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ON SKEW BRACES (WITH AN APPENDIX BY N. BYOTT

AND L. VENDRAMIN)

A. SMOKTUNOWICZ AND L. VENDRAMIN

Abstract. Braces are generalizations of radical rings, introduced by
Rump to study involutive non-degenerate set-theoretical solutions of the
Yang–Baxter equation (YBE). Skew braces were also recently introduced
as a tool to study not necessarily involutive solutions. Roughly speaking,
skew braces provide group-theoretical and ring-theoretical methods to
understand solutions of the YBE. It turns out that skew braces appear
in many different contexts, such as near-rings, matched pairs of groups,
triply factorized groups, bijective 1-cocycles and Hopf–Galois extensions.
These connections and some of their consequences are explored in this
paper. We produce several new families of solutions related in many
different ways with rings, near-rings and groups. We also study the
solutions of the YBE that skew braces naturally produce. We prove,
for example, that the order of the canonical solution associated with a
finite skew brace is even: it is two times the exponent of the additive
group modulo its center.
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Introduction

In [19] Drinfeld posed the problem of studying set-theoretical solutions of
the Yang–Baxter equation. Such solutions are pairs (X, r), where X is a set
and

r : X ×X → X ×X, r(x, y) = (σx(y), τy(x))

Key words and phrases. Braces, Yang–Baxter, Rings, Near-rings, Triply factorized
groups, Matched pair of groups, Bijective 1-cocycles, Hopf–Galois extensions .
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2 A. SMOKTUNOWICZ AND L. VENDRAMIN

is a bijective map such that

(r × id)(id× r)(r × id) = (id× r)(r × id)(id× r).
The first two papers addressing this combinatorial problem were those of

Etingof, Schedler, Soloviev [22] and Gateva-Ivanova and Van den Bergh [31].
Both papers considered involutive and non-degenerate solutions. A solution
is said to be involutive if r2 = idX×X and it is said to be non-degenerate if
all the maps σx, τx : X → X are bijective.

In [22], Etingof, Schedler and Soloviev introduced the structure group
G(X, r) of a solution (X, r) as the group with generators in {ex : x ∈ X}
and relations exey = eσx(y)eτy(x), x, y ∈ X. They proved that G(X, r)

acts on X and there is a bijective 1-cocycle G(X, r) → Z(X) where Z(X) is
the free abelian group on X. Bijective 1-cocycles are a powerful tool for
studying involutive set-theoretical solutions of the Yang–Baxter equation;
see for example [22, 23].

Involutive solutions have been intensively studied; see for example [14,
18, 25, 26, 28, 29, 30]. In [44], Rump introduced braces, a new algebraic
structure that turns out to be equivalent to bijective 1-cocycles; see [13, 27,
47]. According to the definition given by Cedó, Jespers and Okniński in [15],
a brace is a triple (A, ·,+), where (A, ·) is a group, (A,+) is an abelian group
and

a(b+ c) + a = ab+ ac

holds for all a, b, c ∈ A. In this paper these braces will be called classical
braces. It was observed by Rump that radical rings form an important fam-
ily of examples of braces. This observation suggests using ring-theoretical
methods to study involutive set-theoretical solutions. Rump also observed
that a classical brace A produces an involutive non-degenerate solution:

rA : A×A→ A×A, rA(a, b) =
(
ab− a, (ab− a)−1ab

)
.

Moreover, the structure group G(X, r) admits a canonical brace structure.
This brace structure over G(X, r) is extremely important for understanding
the structure of involutive set-theoretical solutions.

The study of non-involutive solutions of the Yang–Baxter equation is also
an interesting problem with several applications in algebra and topology. Lu,
Yan and Zhu [38] and Soloviev [49] extended the main results of [22] to non-
involutive solutions. As in the involutive setting, one defines the structure
group G(X, r) and proves that there is a bijective 1-cocycle with domain
G(X, r) (now with values in a group which is in general not isomorphic to a
free abelian group). These results suggest a generalization of classical braces
known as skew braces; see [33].

Skew braces produce non-degenerate set-theoretical solutions; see Theo-
rem 3.1. Moreover, the results of [38, 49] can now be translated into the
language of skew braces. In particular, one obtains that G(X, r) admits a
canonical skew brace structure and its associated solution rG(X,r) satisfies a
universal property; see Theorem 3.5.
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It is remarkable that skew braces have connections with other algebraic
structures such as groups with exact factorizations, Zappa–Szép products,
triply factorized groups, rings and near-rings, regular subgroups, Hopf–
Galois extensions. As skew braces produce non-degenerate solutions, these
connections yield several new families of examples of solutions of the Yang–
Baxter equation associated with rings, near-rings and groups.

This paper is organized as follows. In Section 1 we review the definition
and some basic properties of skew braces and some elementary examples are
given. In Section 2 connections to other topics in algebra are explored. We
prove in Theorem 2.3 that factorizable groups are skew braces. As a corollary
we prove that Zappa-Szép product of groups and semidirect products of
groups are skew braces. Theorem 2.3 is also used to construct skew braces
from Jacobson radical rings. In Theorem 2.12 we prove that skew braces
provide examples of triply factorized groups. In Theorem 2.17 we translate a
result of Sysak for triply factorized groups into the language of skew braces.
Based on this theorem, one easily finds a connection between near-rings and
skew braces; see Proposition 2.20. Several general constructions of skew
braces are stated, for example semidirect products, Zappa–Szép products
and wreath products of skew braces. The first two sections contain several
new examples of skew braces. We summarize these examples in the following
table:

Additive group Multiplicative group Reference
S3 C6 Example 1.13

dihedral group quaternion group Example 1.18
A4 C3 o C4 Example 1.20

GL(n,C) U(n)× T (n) Example 2.4
A5 A4 × C5 Example 2.5

PSL(2, 7) S4 × C7 Example 2.6

In Section 3 the canonical non-degenerate solution associated to a skew
brace (constructed in Theorem 3.1) is studied. We prove in Corollary 3.3
that the solutions associated with skew braces are biquandles; hence skew
braces could be used to construct combinatorial invariants of knots. In The-
orem 3.13 it is proved that the solution associated to a finite skew brace
is always a permutation of even order; and the order of this permutation
is computed explicitly in terms of the exponent of a certain quotient the
additive group of the skew brace. In Section 4 ideals of skew braces simple
skew braces and skew braces of finite multipermutation level are introduced.
Finally, in Section 5 it is proved that skew braces are related to other al-
gebraic structures such as cycle sets (Theorem 5.8) and matched pairs of
groups (Theorem 5.11).

Notations and conventions. If X is a set, we write |X| to denote the
cardinality of X and SX to denote the group of bijective maps X → X.



4 A. SMOKTUNOWICZ AND L. VENDRAMIN

For n ∈ N the symmetric group in n letters will be denoted by Sn, the
alternating group in n letters by An and the cyclic group of order n by Cn.
Usually we simply write ab to denote the product a · b.

1. Preliminaries

Skew braces were first defined in [33]. In this section we recall the basic
notions and properties of skew braces.

Definition 1.1. A skew brace is a triple (A, ·, ◦), where (A, ·) and (A, ◦)
are groups and the compatibility condition

a ◦ (bc) = (a ◦ b)a−1(a ◦ c)(1.1)

holds for all a, b, c ∈ A, where a−1 denotes the inverse of a with respect to
the group (A, ·). The group (A, ·) will be the additive group of the brace and
(A, ◦) will be the multiplicative group of the brace. A skew brace is said to
be classical if its additive group is abelian.

Definition 1.2. Let A and B be skew braces. A map f : A → B is said to
be a brace homomorphism if f(aa′) = f(a)f(a′) and f(a ◦ a′) = f(a) ◦ f(a′)
for all a, a′ ∈ A.

Remark 1.3. Skew braces form a category.

Remark 1.4. It follows from (1.1) that in every brace A the neutral elements
of (A, ·) and (A, ◦) concide.

Example 1.5. Let A be a group. Then a ◦ b = ab gives a skew brace.
Similarly, the operation a ◦ b = ba turns A into a skew brace.

Example 1.6. Let A and M be groups and let α : A→ Aut(M) be a group
homomorphism. Then M ×A with

(x, a)(y, b) = (xy, ab), (x, a) ◦ (y, b) = (xαa(y), ab)

is a skew brace. Similarly, M ×A with

(x, a)(y, b) = (xαa(y), ab), (x, a) ◦ (y, b) = (xy, ba)

is a skew brace.

Example 1.7. Let A and B be skew braces. Then A×B with

(a, b)(a′, b′) = (aa′, bb′), (a, b) ◦ (a′, b′) = (a ◦ a′, b ◦ b′),
is a skew brace.

Lemma 1.8. [33, Corollary 1.10] Let A be a skew brace. The map

λ : (A, ◦)→ Aut(A, ·), λa(b) = a−1(a ◦ b),
is a group homomorphism.

Remark 1.9. If A is a skew brace and a ∈ A, the inverse of a with respect
to ◦ is the element a = λ−1a (a−1).
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Lemma 1.8 justifies the following definition:

Definition 1.10. Let A be a skew brace. The crossed group of A is defined
as the group Γ(A) = (A, ·) o (A, ◦) with multiplication

(a, x)(b, y) = (aλx(b), x ◦ y).

Lemma 1.11. [3, Lemma 2.4] Let A be a skew brace and let

µ : (A, ◦)→ SA, µb(a) = λa(b) ◦ a ◦ b.
Then µ1 = id and µa◦b = µbµa for all a, b ∈ A.

The following lemma was proved by Bachiller for classical braces, see [4,
Proposition 2.3]. The same proof also works for skew braces.

Lemma 1.12. [5, Lemma 1.1.17] Let A be a group and λ : A→ Aut(A) be
a map such that

(1.2) λaλa(b) = λaλb, a, b ∈ A.
Then A with a ◦ b = aλa(b) is a skew brace.

Proof. The first claim is [33, Corollary 1.10]. For the second claim see [5,
Lemma 1.1.17]. �

Example 1.13. Let A = S3 and λ : A→ SA be given by

λid = λ(123) = λ(132) = id,

λ(12) = λ(23) = λ(13) = conjugation by (23).

