⋆
2) + 0.5 log(1−∆22)]

log (λmin01/(a2τ))

]1/2
− 1,

∆⋆⋆,K(δ, p2) =
log ((1 + ∆1)(1 + ∆⋆

2))

log
(

τp2
νbmin

√
1−a2

) , (41)

we have the statement of Theorem 5.

Proof of Theorem 3. First we note that

P { dx(X1(ω), X2(ω)) 6 Φ1(ρK(Y1, Y2)) ∩ Ω1}
+ P { dx(X1(ω), X2(ω)) 6 Φ2(ρK(Y1, Y2)) ∩ Ω2}
≥ P {Φ1(dy(Y1(ω), Y2(ω))) 6 Φ1(ρK(Y1, Y2)) ∩ Ω1}
+ P {Φ2(dy(Y1(ω), Y2(ω))) 6 Φ2(ρK(Y1, Y2)) ∩ Ω2}
= P { dy(Y1(ω), Y2(ω)) 6 ρK(Y1, Y2) ∩ Ω1}
+ P { dy(Y1(ω), Y2(ω)) 6 ρK(Y1, Y2) ∩ Ω2}
= P { dy(Y1(ω), Y2(ω)) 6 ρK(Y1, Y2)}
≥ 1− ρK(Y1, Y2).

On the other hand,

P { dx(X1(ω), X2(ω)) 6 Φ1(ρK(Y1, Y2)) ∩ Ω1}
+ P { dx(X1(ω), X2(ω)) 6 Φ2(ρK(Y1, Y2)) ∩ Ω2}
≤ P { dx(X1(ω), X2(ω)) 6 Φ1(ρK(Y1, Y2))}+ P {Ω2} .

Putting these together implies

P { dx(X1(ω), X2(ω)) > Φ1(ρK(Y1, Y2))} ≤ ρK(Y1, Y2) + P {Ω2} ,
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hence, using Lemma 5, we have

ρK(X1, X2) 6 max {Φ1(ρK(Y1, Y2)), ρK(Y1, Y2) + P(Ω2)} ,

and we have the first statement. The second statement follows from the first inequality and

P { dx(X1(ω), X2(ω)) 6 Φ1(ρK(Y1, Y2)) ∩ Ω1}
+ P { dx(X1(ω), X2(ω)) 6 Φ2(ρK(Y1, Y2)) ∩ Ω2}
≤ P { dx(X1(ω), X2(ω)) 6 max[Φ1(ρK(Y1, Y2)),Φ2(ρK(Y1, Y2))]} .

A.3 Ky Fan distance inequalities

In this section we quote the result by Hofinger and Pikkarainen (2007).

Lemma 3. (Lemma 7, Hofinger and Pikkarainen (2007)) Let ξ ∼ Np(µ,Σ). Define

Cp =




2π/(p+ 1)2 if p is odd,

2p/p2 if p is even.
(42)

κp = max{1, p− 2} (43)

Then there exists a positive constant θ(p) such that for any Σ: ||Σ|| < θ(p),

ρP(N (µ,Σ), δµ) ≤ (−||Σ|| log{Cp||Σ||κp})1/2 . (44)

In particular, we will use the following bound on the solution z = z(p, λ) of

z(p, α) = inf
z>0

{z : 1− Γ

(
z2

2α
| p
2
, 1

)
< z},

given in the proof of this lemma for sufficiently small α:

z(p, α) ≤ [−α log(Cpα
κp)]1/2 . (45)

Here Γ(x|a, b) is the cumulative distribution function of the Gamma distribution Γ(a, b) with

probability density function f(x) = ba

Γ(a)
xa−1e−bx, x > 0.

Lemma 4. Assume that A → 0 and A 6 e−1. Then the solution of

exp{−z/A} = z

satisfies

z = −A log(A)(1 + ω),

where ω 6 0 and ω = o(1) as A → 0.
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Proof. Taking the logarithm of the given expression, we have

−z/A = log z

Since A → 0, we must have z/ log z → 0 which implies z → 0. Denote f = z/A, i.e. z = Af .

