Medically induced hypertension, hypervolaemia and haemodilution for the treatment and prophylaxis of vasospasm following aneurysmal subarachnoid haemorrhage: systematic review

Citation for published version:

Digital Object Identifier (DOI):
10.1080/02688697.2018.1426720

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
British Journal of Neurosurgery

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Medically induced hypertension, hypervolaemia and haemodilution for the treatment and prophylaxis of vasospasm following aneurysmal subarachnoid haemorrhage: Systematic Review

<table>
<thead>
<tr>
<th>Journal:</th>
<th>British Journal of Neurosurgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>CBJN-2017-0204.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Review Article/Invited Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>02-Oct-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Loan, James; NHS Grampian, Neurosurgery ; University of Aberdeen Institute of Applied Health Sciences wiggins, anthony; NHS Grampian, Neurosurgery Brennan, Paul; Western General Hospital, Neurosurgery</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Aneurysmal Subarachnoid Haemorrhage, Cerebral vasospasm, Hypertension, Hypervolaemia, Haemodynamic Therapy, Haemodilution</td>
</tr>
</tbody>
</table>
PRISMA 2009 Checklist

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>1</td>
<td>Identify the report as a systematic review, meta-analysis, or both.</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structured summary</td>
<td>2</td>
<td>Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.</td>
<td>3</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rationale</td>
<td>3</td>
<td>Describe the rationale for the review in the context of what is already known.</td>
<td>4-6</td>
</tr>
<tr>
<td>Objectives</td>
<td>4</td>
<td>Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).</td>
<td>6</td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol and registration</td>
<td>5</td>
<td>Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.</td>
<td>6</td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>6</td>
<td>Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.</td>
<td>6-7</td>
</tr>
<tr>
<td>Information sources</td>
<td>7</td>
<td>Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.</td>
<td>7</td>
</tr>
<tr>
<td>Search</td>
<td>8</td>
<td>Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.</td>
<td>7, Table 1</td>
</tr>
<tr>
<td>Study selection</td>
<td>9</td>
<td>State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).</td>
<td>7-8</td>
</tr>
<tr>
<td>Data collection process</td>
<td>10</td>
<td>Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.</td>
<td>8</td>
</tr>
<tr>
<td>Data items</td>
<td>11</td>
<td>List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.</td>
<td>8</td>
</tr>
<tr>
<td>Risk of bias in individual studies</td>
<td>12</td>
<td>Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.</td>
<td>8-9</td>
</tr>
<tr>
<td>Summary measures</td>
<td>13</td>
<td>State the principal summary measures (e.g., risk ratio, difference in means).</td>
<td>8-9</td>
</tr>
<tr>
<td>Synthesis of results</td>
<td>14</td>
<td>Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.</td>
<td>8,9,15</td>
</tr>
</tbody>
</table>

URL: http://mc.manuscriptcentral.com/cbjn
<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of bias across</td>
<td>15</td>
<td>Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).</td>
<td>9</td>
</tr>
<tr>
<td>studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional analyses</td>
<td>16</td>
<td>Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.</td>
<td>9</td>
</tr>
<tr>
<td>RESULTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study selection</td>
<td>17</td>
<td>Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.</td>
<td>10, Figure 1</td>
</tr>
<tr>
<td>Study characteristics</td>
<td>18</td>
<td>For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.</td>
<td>9-14. Table 2</td>
</tr>
<tr>
<td>Risk of bias within</td>
<td>19</td>
<td>Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).</td>
<td>11-15</td>
</tr>
<tr>
<td>studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results of individual</td>
<td>20</td>
<td>For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.</td>
<td>15-18</td>
</tr>
<tr>
<td>Synthesis of results</td>
<td>21</td>
<td>Present results of each meta-analysis done, including confidence intervals and measures of consistency.</td>
<td>15-18</td>
</tr>
<tr>
<td>Risk of bias across</td>
<td>22</td>
<td>Present results of any assessment of risk of bias across studies (see Item 15).</td>
<td>Figure 2</td>
</tr>
<tr>
<td>studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional analysis</td>
<td>23</td>
<td>Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).</td>
<td>nil</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summary of evidence</td>
<td>24</td>
<td>Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).</td>
<td>18-19</td>
</tr>
<tr>
<td>Limitations</td>
<td>25</td>
<td>Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).</td>
<td>21</td>
</tr>
<tr>
<td>Conclusions</td>
<td>26</td>
<td>Provide a general interpretation of the results in the context of other evidence, and implications for future research.</td>
<td>21-22</td>
</tr>
<tr>
<td>FUNDING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funding</td>
<td>27</td>
<td>Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.</td>
<td>1</td>
</tr>
</tbody>
</table>

doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.

URL: http://mc.manuscriptcentral.com/cbjn
Medically induced hypertension, hypervolaemia and haemodilution for the treatment and prophylaxis of vasospasm following aneurysmal subarachnoid haemorrhage: Systematic Review

Responses to reviewers comments

James JM. Loan MRCS MSc¹, Anthony N. Wiggins MRCS², Paul M. Brennan FRCS PhD³.

¹) Department of Neurosurgery, Institute of Neurological Sciences, Glasgow, UK
²) Department of Neurosurgery, Aberdeen Royal Infirmary, Foresterhill Road, Aberdeen, UK
³) Department of Clinical Neurosciences, Western General Hospital, Edinburgh, UK

Corresponding author:

Mr. James Loan, Department of Neurosurgery, Aberdeen Royal Infirmary, Foresterhill Road, Aberdeen, UK AB25 2ZN.