It is easy to check that λaλa(b) = λaλb for all a, b ∈ A. Hence A is a skew
brace by Lemma 1.12. Since the transposition (12) has order six in the group
(A, ◦), it follows that (A, ·) ' S3 and (A, ◦) ' C6.

The following lemma provides another useful tool for constructing skew
braces.

Lemma 1.14. Let (A, ◦) be a group and λ : A→ SA be a group homomor-
phism. Assume that λa(1) = 1 for all a ∈ A and that

(1.3) λa(b ◦ λ−1b (c)) = λa(b) ◦ λ−1λa(b)λa(c)

for all a, b, c ∈ A. Then A with ab = a ◦ λ−1a (b) is a skew brace.

Proof. Note that Equation (1.3) is equivalent to

(1.4) λ−1a (bc) = λ−1a (b)λ−1a (c).

We prove that the operation is associative:

a(bc) = a ◦ λ−1a (bc) = a ◦ (λ−1a (b)λ−1a (c))

= a ◦ λ−1a (b) ◦ λ−1
a◦λ−1

a (b)
(c) = (ab) ◦ λ−1ab (c) = (ab)c.

The neutral element 1 of A is a right identity: a1 = a◦λ−1a (1) = a◦1 = a.
The element a−1 = λa(a) is a right inverse of A since

aa−1 = a ◦ λ−1a (a−1) = a ◦ λ−1a λa(a) = a ◦ a = 1.
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Therefore (A, ·) is a group by [42, §1.1.2].
The brace compatibility condition follows from Equation (1.4):

(a ◦ b)a−1(a ◦ c) = (a ◦ b)λa(c) = aλa(b)λa(c) = aλa(bc) = a ◦ (bc).

The lemma is proved. �

Definition 1.15. A skew brace A is said to be a two-sided skew brace if

(ab) ◦ c = (a ◦ c)c−1(b ◦ c)

holds for all a, b, c ∈ A.

Example 1.16. Let A be a skew brace with abelian multiplicative group.
Then A is a two-sided skew brace.

Example 1.17. Let n ∈ N be such that n = pa11 · · · p
ak
k , where the pj are

distinct primes, all aj ∈ {0, 1, 2} and pmi 6≡ 1 (mod pj) for all i, j,m with
1 ≤ m ≤ ai. Then every skew brace of size n is a two-sided classical brace,
since every group of order n is abelian, see for example [41].

Example 1.18. Let

A = 〈r, s : r4 = s2 = 1, srs = r−1〉

be the dihedral group of eight elements and let

B = {1,−1, i,−i, j,−j, k,−k}

be the quaternion group of eight elements. Let π : B → A be the bijective
map given by

1 7→ 1, −1 7→ r2, −k 7→ r3s, k 7→ rs,

i 7→ s, −i 7→ r2s, j 7→ r3, −j 7→ r.

A straightforward calculation shows that A with

x ◦ y = π(π−1(x)π−1(y))

is a skew brace with additive group A and multiplicative group isomorphic
to B. This skew brace is two-sided.

The following proposition provides other examples:

Proposition 1.19. Let A be a skew brace such that λa(a) = a for all a ∈ A.
Then A is a two-sided skew brace.

Proof. First we notice that a−1 = a since a = λ−1a (a−1) = λ−1a (a)−1 = a−1.
In particular,

(1.5) x ◦ y = y ◦ x = (y−1 ◦ x−1)−1
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for all x, y ∈ A. Using (1.1) and (1.5) one obtains that

(ab) ◦ c = (c−1 ◦ (b−1a−1))−1

=
(
(c−1 ◦ b−1)c(c−1 ◦ a−1)

)−1
= (c−1 ◦ a−1)−1c−1(c−1 ◦ b−1)−1

= (a ◦ c)c−1(b ◦ c).
This completes the proof. �

Now we show a non-classical skew brace that is not two-sided:

Example 1.20. Let G be the group generated by the permutations

(1263)(48ba)(57c9), (145)(278)(39a)(6bc).

Then G is a group of order twelve isomorphic to C3 o C4. Let π : G → A4

be the bijective map given by

id 7→ id, (16)(23)(4b)(5c)(79)(8a) 7→ (14)(23),

(145)(278)(39a)(6bc) 7→ (234), (1b564c)(29837a) 7→ (143),

(154)(287)(3a9)(6cb) 7→ (243), (1c465b)(2a7389) 7→ (142),

(1362)(4ab8)(59c7) 7→ (13)(24), (1263)(48ba)(57c9) 7→ (12)(34),

(1a68)(253c)(49b7) 7→ (132), (186a)(2c35)(47b9) 7→ (124),

(1967)(243b)(5ac8) 7→ (134), (1769)(2b34)(58ca) 7→ (123).

A straightforward calculation shows that A4 with the operation

σ ◦ τ = π(π−1(σ)π−1(τ))

is a skew brace.
Let a = (14)(23) and b = c = (234). Then

(12)(34) = (ab) ◦ c 6= (a ◦ c)c−1(a ◦ b) = (123),

hence it is not two-sided.

1.1. Skew braces with nilpotent additive group. Skew braces with
nilpotent additive group are similar to classical braces. It was observed in
[48] Sylow subgroups of the additive group of finite classical braces are also
braces.

Theorem 1.21. Let A be a finite skew brace whose additive group (A, ·) is
nilpotent and decomposes as A = A1 · · ·Ak, where Aj is a Sylow subgroup of

order p
αj
j , pj is a prime number and αj ≥ 1. Then each Ai is a skew brace.

Proof. It is enough to prove that the subgroup A1 of (A, ·) is a subgroup
of (A, ◦). Remark 1.4 implies that A1 6= ∅. Let a ∈ A and b ∈ A1. Since
pα1
1 b = 0 and λa is a group automorphism of (A, ·), 0 = λa(p

α1
1 b) = pα1

1 λa(b).
Hence λa(b) ∈ A1 and λ−1a (b) = λa(b) ∈ A1. Therefore a ◦ b = aλa(b) ∈ A1

and a = λ−1a (a−1) ∈ A1 for all a, b ∈ A1. �
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Corollary 1.22. Let A be a finite skew brace whose additive group (A, ·) is
nilpotent and decomposes as A = A1 · · ·Ak, where Aj is a Sylow subgroup

of order p
αj
j , pj is a prime number and αj ≥ 1. Then each Ai1 · · ·Ail is a

skew brace.

Proof. It follows from Theorem 1.21 and induction on k. �

Corollary 1.23. Let A be a finite skew brace whose additive group (A, ·) is
nilpotent. Then (A, ◦) is solvable.

Proof. By Corollary 1.22, for each prime p there exists subgroup of (A, ·) of
order coprime with p. Thus the claim follows from Hall Theorem; see for
example [42, §9.1.8]. �

Remark 1.24. Corollary 1.23 was proved by Byott in the context of Hopf–
Galois extensions; see [11, Theorem 1].

We recall some questions from [5], see also [11, §1].

Question 1.25. Let A be a finite skew brace with solvable additive group.
Is the multiplicative group solvable?

Question 1.26. Let A be a finite skew brace with nilpotent multiplicative
group. Is the additive group solvable?

Remark 1.27. Partial results to Questions 1.25 and 1.26 can be found in the
context of Hopf–Galois extensions; see for example [9, 11].

1.2. Bijective 1-cocycles. In this subsection we review the equivalence
between skew braces and bijective 1-cocycles.

Let G and A be groups such that G acts on A by automorphisms. Recall
that a bijective 1-cocycle is an invertible map π : G→ A such that

π(gh) = π(g)(g · π(h))

for all g, h ∈ G.

Example 1.28. The maps of Examples 1.18 and 1.20 are bijective 1-cocycles.

Let π : G → A and η : H → B be bijective 1-cocycles. A homorphism
between these bijective 1-cocycles is a pair (f, g) of group homomorphisms
f : G→ H, g : A→ B such that

ηf = gπ,

g(h · a) = f(h) · g(a), a ∈ A, h ∈ G.
Bijective 1-cocycles form a category.
For a given group A let C(A) be the full subcategory of the category

of bijective 1-cocycles with objects π : G → A and let Badd(A) be the full
subcategory of the category of skew braces with additive group A.

Theorem 1.29. [33, Proposition 1.11] Let A be a group. The categories
Badd(A) and C(A) are equivalent.



ON SKEW BRACES 9

Remark 1.30. In the context of classical braces, Theorem 1.29 was implicit
in the work of Rump; see [44, 47] or [27].

Remark 1.31. In [20] Etingof and Gelaki give a method of constructing
finite-dimensional complex semisimple triangular Hopf algebras. They show
how any non-abelian group which admits a bijective 1-cocycle gives rise to
a semisimple minimal triangular Hopf algebra which is not a group algebra.

2. Examples and constructions

2.1. Factorizable groups. For an introduction to the theory of factoriz-
able groups we refer to [1]. Recall that a group A factorizes through two
subgroups B and C if A = BC = {bc : b ∈ B, c ∈ C}. The factorization is
said to be exact if B ∩ C = 1.

The following proposition produces factorizable groups from classical and
skew braces:

Proposition 2.1. Let A be a skew brace. Assume that there exist subbraces
B and C such that (A, ·) admits an exact factorization through (B, ·) and
(C, ·). If λb(c) ∈ C for all b ∈ B and c ∈ C, then (A, ◦) admits an exact
factorization through (B, ◦) and (C, ◦).

Proof. The claim follows from the equality a = bc = b ◦ λ−1b (c). �

Example 2.2. Let A be a classical brace (or more generally, a skew brace
with nilpotent additive group). Assume that the group (A, ·) decomposes as
A1 · · ·Ak, where the Aj are the Sylow subgroups of (A, ·). Let I ⊆ {1, . . . , k},
B =

∏
i∈I Ai and C =

∏
i 6∈I Ai. Then (A, ◦) admits an exact factorization

through B and C by Corollary 1.22 and Proposition 2.1.

Theorem 2.3. Let A be a group that admits an exact factorization through
two subgroups B and C. Then A with

a ◦ a′ = ba′c, a = bc ∈ BC, a′ ∈ A,

is a skew brace with multiplicative group isomorphic to B × C and additive
group isomorphic to A.