Hence, the equation above can be rewritten as

−f = logA + log f

implying that f → ∞ as A → 0 at the rate f = − logA(1 + o(1)). Hence, the solution is

z = −A logA(1 + o(1)).

To show that z 6 z∗ = −A log(A), we note that for A 6 e−1,

exp{z∗/A}z∗ = exp{− log(A)}(−A log(A)) = − log(A) > 1 = exp{z/A}z

implying the desired inequality.

The following lemma follows obviously from the definition of Ky Fan distance.

Lemma 5. If P(d(X, Y ) > ε1) 6 ε2 for some ε1, ε2 ∈ (0, 1), then ρK(X, Y ) 6 max(ε1, ε2).

A.4 Auxiliary results

Lemma 6. Assume that α, β > 0 satisfy αβ < 1/4.

If z < 1/(2β) and z 6 α + βz2, then z 6 2α.

If α → 0 and β is bounded, the solution of z = α + βz2 such that z < 1/(2β) satisfies

z = α(1 + o(1)).

The proof is obvious.

Define the following projections

PV = V †V,

PA,V = (ATV A)†ATV A = A†PVA.

Lemma 7. If [ATVy(x)A : B(x)] is of full rank,

||H−1
y (x)|| = [min(λmin, PA,V

(ATVy(x)A+ νB(x)), νλmin, I−PA,V
(B(x)))]−1,

where λmin, P (B(x)) = min||v||=1, P v=v ||B(x)v|| is the smallest eigenvalue of B(x) on the range

of P .
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In particular, if Hy(x) is of full rank and ∇3hy(x) is uniformly bounded on B(x⋆, δ) for

y ∈ Yloc,

||H−1
y (x)|| 6

1

min
[
λmin,pos(ATVy(x)A) + νλmin,PA,V

(B(x)), νλmin, I−PA,V
(B(x))

] ,

||Hy(x
⋆)−1∇hy(x

⋆)|| 6
1

λmin,pos(ATVy(x⋆)A) + νλmin,PA,V
(B(x⋆))

[||PA,V ∇fy(x
⋆)||+ ν||PA,V ∇g(x⋆)||]

+
1

λmin, I−PA,V
(B(x⋆))

[
ν−1||(I − PA,V )∇fy(x

⋆)||+ ||(I − PA,V )∇g(x⋆)||
]
.

Proof. of Lemma 7.

The norm of H−1 is given by

||H−1|| = σ2[λmin(A
TV A+ νB)]−1 = σ2[ min

||x||=1
||(ATV A+ νB)x||]−1

= σ2[ min
||x||=1

||(ATV A+ νB)PATx+ νB)(I − PAT )x||]−1

= σ2[min( min
||x||=1,P

AT x=x
||(ATV A+ νB)PATx||, min

||x||=1,(I−P
AT )x=x

ν||B(I − PAT )x||)]−1

= σ2[min(λmin, P
AT

(ATV A + νB), νλmin, I−P
AT

(B))]−1.

Weyl inequality implies that λmin, P
AT

(ATV A + νB) > λmin, P
AT

(ATV A) + νλmin, P
AT

(B).

Note that since we assumed that Vyexact(x
⋆) is of full rank, the projection on the range of

AT coincides with the projection on the range of ATVyexact(x
⋆)A.