Proof. The map η : B × C → A, η(b, c) = bc−1, is bijective. Since η is
bijective and a ◦ a′ = η(η−1(a)η−1(a′)), it follows that (A, ◦) is a group
isomorphic to the direct product B ×C. To prove that A is a skew brace it
remains to show (1.1). Let a = bc ∈ BC and a′, a′′ ∈ A. Then

(a ◦ a′)a−1(a ◦ a′′) = (ba′c)a−1(ba′′c)

= ba′c(c−1b−1)ba′′c

= ba′a′′c

= a ◦ (a′a′′).

This completes the proof. �
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Example 2.4 (QR decomposition). Let n ∈ N. The group GL(n,C) admits
an exact factorization as through the subgroups U(n) and T (n), where U(n)
is the unitary group and T (n) is the group of upper triangular matrices
with positive diagonal entries. Therefore there exists a skew brace A with
(A, ·) ' GL(n,C) and (A, ◦) ' U(n)× T (n).

Example 2.5. The alternating simple group A5 admits an exact factoriza-
tion through the subgroups

A = 〈(123), (12)(34)〉 ' A4, B = 〈(12345)〉 ' C5.

By Theorem 2.3, there exists a skew brace with additive group A5 and mul-
tiplicative group A4 × C5. Compare with [11, Corollary 1.1(i)].

Example 2.6. The simple group PSL(2, 7) admits an exact factorization
through the subgroups A ' S4 and B ' C7. By Theorem 2.3, there exists a
skew brace with additive group PSL(2, 7) and multiplicative group S4 × C7.
Compare with [11, Corollary 1.1(ii)].

Recall from [36] that a pair (A,B) of groups is said to be matched if there
are two actions

B
↼←− B ×A ⇀−→ A

such that

b ⇀ (aa′) = (b ⇀ a)
(
(b ↼ a) ⇀ a′

)
,(2.1)

(bb′) ↼ a = (b ↼ (b′ ⇀ a))(b′ ↼ a)(2.2)

for all a, a′ ∈ A and b, b′ ∈ B. If the quadruple (A,B,⇀,↼) form a matched
pair of groups, then A×B is a group with multiplication

(a, b)(a′, b′) =
(
a(b ⇀ a′), (b ↼ a′)b′

)
,

where a, a′ ∈ A and b, b′ ∈ B. The inverse of (a, b) is

(a, b)−1 = (b−1 ⇀ a−1, (b ↼ (b−1 ⇀ a−1))−1).

This group will be denoted by A ./ B and it is known as the biproduct or
the Zappa–Szép product of A and B.

Corollary 2.7. Let A and B be a matched pair of groups. Then the biprod-
uct A ./ B is a skew brace with

(a, b)(a′, b′) = (a(b ⇀ a′), (b ↼ a′)b′), (a, b) ◦ (a′, b′) = (aa′, b′b),

where a, a′ ∈ A and b, b′ ∈ B.

Proof. It follows from Theorem 2.3 since the biproduct A ./ B admits an
exact factorization through the subgroups A ./ 1 ' A and 1 ./ B ' B. �

Theorem 2.3 is useful to construct skew braces associated with rings.
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Proposition 2.8. Let R be a ring (associative, noncommutative), let S
be a subring of R and let I be a left ideal in R such that S ∩ I = 0 and
R = S + I. Assume that S and I are Jacobson radical rings (for example
nilpotent rings). Then R with the operation

a ◦ b = a+ b+ ab

is a group and R = S ◦ I is an exact factorization.

Proof. It is easy to prove that ◦ is associative. Moreover, since S and I are
Jacobson radical rings, it follows that (S, ◦) and (I, ◦) are groups.

We claim that each r ∈ R can be written as r = a ◦ b for some a ∈ S and
b ∈ I. Since R = I + S, one writes r = i+ s for some s ∈ S and i ∈ I. Now
let s be the inverse of s in the group (S, ◦). Then

r = s ◦ (s ◦ r)

with s ∈ S and s ◦ r = s ◦ (i + s) = i + si ∈ I. Since (S, ◦) and (I, ◦) are
groups and R = S ◦ I, it follows that (R, ◦) is a group. The factorization
R = S ◦ I is exact since I ∩ S = 0. �

Particular cases of Proposition 2.8 can be easily obtained as factors of
free algebras or as factors of differential polynomial rings.

Example 2.9. Let F be a field and let P = F 〈x1, . . . , xn〉 be the noncom-
mutative (associative) polynomial ring in n noncommuting variables, and let
A be the subalgebra of P consisting of polynomials which have zero constant
term. Let V be the linear space over F spanned by x1, . . . , xn and let V1 and
V2 be linear subspaces of A such that V = V1 ⊕ V2. Let Q ⊆ A be an ideal
in A such that Am ⊆ Q for some m, and denote J = QA (note that J is an
ideal in P ). Let R = A/J . Then

S = {a+ J : a ∈ PV1} ⊆ R, I = {a+ J : a ∈ PV2} ⊆ R,

satisfy the assumptions of Proposition 2.8 and hence (R, ◦) admits an exact
factorization R = S ◦ I.

Example 2.10. Let N be a nilpotent ring and M be a left N -module. Let
R be the ring of matrices(

N M
0 0

)
=

{(
n m
0 0

)
: n ∈ N, m ∈M

}
,

and

S =

(
N 0
0 0

)
⊆ R, I =

(
0 M
0 0

)
⊆ R.

Then R, I and S satisfy the assumptions of Proposition 2.8 and the group
(R, ◦) admits an exact factorization as R = S ◦ I.

Remark 2.11. Exactly factorizable groups give rise to a special class of Hopf
algebras, see for example [6, 21, 35, 52].
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2.2. Triply factorized groups. In [50] Sysak observed an interesting con-
nection between radical rings and triply factorized groups. This idea shows
that skew braces produce triply factorized groups.

Recall that a triply factorized group is tuple (G,A,B,M), where G is a
group with subgroups A, B and M and such that G = AM = BM = AB
and A ∩M = B ∩M = 1.

Theorem 2.12. Let X be a skew brace. Let G = Γ(X), A = (X, ·) × 1,
M = 1 × (X, ◦) and B = {(x, x) : x ∈ X}. Then (G,A,B,M) is a triply
factorized group such that A ∩B = 1.

Proof. Clearly G = AM and A ∩M = A ∩ B = B ∩M = 1. Let us prove
that B is a subgroup of G. Clearly B is nonempty. For x, y ∈ X, using that
y = λ−1y (y−1), one obtains

(x, x)(y, y)−1 = (x, x)(y, y) = (x ◦ y, x ◦ y) ∈ B.
To prove that G = BM notice that (x, y) = (x, x)(1, x◦y) ∈ BM . Similarly
(x, y) = (xy−1, 1)(y, y) ∈ AB, proves that G = AB. �

Example 2.13. Let R be a nilpotent ring (associative, noncommutative),
let S be a subring of R and let I1 and I2 be left ideals of R such that

S ∩ I1 = S ∩ I2 = I1 ∩ I2 = 0, R = S + I1 = S + I2 = I1 + I2.

Proposition 2.8 with A = S, B = I1 and M = I2 implies that (R, ◦) is a
triply group factorized group:

R = A ◦B = A ◦M = B ◦M, A ∩B = 0.

Let us show a particular case of Example 2.13.

Example 2.14. Recall the notation from Example 2.9. Let n = 2m for
some m ∈ N and let

V1 =
m∑
i=1

Fxi, V2 =
2m∑

i=m+1

Fxi, V3 =
m∑
i=1

F (xi + xm+i).

Now let

A = {a+ J : a ∈ PV1}, B = {a+ J : a ∈ PV2}, M = {a+ J : a ∈ PV3}.
Proposition 2.8 implies that (R, ◦) is a triply factorized group:

R = A ◦B = A ◦M = B ◦M, A ∩B = 0.

Remark 2.15. Let A be a skew brace. The multiplicative group (A, ◦) with
actions x ⇀ y = λx(y) and x ↼ y = µy(x) form a matched pair of groups,
see Lemma 5.9. The biproduct (A, ◦) ./ (A, ◦) has multiplication

(x, y)(x′, y′) = (x ◦ λy(x′), µx′(y) ◦ y′)
and it is a triply factorizable group with A = (A, ◦)× 1, M = 1× (A, ◦) and
∆ = {(x, x) : x ∈ A}. The multiplication on ∆ is given by

(a, a)(b, b) = (a ◦ λa(b), µb(a) ◦ b) = (ab, ab)
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since ab = a ◦ λa(b) and a ◦ λa(b) ◦ µb(a) ◦ b = 1. There is a left action of
(A, ◦) on ∆ given by

a · (b, b) = (1, a)(b, b)(1, a)−1 = (λa(b), λa(b))

and the map ∆ o (A, ◦)→ (A, ◦) ./ (A, ◦) given by ((a, a), b) 7→ (a, a ◦ b) is
a group isomorphism.

Lemma 2.16. Let (G,A,B,M) be a triply factorized group with M normal
in G and A ∩B = 1. For each m ∈M there exists a unique γ(m) ∈ A such
that mγ(m) ∈ B. Moreover, the map m 7→ γ(m) is bijective.

Proof. Since G = AB = BA and A ∩ B = 1, for each m ∈ M there is a
unique γ(m) ∈ A such that mγ(m) ∈ B, i.e. if m = ba, then γ(m) = a−1.
Similarly, A ⊆ MB = BM and M ∩ B = 1 imply that for each a ∈ A
there is a unique π(a) ∈ M such that π(a)a ∈ B, i.e. if a = b1m1, then
π(a) = b1m

−1
1 b−11 . Now it follows π(γ(m)) = m for all m ∈ M and that

γ(π(a)) = a for all a ∈ A. �

The following result is [51, Proposition 21] in the language of skew braces:

Theorem 2.17 (Sysak). Let (G,A,B,M) be a triply factorized group such
that M is normal in G and A ∩B = 1. Then M with

m ◦m′ = γ−1(γ(m)γ(m′)),

where γ is the map of Lemma 2.16, is a skew brace such that Γ(M) ' G.

Proof. For m,m′ ∈ M write a = γ(m) and a′ = γ(m′). By Lemma 2.16,
m ◦m′ = γ−1(γ(m)γ(m′)) defines a group structure over M isomorphic to
that of A. Since m(am′a−1)(aa′) = (ma)(m′a′) ∈ B, it follows that

m ◦m′ = m(am′a−1).

Now M is a skew brace since

(m ◦m′)m−1(m ◦m′′) = m(am′a−1)m−1m(am′′a−1)

= mam′m′′a−1

= m ◦ (m′m′′).

Since G = MA = AM , a routine calculation proves ∆: Γ(M) → G,
(m,x) 7→ mγ(x), is a bijective group homomorphism:

∆((m,x)(n, y)) = ∆(mλx(n), x ◦ y)

= mλx(n)γ(x ◦ y)

= mλx(n)γ(x)γ(y)

= mx−1(x ◦ n)γ(x)γ(y)

= mx−1(xγ(x)nγ(x)−1)γ(x)γ(y)

= mγ(x)nγ(y)

= ∆(m,x)∆(n, y).
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This completes the proof. �

2.3. Near-rings. This section is based on the work of Sysak on near-rings;
see for example [51, §10]. However, the connection with skew braces and all
the examples in this section are new.

We refer to [39] for the basic theory of near-rings. Recall that near-ring
is a set N with two binary operations

(x, y) 7→ x+ y, (x, y) 7→ x · y,
such that (N,+) is a (not necessarily abelian) group, (N, ·) is a semigroup,
and x ·(y+z) = x ·y+x ·z for all x, y, z ∈ N . We assume that our near-rings
contain a multiplicative identity, denoted by 1.

Example 2.18. Let G be a (not necessarilly abelian) additive group and
M(G) be the set of maps G → G. Then M(G) is a near-ring under the
following operations:

(f + g)(x) = f(x) + g(x), (f · g)(x) = g(f(x)), f, g ∈M(G), x ∈ G.

A subgroup M of (N,+) is said to be a construction subgroup if 1 +M is
a subgroup of the multiplicative subgroup N× of units of N .

Lemma 2.19. Let N be a near-ring and M be a construction subgroup
of N . Then (1 + M) ·M ⊆ M . In particular, 1 + M acts on M by left
multiplication.

Proof. Let a, a′ ∈ 1 +M . Then

−a′ + a = −a′ + 1− 1 + a = −(−1 + a′) + (−1 + a) ∈M
since −1 + a′ ∈M and −1 + a ∈M . Let m,m′ ∈M and write m = −1 + a
and m′ = −1 + a′ for some a, a′ ∈ 1 +M . Then

(1 +m) ·m′ = a · (−1 + a′) = −a+ a · a′ ∈M
since a ∈ 1 +M and a · a′ ∈ 1 +M . �

Proposition 2.20. Let N be a near-ring and M be a construction subgroup.
Then M is a skew brace with

mm′ = m+m′, m ◦m′ = m+ (1 +m) ·m′.

Proof. By Lemma 2.19, the operations are well-defined. For each m ∈M let
λm be the map n 7→ (1+m) ·n. It is routine to verify that λ : M → Aut(M),
m 7→ λm, is a well-defined map such that λm+λm(n) = λmλn. By applying
Lemma 1.12, the proposition is proved. �

Remark 2.21. Proposition 2.20 shows a connection between near-rings and
skew braces. This connection then answers [12, Question 1].

If N is a near-ring and M is a construction subgroup of N , Proposi-
tion 2.20 implies that M is a skew brace. The following is the translation of
a theorem of Hubert in the language of skew braces:
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Theorem 2.22 (Hubert). Let A be a skew brace with multiplicative group
isomorphic to G. The near-ring M(G) contains a construction subgroup M
such that Γ(A) ' Γ(M).

Proof. By Theorem 2.12, the group G = Γ(A) provides a triply factorized
group G = MA = MB = AB with A ∩ B = 1. Now [34, Theorem 2.9]
applies. �

2.4. Nilpotent rings. We now construct examples of skew braces related
to nilpotent rings and algebras. These examples are influenced by near ring
theory and construction subgroups. The following result is inspired by [39,
Example 1.6].

Lemma 2.23. Let F be a finite field and let A be a commutative F -algebra
such that A = F + N where N is a nilpotent subalgebra of A. Let S be the
set of all functions A → A which can be written as polynomials from N [x]
(where two functions are equal if they have the same values). Then S with
the operation

f(x) • g(x) = f(x) + g(x+ f(x))

is a group.

Proof. Direct calculations show that the operation is associative and that
f(x) = 0 is the identity element of S. It suffices to prove that each element
in S has a left inverse, i.e, for each g(x) ∈ S there exists f(x) ∈ S such that
f(x) = −g(x+ f(x)). The map f(x) can be obtained recursively as

f(x) = −g(x− g(x− g(x+ g(· · · (x− g(x)) · · · )))),

where the number of brackets is equal to n and Nn = 0. Indeed, for any
p ∈ N [x], −g(x − g(x − g(x + g(· · · (x − g(x + p)) · · · )))) = f(x) because
the element p will be multiplied by at least n elements from N in the left
hand-side of this equation. Hence it will have zero value (where the left
hand side has n brackets). By substituting p = −g(x) we get that

f(x) = −g(x− g(x− g(x+ g(· · · (x− g(x)) · · · )))),

where the number of brackets is n+ 1. Therefore, −g(x+ f(x)) = f(x), as
required. �

Remark 2.24. The same construction of Lemma 2.23 works when A is a
noncommutative associative algebra. In this case instead of the polynomial
ring A[x] one takes the noncommutative polynomial ring, where the variable
x does not commute with the elements of A.

We are now ready to present some examples of skew braces inspired by
the near-ring of functions M(G) over a group G.

Proposition 2.25. Let F be a finite field and let A be a commutative F -
algebra such that A = F +N where N is a nilpotent subalgebra of A. Let S
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be the set of all functions A→ A which can be written as polynomials from
N [x]. Then S with the usual addition and

f(x) • g(x) = f(x) + g(x+ f(x)),

is a classical brace.

Proof. By Lemma 2.23 it remains to show the brace compatibility condition:

f(x) • (g(x) + h(x))− f(x) = g(x+ f(x)) + h(x+ f(x))

= f(x) • g(x)− f(x) + f(x) • h(x).

This completes the proof. �

Remark 2.26. Notice that if we consider S to be the set of polynomial func-
tions from N [x] with zero constant terms, then Proposition 2.25 has a very
short proof: since S is nilpotent in the near-ringM(A,+), it is a construction
subgroup hence a skew brace by Proposition 2.20. As the polynomial func-
tion x is the identity map, and hence the identity in the near-ring M(A,+),
we get (f • g)(x) = f(x) + g(x+ f(x)).

Corollary 2.27. The sets T = {f ∈ S : f(1) = 0} and {f ∈ T : f(0) = 0}
are subbraces of S.

Proof. It follows from Proposition 2.25. �

Lemma 2.28. Let F be a finite field and let A be a commutative F -algebra
such that A = F + N where N is a nilpotent subalgebra of A. Let S be the
set of all functions A → A which can be written as polynomials from N [x]
(where two functions are equal if they have the same values). Then S with
the operation

f(x)� g(x) = f(x) ◦ g(x ◦ f(x)),

where a ◦ b = a+ b+ ab, a, b ∈ A, is a group.

Proof. It is easy to prove that � is associative and that f(x) = 0 is the
identity element of S. To prove that S is a group it suffices to show that
every element in S has a left inverse, i.e. that for every g(x) ∈ S there is
f(x) ∈ S such that f(x) ◦ g(x ◦ f(x)) = 0, so

f(x) = −g(x ◦ f(x))− f(x) · g(x ◦ f(x)).

Let n be such that Nn = 0 and let t(x) =
∑n

i=1(−1)ig(x)i. Then

g(x) ◦ t(x) = t(x) ◦ g(x) = 0,

and hence

g(x ◦ f(x)) ◦ t(x ◦ f(x)) = t(x ◦ f(x)) ◦ g(x ◦ f(x)) = 0.

Therefore, the equation f(x) ◦ g(x ◦ f(x)) = 0 is equivalent to

f(x) = t(x ◦ f(x))

Now f(x) = t(x ◦ t(x ◦ t(· · · (x ◦ t(x)) · · · ))), where the number of brackets
is equal to n. �
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Remark 2.29. The same construction of Lemma 2.28 works when A is a
noncommutative associative algebra. In this case instead of the polynomial
ring A[x] one takes the noncommutative polynomial ring, where the variable
x does not commute with the elements of A.

Proposition 2.30. Let F be a finite field and let A be an F -algebra such
that A = F +N where N is a nilpotent subalgebra of A. Let S be the set of
all functions A→ A which can be written as a noncommutative polynomials
from N [x]. Then S with the operations

f(x)� g(x) = f(x) ◦ g(x ◦ f(x)), (f ◦ g)(x) = f(x) ◦ g(x),

is a skew brace.

Proof. By Lemma 2.28 it suffices to prove the compatibility condition. Let
f(x)−1 denote the inverse of f(x) in the group (S, ◦).

(f � (g ◦ h))(x) = f(x) ◦ (g ◦ h)(x ◦ f(x))

= f(x) ◦ g(x ◦ f(x)) ◦ h(x ◦ f(x))

= (f � g)(x) ◦ f(x)−1 ◦ (f � h)(x).

This completes the proof. �

Remark 2.31. Proposition 2.30 can be obtained from Proposition 2.20 when
S is the set of functions which are polynomial functions from N [x] with zero
constant term.

2.5. Matched pair of skew braces. The construction of matched pair of
braces was first considered by Bachiller [2] for classical braces.

Definition 2.32. A pair of skew braces (A,B) is said to be matched if there
are group homomorphisms α : (A, ◦)→ Aut(B, ·) and β : (B, ◦)→ Aut(A, ·)
such that

λAa βb = βαa(b)λ
A
β−1
αa(b)

(a),(2.3)

λBb αa = αβb(a)λ
B
α−1
βb(a)

(b), a ∈ A, b ∈ B,(2.4)

where λA is the map of A and λB is the map of B.