Now we find an upper bound on ||Hyexact(x
⋆)−1∇hy(x

⋆)|| using the first statement in

Lemma 8:

||Hyexact(x
⋆)−1∇hy(x

⋆)|| = τ−1||Hyexact(x
⋆)−1 (∇fy(x

⋆) + ν∇g(x⋆)) ||
6 τ−1||Hyexact(x

⋆)−1||P
AT

||PAT (∇fy(x
⋆) + ν∇g(x⋆))||

+ τ−1||Hyexact(x
⋆)−1||I−P

AT
||(I − PAT )[∇fy(x

⋆) + ν∇g(x⋆)]||

6
1

λmin,pos(ATVyexact(x
⋆)A) + νλmin,P

AT
(B(x⋆))

||PAT [∇fy(x
⋆) + ν∇g(x⋆)]||

+
1

λmin,I−P
AT

(B)
τ ||(I − PAT )[∇fy(x

⋆) + ν∇g(x⋆)]||

6
[||PAT ∇fy(x

⋆)||+ ν||PAT ∇g(x⋆)||]
λmin,pos(ATVyexact(x

⋆)A) + νλmin,P
AT

(B(x⋆))

+
1

λmin,I−P
AT

(B(x⋆))

[
ν−1||(I − PAT )∇fy(x

⋆)||+ ||(I − PAT )∇g(x⋆)]||
]
.

Lemma 8. 1. ||(C + δI)−1x|| 6 (δ + λk(C))−1||PCx||+ δ−1||(I − PC)x||
where k = rank(C) and λk(C) is the smallest positive eigenvalue of C, and PC = C†C

is the projection matrix.
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2. Cauchy’s interlacing theorem (?): let C = CT be a n× n matrix, L any n− k dimen-

sional linear subspace, and CL = PLCPL. Then, for any j = 1, . . . , n− k,

λj(C) > λj(CL) > λj+k(C).

3. λminpos(A
TDA) > minDi>0Diλminpos(A

TA) where D is a diagonal matrix with non-

negative entries.

Proof. of Lemma 8

3. λj(A
TDA) = λj(D

1/2AATD1/2), and since j > rank(ATDA) = rank(D1/2AATD1/2),

λj(D
1/2AATD1/2) > min

Di>0
Diλj(PDAA

TPD) > min
Di>0

Diλj+m(AA
T )

by Cauchy’s interlacing theorem, where m = rank(PD), n = dim(D).

If j = r = rank(PATPD), λr(A
TDA) is the smallest positive eigenvalue of ATDA, and

j+m = rank(PD)+rank(PATPD) > rank(PAT ). Hence λr+m(A
TA) > λrank(P

AT )
(ATA), and

the latter is the smallest positive eigenvalue of ATA.

A.5 Proof of Bernstein – von Mises theorem in a nonregular case

Proof. Denote σ =
√
τ . An upper bound on the total variation distance between the rescaled

posterior distribution and its limit is given by

||P(S(x−x⋆)|Y ) − µ⋆||TV ≤ ||P(S(x−x⋆)|Y )1BR
− µ⋆1BR

||TV

+ ||µ⋆ − µ⋆1BR
||TV + ||PS(x−x⋆)|Y 1BR

− PS(x−x⋆)|Y ||TV ,

where the balls BR are defined below. Here µ1BR
is a probability measure µ truncated to

BR and normalised to be a probability measure. We start with the distance between the

truncations of the rescaled posterior distribution and the limit on BR.

Denote wk = (U−1) (x− x⋆), and rescale to v0 = w0/σ, v1 = w1/γ and v2 = w2/γ
2, with

the Jacobian of this change of variables being J = σp0γp1+2p2 det(U).

Consider a neighbourhood of x⋆, Bδ(x
⋆) = x⋆ + Bδ, where Bδ = B2(0, δ0) × B2(0, δ1) ×

B∞(0, δ2). For the rescaled parameter, we use the corresponding neighbourhood BR =

B2(0, R0)×B2(0, R1)× B∞(0, R2) where

R0 = δ0/σ, R1 = δ1/γ, R2 = δ2/γ
2.