Definition 2.33. Given a matched pair (A,B, α, β) of skew braces, define
the biproduct A ./ B as the set of ordered pairs (a, b) ∈ A × B with the
operations

(a, b)(a′, b′) = (aa′, bb′),(2.5)

(a, b) ◦ (a′, b′) = (βb(β
−1
b (a) ◦ a′), αa(α−1a (b) ◦ b′)).(2.6)

Proposition 2.34. Given a matched pair (A,B, α, β) of skew braces, the
biproduct A ./ B is a skew brace.
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Proof. We claim that

αa(α
−1
a (b) ◦ y) = bλBb αβ−1

b (a)(y) = b ◦ αβ−1
b (a)(y),(2.7)

βb(β
−1
b (a) ◦ x) = aλAa βα−1

a (b)(x) = a ◦ βα−1
a (b)(x).(2.8)

We only prove (2.7). Since α is a group homomorphism, using (2.5) one
obtains that

αa(α
−1
a (b) ◦ y) = αa

(
α−1a (b)λB

α−1
a (b)

(y)
)

= bαaλ
B
α−1
a (b)

(y) = bλBb αβ−1
b (a)(y) = b ◦ αβ−1

b (a)(y).

Then

λ(a,b)(a
′, b′) = (λAa βα−1

a (b)(a
′), λBb αβ−1

b (a)(b
′)).

A direct calculation shows that λ(a,b) ∈ Aut(A×B) for all a ∈ A and b ∈ B.
Thus by Lemma 1.12 it suffices to prove that

λ(a,b)λ(x,y)(a
′, b′) = λ(a,b)◦(x,y)(a

′, b′).

This is equivalent to prove the following two equalities:

βbλ
A
β−1
b (a)

βyλ
A
β−1
y (x)

(a′) = βαa(α−1
a (b)◦x)λ

A
β−1

αa(α
−1
a (b)◦y)

βb(β
−1
b (a)◦x)(a

′),(2.9)

αaλ
B
α−1
a (b)

αxλ
B
α−1
x (y)

(b′) = αβb(β−1
b (a)◦y)λ

B
α−1

βb(β
−1
b

(a)◦y)
αa(α

−1
a (b)◦y)(b

′).(2.10)

Let us prove (2.9). Let a′′ = β−1b (a) and b′′ = y. We first observe that

β−1
αa(α

−1
a (b)◦y)βb(β

−1
b (a) ◦ x) = β−1b◦αa′′ (b′′)

βb(a
′′ ◦ x)

= β−1αa′′ (b′′)
β−1b (βb(a

′′ ◦ x))

= β−1αa′′ (b′′)
(a′′ ◦ x)

= β−1αa′′ (b′′)
(a′′λAa′′(x))

= β−1αa′′ (b′′)
(a′′)β−1αa′′ (b′′)

λAa′′(x)

= β−1αa′′ (b′′)
(a′′)λβ−1

αa′′ (b
′′)(a

′′)β
−1
b′′ (x)

= β−1αa′′ (b′′)
(a′′) ◦ β−1b′′ (x).
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This equality and (2.7) imply that

βbλ
A
β−1
b (a)

βyλ
A
β−1
y (x)

(a′) = βbβαa′′ (b′′)λ
A
β−1
αa′′ (b

′′)(a
′′)
λA
β−1
b′′ (x)

(a′)

= βb◦αa′′ (b′′)λ
A
β−1
αa′′ (b

′′)(a
′′)◦β−1

b′′ (x)
(a′)

= βb◦αa′′ (b′′)λ
A
β−1
αa′′ (b

′′)(a
′′)◦β−1

b′′ (x)
(a′)

= βb◦αa′′ (b′′)λ
A
β−1

αa(α
−1
a (b)◦y)

βb(β
−1
b (a)◦x)(a

′)

= βαa(α−1
a (b)◦y)λ

A
β−1

αa(α
−1
a (b)◦y)

βb(β
−1
b (a)◦x)(a

′).

The proof of (2.10) is similar. �

Definition 2.35. Let A and X be skew braces. A left action of A on X
is a group homomorphism (A, ◦) → AutB(X), where AutB(X) denotes the
group of brace automorphisms of X.

An easy consequence of Proposition 2.34 is the construction of semidi-
rect product of skew braces. Semidirect products of classical braces were
considered by Rump [46].

Corollary 2.36. Let A and B be skew braces. Assume that there is a left
action α of A on B. Then A×B with the operations

(a, b)(a′, b′) = (aa′, bb′), (a, b) ◦ (a′, b′) = (a ◦ a′, b ◦ αa(b′)),
is a skew brace. This skew brace structure over A × B will be denoted by
AnB.

Corollary 2.37. Let A and B be skew braces. Assume that there is a left
action β of B on A. Then A×B with the operations

(a, b)(a′, b′) = (aa′, bb′), (a, b) ◦ (a′, b′) = (a ◦ βb(a′), b ◦ b′),
is a skew brace.

Corollary 2.38. Let A be a skew brace such that

(2.11) λaλb = λλa(b)λa, a, b ∈ A.

Then D(A) = A n A is a skew brace. The skew brace D(A) will be called
the double of A.

Proof. The brace A acts on A if and only if (2.11) holds. Thus the claim
follows from Corollary 2.36. �

Wreath products of classical braces were considered in [13, Corollary 3.5].
The construction also works for skew braces:

Corollary 2.39. Let A be a skew brace. Let n ∈ N and B be skew brace
such that (B, ◦) ⊆ Sn. Then the wreath product A oB = A×n oB is a skew
brace.
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Proof. According to Example 1.7, A×n = A × · · · × A (n-times) is a skew
brace. Let δ : B → AutB(An), b 7→ δb, where

δb(a1, . . . , an) = (ab(1), . . . , ab(n)).

Then B acts on An and hence then claim follows from Corollary 2.37. �

3. Solutions of the Yang–Baxter equation

Skew braces produce non-degenerate solution of the YBE.

Theorem 3.1. [33, Theorem 3.1] Let A be a skew left brace. Then

rA : A×A→ A×A,
rA(a, b) = (λa(b), µb(a)) = (λa(b), λ

−1
λa(b)

((a ◦ b)−1a(a ◦ b)),

is a non-degenerate solution of the Yang–Baxter equation. Furthermore, rA
is involutive if and only if ab = ba for all a, b ∈ A.

Remark 3.2. Let A be a skew brace and rA its associated solution. If one
writes r(a, b) = (u, v), then a ◦ b = u ◦ v since

λ−1λa(b)((a ◦ b)
−1a(a ◦ b)) = λa(b) ◦ a ◦ b

for all a, b ∈ A.

A biquandle is a non-degenerate set-theoretical solution (X, r) of the YBE
such that there exists a bijection t : X → X such that r(t(x), x) = (t(x), x)
for all x ∈ X. Biquandles have applications in classical and virtual knot
theory, see for example [24] and [40].

Corollary 3.3. Let A be a skew brace and rA its associated solution of the
YBE. Then (A, rA) is a biquandle.

Proof. Let a ∈ A. By Theorem 3.1, b = λ−1a (a) is the unique element of A
such that r(a, b) = (a, b). Similarly, µ−1a (a) ∈ A is the unique element of
A such that rA(µ−1a (a), a) = (µ−1a (a), a). It follows that the map A → A,
a 7→ µ−1a (a), is bijective with inverse a 7→ λ−1a (a). �

Let (X, r) be a non-degenerate solution. Recall that the structure group
of (X, r) is defined as the group G(X, r) with generators in {ex : x ∈ X}
and relations exey = euev whenever r(x, y) = (u, v). Let ι : X → G(X, r) be
the canonical map, i.e., ι(x) = ex. In general, ι is not injective:

Example 3.4. Let X = {1, 2, 3, 4}, σ = (12) and τ = (34). Then (X, r),
r(x, y) = (σ(y), τ(x)), is a non-degenerate solution of the YBE. The canon-
ical map ι : X → G(X, r), i 7→ ei, is not injective since for example

e1e2 = e1e1

and hence e1 = e2.

The following result is [38, Theorem 9] in the language of skew braces,
see also [49, Theorem 2.7]:
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Theorem 3.5. Let (X, r) be a non-degenerate solution of the YBE. Then
there exists a unique skew left brace structure over G(X, r) such that

rG(X,r)(ι× ι) = (ι× ι)r.

Furthermore, if B is a skew left brace and f : X → B is a map such that
(f × f)r = rB(f × f), then there exists a unique skew brace homomorphism
φ : G(X, r)→ B such that f = φι and (φ× φ)rG(X,r) = rB(φ× φ).

Proof. By [38, Theorem 9] and the equivalence between skew braces and
bijective 1-cocycles of Theorem 1.29, it remains to prove that

φ(gh) = φ(g)φ(h)

for all g, h ∈ G(X, r). Write λB = µ. Since φ(λg(h)) = µφ(g)φ(h),

φ(gh) = φ(g ◦ λ−1g (h)) = φ(g) ◦ φ(λ−1g (h)) = φ(g) ◦ µ−1φ(g)φ(h) = φ(g)φ(h).

From this the claim follows. �

Example 3.6. Let G be a group that admits an exact factorization through
the subgroups A and B. By Theorem 2.3, G is a skew brace with additive
group G and multiplicative group A × B. Theorem 3.1 shows that the map
r : G×G→ G×G given by

r(g, h) = (b−1hb, a−11 ahbb−11 ),

where g = ab and b−1hb = a1b1 for a, a1 ∈ A and b, b1 ∈ B, is a non-
degenerate set-theoretical solution of the YBE. This is essentially the solu-
tion constructed by Weinstein and Xu in [54, Theorem 9.2].

Example 3.7. Let A = S3. Then A is a skew brace with a ◦ b = ba. Clearly
λa(b) = a−1ba, a, b ∈ A and the associated solution is

rA : A×A→ A×A, rA(a, b) = (a−1ba, a).

The order of rA is twelve and the restriction of rA to the conjugacy class of
involutions of A has order three.

Example 3.8. The skew brace of Example 1.13 produces a solution of order
twelve. This solution is isomorphic to (X, r), where X = {1, 2, . . . , 6} and
r(x, y) = (σx(y), τy(x)) is given by

σ1 = id, σ2 = id, σ3 = (263),

σ4 = (236), σ5 = (263), σ6 = (236),

τ1 = id, τ2 = (36)(45), τ3 = (36)(45),

τ4 = id, τ5 = id, τ6 = (36)(45).

Example 3.9. The skew brace of Example 1.18 produces a solution of order
four. This solution is isomorphic to (X, r), where X = {1, 2, . . . , 8} and
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r(x, y) = (σx(y), τy(x)) is given by

σ1 = id, σ2 = (25)(47), σ3 = (38)(47), σ4 = (25)(38),

σ5 = (25)(47), σ6 = id, σ7 = (25)(38), σ8 = (38)(47),

τ1 = id, τ2 = (25)(38), τ3 = (25)(38), τ4 = id,

τ5 = (25)(38), τ6 = id, τ7 = id, τ8 = (25)(38).

Definition 3.10. Let A be a skew brace with additive group G. The depth
of A is defined as the exponent of the group G/Z(G).

Example 3.11. Classical braces have depth one.

To study the depth of a skew brace we need the following lemma.

Lemma 3.12. Let A be a skew brace and let n ∈ N. Then

r2n(a, b) = ((a ◦ b)−na(a ◦ b)n, (a ◦ b)−na(a ◦ b)n ◦ a ◦ b),(3.1)

r2n+1(a, b) = ((a ◦ b)−na−1(a ◦ b)n+1, (a ◦ b)−na−1(a ◦ b)n+1 ◦ a ◦ b),(3.2)

for all n ≥ 0. Moreover, the following statements hold:

(1) r2n = id if and only if abn = bna for all a, b ∈ A.
(2) r2n+1 = id if and only if λa(b) = (a ◦ b)na(a ◦ b)−n for all a, b ∈ A.

Proof. It suffices to prove (3.1) and (3.2). We proceed by induction on n.
The case n = 0 is trivial for (3.1) and (3.2). Assume that the claim holds
for some n > 0. If n is even, by applying the map r to Equation (3.1) and
using Remark 3.2 we obtain that

r2n+1(a, b) = r
(

(a ◦ b)−na(a ◦ b)n, (a ◦ b)−na(a ◦ b)n ◦ a ◦ b
)

=
(

(a ◦ b)−na−1(a ◦ b)n(a ◦ b), (a ◦ b)−na−1(a ◦ b)n(a ◦ b) ◦ a ◦ b
)

=
(

(a ◦ b)−na−1(a ◦ b)n+1, (a ◦ b)−na−1(a ◦ b)n+1 ◦ a ◦ b
)
.

Thus Equation (3.2) holds. If n is odd, a similar argument shows that (3.1)
holds. �

Theorem 3.13. Let A be a finite skew brace with more than one element.
Then the order of rA is 2d, where d is the depth of A.

Proof. Let n be such that r2n+1 = id. By applying Lemma 3.12 one obtains
that a−1(a ◦ b)n+1 = (a ◦ b)na for all a, b ∈ A. In particular, if b = 1, then
a = 1, a contradiction.

Therefore we may assume that the order of the permutation rA is 2n,
where n = min{k : bka = abk ∀a, b ∈ A}. Now one computes

n = min{k : bk ∈ Z(A) ∀b ∈ A} = min{k : (bZ(A))k = 1 ∀b ∈ A} = d,

and the theorem is proved. �
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Example 3.14. Let A be a finite skew brace such that its additive group has
trivial center. Then the order of rA is equal to 2e, where e is the exponent
of the additive group of A.

Example 3.15. Let p be an odd prime number and let A be a non-classical
skew brace of size 2p. Then the additive group of A is isomorphic to the
dihedral group D2p of size 2p. Since Z(D2p) = 1 and the exponent of D2p is
2p, the order of rA is 4p.

4. Ideals and retractable solutions

Ideals of skew braces were defined in [33].

Definition 4.1. Let A be a skew brace. A normal subgroup I of (A, ◦) is
said to be an ideal of A if aI = Ia and λa(I) ⊆ I for all a ∈ A.

Example 4.2. Let f : A → B be a skew brace homomorphism. Then ker f
is an ideal of A since f(λa(x)) = λf(a)(f(x)) = 1 for all x ∈ ker f and
a ∈ A.

An important example of an ideal is the socle. As in the classical case, the
socle is useful for studying the structure of skew braces and multpermutation
solutions.

Example 4.3. Let A be a skew brace. Then the socle

Soc(A) = {a ∈ A : a ◦ b = ab, b(b ◦ a) = (b ◦ a)b for all b ∈ A}
is an ideal of A contained in the center of (A, ·); see [33, Lemma 2.5].

Lemma 4.4. Let A be a skew brace. Then Soc(A) = kerλ ∩ Z(A, ·).

Proof. By [33, Lemma 2.5] we only need to prove kerλ ∩ Z(A, ·) ⊆ Soc(A).
Let a ∈ kerλ ∩ Soc(A). It suffices to show that b(b ◦ a) = (b ◦ a)b for
all b ∈ B. Since a is central, ba = ab for all b ∈ A. This implies that
b ◦ (b(b ◦ a)) = b ◦ ((b ◦ a)b) for all b and the claim follows. �

Lemma 4.5. [33, Lemma 2.3] Let A be a skew left brace and I ⊆ A be an
ideal. Then the following properties hold:

(1) I is a normal subgroup of (A, ·).
(2) a ◦ I = aI for all a ∈ A.
(3) I and A/I are skew braces.

Lemma 4.6. Let f : A→ B be a surjective homomorphism of skew braces.
then A/ ker f ' B.

Proof. A routine calculation shows that A/ ker f → B, a ker(f) 7→ f(a), is
a well-defined isomorphism of skew braces. �

The following proposition is a simple application of the transfer theory.
We will use the following theorem of Schur, see for example [42, §10.1.3]. If
H is a central subgroup of finite index n in a group G, the map x 7→ xn is
a group homomorphism since it is the transfer of G into H.
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Proposition 4.7. Let A be a skew brace. Assume that the socle has finite
index n. Then the map A→ A, a 7→ an, is a group homomorphism.

Proof. Since Soc(A) ⊆ Z(A, ·) by [33, Lemma 2.5], the claim follows since
Soc(A) has finite index in G. �

Definition 4.8. A skew brace is said to be simple if A 6= 1 and 1 and A
are the only ideals of A.

Example 4.9. Skew braces with a prime number of elements are simple.

Example 4.10. Skew braces with simple multiplicative group are simple.

Example 4.11. Skew braces with simple additive group are simple.

Example 4.12. The skew brace of Example 1.20 is simple since a nontrivial
proper normal subgroup of C3 o C4 have size three and a nontrivial proper
normal subgroup of A4 have size four; see Lemma 4.5.

The following problem arises naturally.

Problem 4.13. Classify finite simple skew braces.

Remark 4.14. The problem of classifying classical simple braces is intensively
studied, see for example [2].

Definition 4.15. Let A be a skew brace. The socle series of A is defined as
the sequence

A1 = A, An+1 = An/Soc(An), n ≥ 1.

Lemma 4.16. Let A ba a skew brace. Let S1(A) = Soc(A) and

Sn+1(A) = {a ∈ A : (a ◦ b)−1ab ∈ Sn(A), [b, b ◦ a] ∈ Sn(A) ∀b ∈ A}
for n ≥ 1, where [x, y] = x−1y−1xy denotes the commutator of x and y.
Then An+1 = A/Sn(A) for all n ∈ N.

Proof. Notice that a ∈ Sn+1(A) if and only if abSn(A) = (a ◦ b)Sn(A) and
b(b◦a)Sn(A) = (b◦a)Sn(A) for all b ∈ A. Now the claim follows by induction
on n. �

Definition 4.17. Let A be a skew brace. It is said that A has finite multi-
permutation level if there exists n ∈ N such that An has only one element.

Example 4.18. Let A be the skew brace of Example 1.18. The socle Soc(A)
of A has two elements and hence A2 = A/Soc(A) is the trivial classical
brace over C2 × C2. It follows that Soc(A2) = A2 and hence A has finite
multipermutation level.

Example 4.19. Let A be the simple skew brace of Example 4.12. Then
Soc(A) = 1 and hence A does not have finite multipermutation level.

Recall the construction of semidirect product of skew braces of Corol-
lary 2.36.



ON SKEW BRACES 25

Theorem 4.20. Let A and B be skew braces of finite multipermutation
level. Let C = AnB be a semidirect product of A and B. Then C has finite
multipermutation level.

Proof. By induction one proves that

1× Sn(B) ⊆ Sn(C)

for all n ∈ N. Since B has finite multipermutation level, there exists k ∈ N
1 × B ⊆ 1 × Sk(B) ⊆ Sk(C). Since Soc(A) × 1 ⊆ Sk+1(C), one proves
by induction that Sn(A) × 1 ⊆ Sn+k(C) for all n ∈ N. Now let l ∈ N
be such that Sl(A) = A. Then A × 1 = Sl(A) × 1 ⊆ Sk+l(C) and hence
Sk+l(C) = C. �

Theorem 4.21. Let A be a skew brace of finite multipermutation level.
Then (A, ·) is nilpotent.

Proof. We proceed by induction on the size of A. If the order of A is a prime
number, then (A, ·) is nilpotent. Now assume that the result holds for all
skew braces of size < |A|. Since A/Soc(A) is nilpotent by induction and
Soc(A) is a central subgroup of (A, ·), it follows that A is nilpotent. �

Remark 4.22. The converse of Theorem 4.21 does not hold. One example is
the simple classical brace of size 24 constructed in [2, Remark 7.2]. Another
example: In the list of skew braces computed in [33] one can find a non-
classical brace of size 16 with trivial socle and nilpotent additive group.

5. Skew braces and other algebraic structures

In Subsection 1.2 we reviewed the equivalence between skew braces and
bijective 1-cocycles. In this section we state several equivalences involving
skew braces.

5.1. Skew cycle sets. Recall that a cycle set is a pair (X, •), where X
is a set and (a, b) 7→ a • b is a binary operation on X such that each map
ϕa : X → X, ϕa(b) = a • b, is bijective, and

(a • b) • (a • c) = (b • a) • (b • c)

holds for all a, b, c ∈ A.
A linear cycle set is a triple (A,+, •), where (A,+) is an abelian group,

(A, •) is a cycle set, and

a • (b+ c) = (a • b) + (a • c), (a+ b) • c = (a • b) • (a • c)

hold for all a, b, c ∈ A.
Linear cycle sets were introduced by Rump in [43]. Classical braces are

equivalent to linear cycle sets; see for example [47, Proposition 2.3].
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Definition 5.1. A skew cycle set is a triple (A, ·, •), where (A, ·) is a (not
necessarily abelian) group and (a, b) 7→ a • b is a binary operation on A such
that each map ϕa : X → X, ϕa(b) = a • b, is bijective, and

a • (bc) = (a • b)(a • c),(5.1)

(ab) • c = (a • b) • (a • c)(5.2)

hold for all a, b, c ∈ A.