We assume that δk are such that δk → 0 and Rk → ∞. In addition, we will need conditions

δ21 ≪ δ0, δ1 ≫ δ0 and δ0 ≫ ν = σ2

γ2 . In particular, we can take δ0 = ν1/3, δ1 =
√
γ and δ2 = γ.
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Approximate hy(x) by a quadratic function using Taylor decomposition in a neighbour-

hood of x⋆:

hy(x) = hy(x
⋆) + [∇hy(x

⋆)]T (x− x⋆) +
1

2
(x− x⋆)TH(x− x⋆) + ∆00(x).

Note that

∇hy(x
⋆) = PAT (∇fy(x

⋆) + ν∇g(x⋆)) + ν(I − PAT )∇g(x⋆).

Bound ∆00 on w ∈ Bδ using Taylor decomposition of hy(x): ∃xc ∈ 〈x, x⋆〉:

|∆00(δ)| =
1

6

∣∣∣∣∣
∑

ijk

∇ijkhy(xc)(xi − x⋆
i )(xj − x⋆

j )(xk − x⋆
k)

∣∣∣∣∣

=
1

6

∣∣∣∣∣
∑

i

(xi − x⋆
i )∇i

[
(x− x⋆)T∇2hy(xc)(x− x⋆)

]
∣∣∣∣∣

≤ 1

6
||x− x⋆||1

[
||w0||21Cf3 + νCg3[

2∑

k=0

||wk||1]2
]

≤ 1

6
||x− x⋆||1

[
||w0||21(Cf3 + 3νCg3) + 3νCg3[||w1||21 + ||w2||21]

]
.

On Bδ,

||x− x⋆||1 = ||w0||1 + ||w1||1 + ||w2||1 ≤
√
p0δ0 +

√
p1δ1 + p2δ2

def
= δ.

Denote

D0 = p0(Cf3/3 + νCg3)Ip0, D1 = p1Cg3Ip1 .

Then,

[hy(x)− hy(x
⋆)]/σ2 ≤ bT v2 +

1

2
(v0 − x0/σ)

TH00(v0 − x0/σ) +
1

2
vT1 B11v1

+
√
νvT0 B01v1 − ||H1/2

00 x0||2/(2σ2) + δ[vT0 D0v0 + vT1 D1v1]/2

+ [σvT0 U
T
0 + γvT1 U

T
1 ]BU2v2 +

2Cg3 δ

3
γ2||v2||21

+
γ2

2
vT2 B22v2,

where Hij = UT
i HUj, Bij = UT

i BUj, i, j ∈ {0, 1, 2}, and Hjk = νUT
j BUk for (j, k) /∈ (0, 0).

Therefore, we have that

[hy(x)− hy(x
⋆)]/σ2 ≤ b̃T2 v2 + ||H̃1/2

00 (v0 − H̃−1
00 H00x0/σ)||2/2 + ||B̃1/2

11 (v1 +
√
νB̃−1

11 B10v0)||22/2
− ||H̃−1/2

00 H00x0||2/(2σ2),
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where B̃11 = B11 + δ1D1, H̃00 = H00 − νB01B̃
−1
11 B10 + δ0D0, and

b̃ = b+ 1

[
δ0||B02||2,∞ + δ1||B12||2,∞ +

δ2
2
||B22||1,∞ + δp2δ2

2Cg3

3

]
,

since on Bδ,

[σvT0 U
T
0 B + γvT1 U

T
1 B]U2v2 +

γ2

2
vT2 B2v2 ≤ [δ0||B02||2,∞ + δ1||B12||2,∞]||v2||1 +

δ2
2
||B22||1,∞||v2||1.