Remark 5.2. Let A be a skew cycle set. It follows from (5.2) that

(a • b) • (a • c) = (b • (b−1ab)) • (b • c)
holds for all a, b, c ∈ A.

Definition 5.3. Let A and B be skew cycle sets. A homomorphism between
A and B is a group homomorphism f : A→ B such that

f(a • a′) = f(a) • f(a′)

for all a, a′ ∈ A.

Notation 5.4. Let A be a skew cycle set. The inverse operation of • will
be denoted by ∗, i.e. a • b = c if and only if a ∗ c = b, a, b, c ∈ A.

Lemma 5.5. Let A be a skew cycle set. Then

a ∗ (bc) = (a ∗ b)(a ∗ c),(5.3)

(ab) ∗ c = a ∗ ((a • b) ∗ c)(5.4)

for all a, b, c ∈ A.

Proof. Let a, b, c ∈ A. Since a• ((a ∗ b)(a ∗ c)) = (a• (a∗ b))(a• (a∗ c)) = bc,
Equation (5.3) follows. Now let

d = (ab) • c = (a • b) • (a • c).
Then (ab) ∗ d = c = a ∗ ((a • b) ∗ d) and the lemma is proved. �

Skew cycle sets form a category.
For a group A let S(A) be the full subcategory of skew cycle sets whose

objects are skew cycle set structures over A.

Lemma 5.6. Let A be a skew brace. Then the group (A, ·) with

a • b = λ−1a (b) = a ◦ (ab)

is a skew cycle set. Moreover, if f : A → A1 is a homomorphism of skew
braces, then f is a homomorphism of skew cycle sets.

Proof. Each map ϕa : b 7→ a • b is bijective. Let a, b, c ∈ A. To prove (5.1)
one uses that λ : (A, ◦)→ Aut(A, ·) is a group homomorphism:

a • (bc) = λ−1a (bc) = λa(bc) = λa(b)λa(c) = (a • b)(a • c).
To prove (5.2) we compute

(a • b) • (a • c) = λ−1
λ−1
a (b)

(λ−1a (c)) = λ−1
a◦λ−1

a (b)
(c) = λ−1ab (c) = (ab) • c.
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To prove that f is a skew cycle set homomorphism one computes

f(a • b) = f(a ◦ (ab)) = f(a) ◦ (f(a)f(b)) = f(a) • f(b).

This finishes the proof. �

Lemma 5.7. Let A be a skew cycle set. Then A with λa(b) = a ∗ b, where
a ∗ b = c if and only if a • c = b, is a skew brace. Moreover, if f : A → A1

is a skew cycle set homomorphism, then f is a skew brace homomorphism.

Proof. Let λ : A → SA be given by a 7→ λa. Let a, b, c ∈ A. First we notice
that λa(bc) = λa(b)λa(c) since

λa(bc) = a ∗ (bc) = (a ∗ b)(a ∗ c) = λa(b)λa(c)

by Lemma 5.5, Equation (5.3).
To prove that λaλa(b)(c) = λaλb(c) holds we use Lemma 5.5, Equa-

tion (5.4) to obtain that

λaλb(c) = a ∗ (b ∗ c) = a ∗ ((a • (a ∗ b)) ∗ c)
= (a(a ∗ b)) ∗ c = (aλa(b)) ∗ c = λaλa(b)(c).

Now since λa(bc) = λa(b)λa(c) and λaλa(b)(c) = λaλb(c) hold, A is a skew
brace by Lemma 1.12.

Finally the map f is a skew brace homomorphism since

f(a ◦ b) = f(a(a ∗ b)) = f(a)f(a ∗ b)
= f(a) (f(a) ∗ f(b)) = f(a)λf(a)(f(b)) = f(a) ◦ f(b)

for all a, b ∈ A. �

Lemmas 5.6 and 5.7 yield the following result:

Theorem 5.8. Let A be a group. The categories Badd(A) and S(A) are
equivalent.

5.2. Matched pairs of groups. For a given group (A, ◦) let M(A) be the
category with objects the matched pairs (A,A) such that

(5.5) a ◦ b = (a ⇀ b) ◦ (a ↼ b)

for all a, b ∈ A and morphisms all group homomorphisms f : A → A such
that

f(a ⇀ b) = f(a) ⇀ f(b), f(a ↼ b) = f(a) ↼ f(b)

for all a, b ∈ A.

Lemma 5.9. Let A be a skew brace. Then ((A, ◦), (A, ◦)) is a matched pair
of groups with a ⇀ b = λa(b) and a ↼ b = µb(a), a, b ∈ A.

Proof. Lemma 1.8 proves that λ is a left action and Lemma 1.11 proves that
µ is a right action. Thus we need to prove that

a ⇀ (b ◦ b′) = (a ⇀ b) ◦ ((a ↼ b) ⇀ b′),(5.6)

(a ◦ a′) ↼ b = (a ↼ (a′ ⇀ b)) ◦ (a′ ↼ b)(5.7)
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hold for all a, a′, b, b′ ∈ A.
For a, a′, b ∈ A one obtains that

(a ↼ (a′ ⇀ b)) ◦ (a′ ↼ b) = λaλa′(b) ◦ a ◦ λa′(b) ◦ λa′(b) ◦ a′ ◦ b

= λa◦a′(b) ◦ a ◦ a′ ◦ b
= (a ◦ a′) ↼ b.

For a, b, b′ ∈ A one obtains that

(a ⇀ b) ◦ ((a ↼ b) ⇀ b′) = λa(b) ◦
(
λa(b) ◦ a ◦ b ⇀ b′

)
= λa(b) ◦ λλa(b)λa◦b(b

′)

= λa(b)λa◦b(b
′)

= a ⇀ (b ◦ b′).

This completes the proof. �

Lemma 5.10. Let (A, ◦) be a group and (A,A,⇀,↼) be a matched pair of
groups such that a ◦ b = (a ⇀ b) ◦ (a ↼ b) for all a, b ∈ A. Then A with

ab = a ◦ (a ⇀ b)

is a skew brace.

Proof. For a, b ∈ A write λa(b) = a ⇀ b. Then λ : A → SA, a 7→ λa, is a
well-defined group homomorphism. Equation (5.5) implies that λa(1) = 1
for all a. Since

λa(b ◦ λ−1b (c)) = λa(b) ◦ (λa↼bλ
−1
b (c))

= λa(b) ◦ λλa(b)◦a◦bλ
−1
b (c)

= λa(b) ◦ λ−1λa(b)λa(c),

the claim follows from Lemma 1.14 �

For a given group A, let Bmul(A) be the full subcategory of the category
of skew braces with multiplicative group A. Combining Lemma 5.9 and
Lemma 5.10 one gets the following result:

Theorem 5.11. Let A be a group. The categories Bmul(A) and M(A) are
equivalent.

Remark 5.12. Theorem 5.11 is implicit in the work of Lu, Yan and Zhu,
see [38, Theorem 2] and [53]. The result for classical braces was proved
by Gateva-Ivanova; see [27, Theorem 3.7]. Our proof of Theorem 5.11 is
essentially that of Gateva-Ivanova.
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Appendix A. Hopf–Galois extensions

(By N. Byott and L. Vendramin)

In this appendix we review the connection between skew braces and Hopf–
Galois extensions. This connection was first observed by Bachiller in [4, §2].

Let K be a field and let H be a cocommutative Hopf algebra over K. An
H-module algebra A over K is an H-Galois extension of K if the map

θ : A⊗K A→ HomK(H,A), θ(a⊗ b)(h) = a(h · b),
is bijective.

Let K ⊆ L be a finite extension of fields. A Hopf–Galois structure on
L/K consists of a Hopf algebra H over K and an action of H on L such that
L is an H-Galois extension of K. In [32], Greither and Pareigis showed how
to find all Hopf-Galois structures when L/K is separable. For simplicity, we
consider only the case where L/K is also normal, so that L/K is a Galois
extension in the classical sense. We then have:

Theorem A.1 (Greither–Pareigis). Let K ⊆ L be a finite Galois field ex-
tension with group G. Then Hopf–Galois extensions on L/K correspond
bijectively to regular subgroups A of SG normalized by G, where G is con-
sidered as a subgroup of SG by the regular left representation.

Recall that a subgroup A of SG is regular if, given any g, h ∈ G, there is
a unique a ∈ A with a · g = h. The isomorphism class of A in Theorem A.1
is known as the type of the Hopf-Galois structure. Note that |A| = |G|, but
in general A and G need not be isomorphic.

In the situation of Theorem A.1, the fact that A acts regularly on G
enables us to define a bijection between A and G, via which we may translate
the left regular action of G on itself into an action of G on A. Thus G
becomes a regular subgroup of SA. It was observed by Childs [16] that
the condition in Theorem A.1, namely that A is normalized by G, holds if
and only if G is contained in the subgroup Hol(A) of SA, where Hol(A) =
Ao Aut(A) is the holomorph of A. The group operation in Hol(A) is given
by

(a, f)(b, g) = (af(b), fg),

and an element (b, g) ∈ H acts on a ∈ A by (b, g) ·a = bg(a). (Thus the first
factor A in Hol(A) is identified with left multiplications by elements of A.)

Childs’ observation was used in [8] to give a formula to count Hopf-Galois
structures:

Proposition A.2. The number e(G,A) of Hopf–Galois structures of type
A on a Galois extension L/K with group G is given by

e(G,A) =
|Aut(G)|
|Aut(A)|

f(G,A),

where f(G,A) is the number of regular subgroups of Hol(A) that are isomor-
phic to the group G.
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We now sketch the proof of this, partly following the exposition in [17,
§7], in order to elucidate the relationship between Hopf-Galois structures
and skew braces.

To begin with, we consider G and A as abstract groups, i.e. given without
any actions on each other. Let λG : G→ SG be the left regular representa-
tion: λG(g)·h = gh for g, h ∈ G. We will call α : A→ SG a regular embedding
if α is an injective group homomorphism whose image α(A) ⊆ SG is regular
on G. A regular embedding α : A→ SG induces a bijection

α∗ : A→ G, α∗(a) = α(a) · 1G.

Define β : G → SA by β(g) = α−1∗ λG(g)α∗. Then β is also a regular
embedding. In this way, we obtain a bijection from the set

A = {regular embeddings α : A→ SG}

to the set

G = {regular embeddings β : G→ SA},

whose inverse is obtained by the same construction with A and G inter-
changed. By the observation of Childs, this restricts to a bijection from

A0 = {α ∈ A : α(A) is normalized by G}

to

G0 = {β ∈ G : β(G) ⊆ Hol(A)}.

If α ∈ A0 and φ ∈ Aut(A), then also αφ ∈ A0. Thus Aut(A) acts on A
(from the right) by composition. This action is fixed-point-free: if αφ = α
then φ = idA. Moreover, for α, α′ ∈ A0, we have α′(A) = α(A)⇔ α′ = αφ
for some φ ∈ Aut(A). Thus each regular subgroup α(A) ⊆ SG normalized
by G corresponds to an orbit of A0 under Aut(A), and each such orbit has
cardinality |Aut(A)|. By Theorem A.1, the number of these subgroups is
e(G,A). Hence we have |A0| = |Aut(A)|e(G,A). A similar argument gives
|G0| = |Aut(G)|f(G,A). As there is a bijective correspondence between A0

and G0, Proposition A.2 follows.
The action of Aut(A) on A0 by composition translates to an action on G0.

Explicitly, if α ∈ A0 corresponds to β ∈ G0, and φ ∈ Aut(A), then α′ = αφ
corresponds to β′ where β′(g) = φ−1β(g)φ ∈ SA. Thus the action of Aut(A)
on G0 is by conjugation inside SA, and this action is again fixed-point-free.
Two elements of G0 give rise to the same regular subgroup of Hol(A) if and
only if they are in the same orbit under this action. Thus the Hopf-Galois
structures of type A on L/K correspond bijectively to the Aut(A)-conjugacy
classes of G0.

One may check that the action of Aut(A) on G0 by conjugation commutes
with the action of Aut(G) by composition.

We now turn to the classification of skew braces. We have the following
result from [33, Proposition 4.3].
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Proposition A.3. Let A be a group. There exists a bijective correspondence
between isomorphism classes of skew braces with additive group isomorphic
to A and classes of regular subgroups of Hol(A) under conjugation by ele-
ments of Aut(A).

Proof. Let B(A) be the set of isomorphism classes of skew braces with ad-
ditive group A and let R(A) be the set of equivalence classes of regular
subgroups of Hol(A) under conjugation by Aut(A).

Let G be a regular subgroup of Hol(A). The regularity of G implies that
π : G→ A, π(a, f) = a, is bijective. Then A with the operation

a ◦ b = π(π−1(a)π−1(b)) = af(b)

is a group isomorphic to G. Since

a ◦ (bc) = af(bc) = af(b)f(c) = af(b)a−1af(c) = (a ◦ b)a−1(a ◦ c),

the set A is a skew brace. A routine calculation shows that this correspon-
dence induces a map C : R(A)→ B(A).

Let B : B(A) → R(A) be given by B(A) = {(a, λa) : a ∈ A}. Routine
calculations show that the map B is well-defined and that B ◦ C = idR(A)

and C ◦B = idB(A). �

Remark A.4. Proposition A.3 was proved for classical braces by Bachiller [4,
Proposition 2.3].

In terms of the preceding notation, the regular subgroups of Hol(A) which
are isomorphic to G correspond to orbits of G0 under Aut(A), and the iso-
morphism classes of skew braces with multiplicative group G and additive
group A correspond to orbits of G0 under Aut(G)×Aut(A). We summarize
the above discussion in the following result.

Theorem A.5. Let A and G be finite groups of the same order, and let
G0 be the set of regular embeddings G→ Hol(A). Then G0 admits commut-
ing actions (from the right) of Aut(G) by composition and of Aut(A) by
conjugation in S(A).

The set of Hopf-Galois structures of type A on a Galois extension of fields
with group G corresponds bijectively to the set of orbits G0/Aut(G), while
the set of isomorphism classes of skew braces with multiplicative group G and
additive group A corresponds bijectively to the set of orbits G0/(Aut(G) ×
Aut(A)).

Hence there is a surjective map from this set of Hopf-Galois structures
to this set of isomorphism classes of skew braces, induced by the canonical
surjection

G0/Aut(G) � G0/(Aut(G)×Aut(A)).

Remark A.6. While each of the groups Aut(A) and Aut(G) acts without
fixed points on G0, this is not true for Aut(G) × Aut(A), and the orbits
under this group need not all have the same size.
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In more concrete terms, in order to count either Hopf-Galois structures
or skew braces, we need to determine the regular subgroups of Hol(A) iso-
morphic to G. To obtain the number of Hopf-Galois structures, we take the
number of such subgroups and adjust by the factor |Aut(G)|/|Aut(A)| as
specified in Proposition A.2. To obtain the number of skew braces (up to
isomorphism), we take the number of orbits of such subgroups under conju-
gacy by Aut(A). In general, these orbits are of different sizes, so there is no
simple relationship between the number of Hopf-Galois structures and the
number of skew braces.

We illustrate the difference between counting Hopf-Galois structures and
counting skew braces by means of an example.

Example A.7. Let G = Cpn be the cyclic group of order pn for an odd
prime p and n ∈ N. In this case, the Hopf-Galois structures were deter-
mined by Kohl [37] (see also [17, Theorem 9.1]), and the classical braces
were determined by Rump [45]. If A is a group of order pn (not necessarily
abelian) such that Hol(A) contains an element of order pn then in fact A
is cyclic [37, Theorem 4.4]. Thus every Hopf-Galois structure on a cyclic
field extension of degree pn is of cyclic type, and every skew brace with mul-
tiplicative group Cpn also has additive group Cpn. In particular, there are
no such skew braces beyond the classical braces found by Rump. Let σ be
a generator of A = Cpn. Then Aut(A) = {θu : u ∈ (Z/pnZ)×}, where
θu(σ) = σu. Now any regular subgroup G of Hol(A) must contain a unique
element of the form (σ, θu), and it easy to check that this element generates
G. Moreover, u ≡ 1 (mod p) since θu must have p-power order. Hence
there are pn−1 possibilities for u. This gives pn−1 distinct regular subgroups,
and hence pn−1 Hopf-Galois structures. To count the skew braces, we must
consider the orbits of these subgroups under conjugacy by Aut(A). Now if
G = 〈(σ, θu)〉 then θvGθ

−1
v is generated by (σv, θu). This subgroup is also

generated by a unique element of the form (σ, θw). As v varies, the possible
values of w are precisely those such that u − 1 and w − 1 are divisible by
the same power of p. Hence we obtain n skew braces (up to isomorphism),
corresponding to u = 1, 1 + pn−1, 1 + pn−2, . . ., 1 + p. These skew braces
have socles of size pn, pn−1, . . ., p respectively, and the corresponding orbits
of regular subgroups under the action of Aut(A) have sizes 1, p−1, p(p−1),
. . ., pn−2(p− 1) respectively.

Having explained the connection between skew braces and Hopf-Galois
structures, we restate a couple of known results for Hopf-Galois structures
in terms of skew braces. The first example is the uniqueness result [33,
Theorem 1]:

Theorem A.8. Let n ∈ N. There is a unique skew brace of size n if and
only if n and φ(n) are coprime, where φ denotes the Euler’s totient function.

The following result is [11, Theorem 2]:
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Theorem A.9. Let A be a finite skew brace with abelian multiplicative
group. Then the additive group of A is solvable.

Question A.10. Let A be a skew brace with multiplicative group isomorphic
to Z. Is the additive group of A also isomorphic to Z?

In [33, Algorithm 5.1] a method to enumerate skew braces of small size ap-
pears. It is based on Proposition A.3. An easy modification of the Magma [7]
implementation of [33, Algorithm 5.1] allows us to enumerate Hopf–Galois
extensions of small degree using Proposition A.2.

Example A.11. In [10, Corollaries 6.3 and 6.4] one finds that

e(S3, S3) = e(C6, S3) = 2, e(S3, C6) = 3, e(C6, C6) = 1.

In [10, Corollary 6.6] one finds that

e(C7 o C3, C7 o C3) = 16, e(C7 o C3, C21) = 7,

e(C21, C7 o C3) = 4, e(C21, C21) = 1.

Let n ∈ N. Let G1, . . . , Gm be a complete set of representatives of isomor-
phism classes of groups of order n. To record the number of Hopf–Galois
extensions of degree n, we constuct an m × m array E(n) in which the
(i, j)-entry is the number e(Gi, Gj).

Example A.12. The arrays E(8) and E(12) are shown in Tables A.1
and A.2, respectively.

Table A.1. The number of Hopf–Galois extensions of fields
of degree eight.

C8 C4 × C2 C4 o C2 Q8 C3
2

C8 2 0 2 2 0
C4 × C2 4 10 6 2 4
C4 o C2 2 14 6 2 6
Q8 6 6 6 2 2
C3
2 0 42 42 14 8

Table A.2. The number of Hopf–Galois extensions of fields
of degree twelve.

C3 o C4 C12 A4 C6 o C2 C6 × C2

C3 o C4 2 3 12 2 3
C12 2 1 0 2 1
A4 0 0 10 0 4

C6 o C2 14 9 0 14 3
C6 × C2 6 3 4 6 1
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The number h(n) of Hopf–Galois structures of degree n is

h(n) =
m∑
i=1

m∑
j=1

e(Gi, Gj).

Some values of h(n) are shown in Table A.3.

Table A.3. The number h(n) of Hopf–Galois extensions of
fields of degree n.

n 6 8 10 12 14 16 18 20
h(n) 8 190 10 102 12 25168 289 166
n 21 22 24 25 26 27 28 30

h(n) 28 16 5618 30 18 4329 128 80
n 34 36 38 40 42 44 45 46

h(n) 22 5980 24 8556 374 184 12 28

Problem A.13. Compute h(32).
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