Therefore,

∫

x⋆+Bδ

exp
{
−[hy(x)− hy(x

⋆)]/σ2
}
dx ≥ J exp{||H̃−1/2

00 H00x0||2/(2σ2)}

×
∫

BR

exp
{
−b̃T v2 − ||H̃1/2

00 (v0 − H̃−1
00 H00x0/σ)||2/2− ||B̃1/2

11 (v1 +
√
νB̃−1

11 B10v0)||22/2
}
dv

≥ J exp
{
||H̃−1/2

00 H00x0||2/(2σ2)
} [

det(H̃00) det(B̃11)
]−1/2

×
p2∏

i=1

b̃−1
i

[
p2∏

i=1

[1− exp{−b̃iδ2/γ
2}]
]
(2π)(p0+p1)/2

×Γ

(
λmin(H̃00)[δ0 − ||H̃−1

00 H00x0||]2
2σ2

|p0
2

)
× Γ

(
λmin(B̃11)(δ1 − δ0||B̃−1

11 B10||)2
2γ2

|p1
2

)

= J exp{||H̃−1/2
00 b0||2/(2σ2)}MR(H̃, B̃, b̃, ν)C(H̃, B̃, b̃),

since we have that δ1 ≫ δ0.

Denote

MR(Q,A, b, ν) =

p2∏

i=1

[1− exp{−biR2}] Γ
(
λmin(Q00)[R0 − ||Q−1

00 H00x0||/σ]2
2

|p0
2

)

× Γ

(
λmin(A11)(R1 −

√
νR0||A−1

11 B10||)2
2

|p1
2

)
,

C(Q,A, b) =

p2∏

i=1

b−1
i [det(Q00) det(A11)]

−1/2 .

Here MR(Q,A, b, ν) is the measure of BR under the considered class of distributions, in par-

ticular, µ⋆(BR) = MR(Ω, B, a, 0), and C(Q,A, b) is the inverse of the normalising constant.

Similarly, we obtain an upper bound on e−hy(x)/σ2
for any x ∈ Bδ(x

⋆). Denote B̄11 =

B11 − δ1D1, H̄00 = H00 − νB01B̄
−1
11 B10 − δ0D0, and

b̄ = b− 1

[
δ0||B02||2,∞ + δ1||B12||2,∞ +

δ2
2
||B22||1,∞ + δp2δ2

2Cg3

3

]
,

for δk small enough so that H̄00 and B̄11 are positive definite and b̄2 > 0.
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Then, for any x ∈ Bδ(x
⋆),

exp
{
−[hy(x)− hy(x

⋆)]/σ2
}
dx ≤ J exp

{
||H̄−1/2

00 H00x0||2/(2σ2)
}

× exp
{
−b̄T v2 − ||H̄1/2

00 (v0 − H̄−1
00 H00x0/σ)||2/2− ||B̄1/2

11 (v1 +
√
νB̄−1

00 B01v0)||2/2
}
dv.

The posterior density normalised by the posterior measure of BR can be written as

p(S(x− x⋆) | Y )dx

p(BR | Y )
≤

exp
{
−||H̄1/2

00 (v0 − H̄−1
00 H00x0/σ)||2/2− ||B̄1/2

11 (v1 +
√
νB̄−1

00 B01v0)||2/2
}
dv

MR(H̃, B̃, b̃, ν)C(H̃, B̃, b̃)

× exp
{
−b̄T v2

}
(1 + ∆2,0(R)),

where

∆2,0(R)) =
exp

{
||H̄−1/2

00 H00x0||2/(2σ2)
}

exp
{
||H̃−1/2

00 H00x0||2/(2σ2)
} − 1

= exp{xT
0H00H̄

−1
00 [δ0D0 + νδ1B01B̃

−1
11 D1B̄

−1
11 B10]H̃

−1
00 H00x0/σ

2} − 1

≤ exp{[δ0p0(Cf3/3 + νCg3) + νδ1p1Cg3||B01B̃
−1
11 B̄

−1
11 B10||] ||H00H̄

−1
00 || ||H̃−1

00 H00|| ||x0||2/σ2} − 1.

The total variation distance between the rescaled posterior distribution and its limit,

both truncated to BR, is bounded by

||P(S(x−x⋆)|Y )1BR
− µ⋆1BR

||TV ≤ 2

∫

BR

f ⋆(v)

µ⋆(BR)

[
p(v | Y )µ⋆(BR)

f ⋆(v)p(BR | Y )
− 1

]

+

dv

≤ 2

∫

BR

f ⋆(v)

µ⋆(BR)

[
M(Ω, B, a, 0)C(Ω, B, a)

MR(H̃, B̃, b̃, ν)C(H̃, B̃, b̃)
(1 + ∆2,0(R))

×
exp

{
−b̄T2 v2 − ||H̄1/2

00 (v0 − H̄−1
00 H00x0/σ)||2/2− ||B̄1/2

11 (v1 +
√
νB̄−1

00 B01v0)||2/2
}

exp
{
−bT v2 − ||Ω1/2

00 (v0 − a0)||2/2− vT1 B11v1/2
} − 1




+

dv

= 2

∫

BR

f ⋆(v)

µ⋆(BR)

[
MR(Ω, B, a, 0)C(Ω, B, a)

MR(H̃, B̃, b̃, ν)C(H̃, B̃, b̃)
exp

{
−[xT

0 H00H̄
−1
00 H00x0/σ

2 − a0Ω00a0]/2
}

× exp
{
δ̃T2 v2 + vT0 D̃0v0/2 + δ1(v1 +

√
νB̄−1

00 B01v0)
TD1(v1 +

√
νB̄−1

00 B01v0)/2
}

× exp
{
vT0 [H00x0/σ − Ω00a0]

}
− 1
]
+
dv,

where

D̃0 = δ0D0 − U0[∇2fy(x
⋆)−∇2fyexact(x

⋆)]UT
0 − ν[B00 − B01B̄

−1
11 B10],

δ̃2 = −UT
2 [∇fy(x

⋆)−∇fyexact(x
⋆) + ν∇g(x⋆)]

+ 1

[
δ0||B02||2,∞ + δ1||B12||2,∞ +

δ2
2
||B22||1,∞ + δp2δ2

2Cg3

3

]
.
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Since δ0 =
√
ν ≫ ν and δ0 ≫

√
τ ≥ C

√
Var(Y), D̃0 is positive definite and δ̃2 > 0 with high

probability as σ → 0.

Now we show that the ratio of the constants is greater than 1. Since function a−1(1−e−ax)

decreases in a for large ax, we have that

p2∏

i=1

[
1− exp{−biR2}

1− exp{−[bi + δ̃2,i]R2}
b−1
i

[bi + δ̃2,i]−1

]
≥ 1.

Also, we have B̃11 − B11 = δ1D1 > 0, hence, by Interlacing Theorem (Lemma 8), all

eigenvalues of B̃11 are greater than the corresponding eigenvalues of B11, and therefore

det(B̃11) > det(B11), and the difference of arguments of the Gamma functions is given

by

λmin(B11)R
2
1

2
− λmin(B̃11)(R1 −

√
νR0||B̃−1

11 B10||)2
2

= −δλ(D1)R
2
1/2 +

√
νR0R1λmin(B̃11)c− νR2

0

λmin(B̃11)c
2

2
,

which is positive if δR1 ≪
√
νR0, i.e. if δδ1 ≪ δ0 (recall that R1 ≫

√
νR0).

Since for large αx, α−1/2Γ(αx | β) decreases in α, and, with high probability λmin(Ω00) ≤
λmin(H00 − νB01B̃

−1
11 B10 + δ0D0), we have

[det(Ω00)]
−1/2Γ

(
λmin(Ω00)[R0−||a0||]2

2
|p0
2

)

[det(H̃00)]−1/2Γ
(

λmin(H̃00)[R0−||H̃−1
00 H00x0||/σ]2

2
|p0
2

) ≥ 1

with high probability. Then,

MR(Ω, B, a, 0)C(Ω, B, a)

MR(H̃, B̃, b̃, ν)C(H̃, B̃, b̃)
≥ 1

with high probability. Hence,

||P(S(x−x⋆)|Y )1BR
− µ⋆1BR

||TV ≤ −2 + 2
(1 + ∆2,0(R))

MR(H̃, B̃, b̃, ν)C(H̃, B̃, b̃)

×
∫

BR

exp
{
−b̄T ||v2||1 − ||H̄1/2

01,01(v01 + H̄−1
01,01b01/σ)||2/2

}
dv

= 2
(1 + ∆2,0(R))

M(H̃, ã, δ)C(H̃, ã)
M(H̄, ā, δ)C(H̄, ā)− 2

= 2∆2(R),

where

∆2(R) =
M(H̄, B̄, ā, δ)C(H̄, B̄, ā)

M(H̃, B̃, ã, δ)C(H̃, B̃, ã)
(1 + ∆2,0(R))− 1.
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Note that M(H̄, ā, δ)/M(H̃, B̃, ã, δ) ≤ 1 with probability → 1 as σ → 0, and

C(H̄, B̄, ā)

C(H̃, B̃, ã)
=

p2∏

i=1

[
1 +

2δ̃2

b2,i − δ̃2

]

×
p0∏

i=1

[
λi(H00 − νB01B

−1
11 B10 +D00)

λi(H00 − νB01B
−1
11 B10 −D00)

]1/2 p1∏

i=1

[
λi(B11 + δ1D1)

λi(B11 − δ1D1)

]1/2

≤
[
1 +

2δ̃2

bmin − δ̃2

]p2 [
1 +

2δ1D1,11)

λmin(B11)− δ1D1,11)

]p1/2

×
[
1 +

2λmax(D00))

λmin(H00 − νB01B
−1
11 B10)− λmax(D00)

]p0/2
,

where D00 = δ0D0 + νδ1B01B
−1
11 D1B̃

−1
11 B10 and λi(M) is the ith largest eigenvalue of matrix

M . Note that matrix H00 − νB01B
−1
11 B10 is positive definite with high probability.

Therefore, with high probability,

∆2(R) ≤ ∆⋆
2(R)

def
= exp

{
δ0x

T
0H00H̄

−1
00 D0H̃

−1
00 H00x0

σ2

} [
1 +

2δ̃2

bmin − δ̃2

]p2
(46)

×
[
1 +

2λmax(D00))

λmin(H00 − νB01B
−1
11 B10)− λmax(D00))

]p0/2 [
1 +

2δ1D1,11

λmin(B11)− δ1D1,11

]p1/2
− 1.(47)

The total variation distance between the limit measure and its truncation to BR is

bounded by

||µ⋆ − µ⋆1BR
||TV ≤ 2µ⋆(Bc

R)

≤ 2

[
1−

p2∏

i=1

[1− exp{−biR2}] + 1− Γ

(
λmin(B11)R

2
1

2
|p1
2

)

+ 1− Γ

(
λmin(Ω00)(R0 − ||a0||)2

2
|p0
2

)]
.

The total variation distance between the posterior distribution and its truncation to BR

is bounded by

||P(S(x−x⋆)|Y )1BR
− P(S(x−x⋆)|Y )||TV ≤ 2P(S(x−x⋆)|Y )(B

c
R)

= 2

∫
X\Bδ(x⋆)

exp{−(hy(x)− hy(x
⋆))/σ2} d x

∫
X exp{−(hy(x)− hy(x⋆))/σ2} d x

= 2∆0(Bδ) ≤ 2∆⋆
0(Bδ),

where ∆⋆
0(Bδ) is defined by (39).

Combining the three bounds, we have that

||P(S(x−x⋆)|Y ) − µ⋆||TV ≤ 2∆⋆
2(R) + 2µ⋆(Bc

R) + 2∆⋆
0(Bδ),

which gives the statement of the theorem.
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