Telephone: 01224 551733, Email: james.loan@nhs.net
Dear Sir/Madam,

We thank the reviewers for their time and effort in reviewing our manuscript. We have considered their criticisms and improved our manuscript accordingly. The reviewers’ comments, our responses, and rationales for them are set out below. Should any further changes/clarifications be thought to be necessary we would be delighted for the opportunity to undertake them.

Yours Sincerely,

The authors

James JM. Loan
Paul M. Brennan
Anthony N. Wiggins
Reviewer: 1

Comments to the Author

Loan et al perform a systematic review of triple-H therapy for the prophylaxis and treatment of aneurysmal subarachnoid haemorrhage. My comments are included below:

Major issues

1. No large randomized trial of induced hypertension for subarachnoid haemorrhage has been undertaken. But the rapid improvement of most patients with this therapy and their worsening when it is stopped prematurely are convincing evidence of efficacy. While induced hypertension is now hardwired in clinical practice and in every guideline, its impact on outcome has not yet been submitted to the scrutiny of an adequately powered RCT. This was the aim of the HIMALAIA study (Hypertension Induction in the Management of Aneurysmal subArachnoid haemorrhage with secondary IschaemiA), a multicenter RCT that was terminated in 2015 due to slow recruitment. This termination confirms that it seems unlikely any such trial will ever be conducted given the lack of clinical equipoise. The authors should acknowledge the evidence base for hypertensive therapy as stated above, and the wide acceptance of its use.

Response: Whilst some clinicians feel strongly that induced hypertension is an effective intervention, surveys of practice (cited in our study) do not demonstrate tight adherence to guidelines recommending induction of hypertension. Furthermore, our study has demonstrated - and guidelines acknowledge a lack of satisfactory evidence of efficacy. The incidence of harm in use of vasopressors/inotropic drugs following SAH has been poorly quantified. It is our contention that anecdote and observational evidence described by reviewer one is not convincing of evidence of efficacy. Nonetheless we have added to our discussion this paragraph acknowledging the perceived lack of equipoise and difficulty in recruitment to RCT as described by reviewer 1: “Induced hypertension using vasopressor or inotropic support is at present recommended in favor of HHH by most guidelines and many units have adopted this approach. Indeed, a perceived lack of equipoise by treating clinicians may have been a factor in the HIMALAIA study’s failure to match recruitment targets. However, at present only insufficiently powered randomised studies, observational studies and anecdote exist on which to base this. As induction of hypertension may be associated with increased serious adverse events it is essential that an adequately powered RCT be conducted to provide clinical guideline writing groups and individual clinicians with the evidence base necessary to balance risks and benefits when recommending widespread adoption of high risk management strategies.”

2. The evidence for hypertensive therapy in SAH has been summarised in a published systematic review in the British Journal of Anaesthesia in 2016 (Veldman et al). Loan et al in this paper under review claim that their study adds a number of elements to the published literature. However, It is incorrect to state that the Lennihan 2000 and Egge 2001 papers were not identified by the 2015 BJA review. They are both referenced within the BJA paper as references 87 and

URL: http://mc.manuscriptcentral.com/cbjn
89. They were not included in the analysis as only studies published in the previous 5 years were analysed.

Response: we have adjusted the wording of this statement to more accurately reflect this: “Furthermore, we have identified an additional three cohort studies, which, although identified, have not been included in previous systematic reviews24, 25, 28, 37.”

In addition, the stated benefit of including the 3 cohort studies in providing ‘...the most comprehensive contemporary review of the evidence’ is very limited given the low quality of the cohort studies, which the authors acknowledge in the preceding paragraph.

Response: updated to acknowledge this: “Our study therefore provides a comprehensive contemporary review of the limited evidence base and unanswered questions concerning the use of haemodynamic therapy for the treatment and prophylaxis of vasospasm following SAH.”

Finally, the rationale for the exclusion of the 2 papers published in ‘Neurocritical Care’ applies more rigorous criteria in a selective manner. Rondeau et al (2012) examining dobutamine to increase CI versus noradrenaline to increase MAP; and Ibrahim et al (2013) a propensity-score matched analysis examining colloid and fluid balance of patients enrolled in the CONSCIOUS-1 study.

Response: we have carefully and fully re-reviewed both of these papers. We believe that our initial decision not to include these was correct. Ibrahim, et al. (2013)’s paper did not meet our inclusion criteria as the treatment group included patients with either induced hypervolaemia or maintained normovolaemia using colloids and as a consequence any treatment effect could not be attributed to a particular haemodynamic manipulation. This rationale has been clarified and we believe applies the same standard for non-inclusion as we have for all other studies, in particular Frontera (2010) and Kissoon (2015) – which were excluded for similar reasons as documented in the text. Our clarification is: “One study was excluded as the treatment group included both those with hypervolaemic fluid supplementation and normovolaemic colloid administration and consequently effects of either of these interventions and consequent physiological changes could not be reliably attributed.”

The paper by Rondeau (2012) was excluded at the screening stage and consequently the rationale for exclusion was not documented in our previously submitted manuscript. Nonetheless, we have subjected this study to full review and have therefore updated our manuscript to reflect this, with rationale for exclusion documented. This trial randomised patients to either dopamine (to increase cardiac index) or - what presumably at the author’s institution is - standard care including use of noradrenaline to induce hypertension. Although the control arm did achieve a statistically significantly higher MAP than the dopamine group, the majority of both arms of the study received noradrenaline for blood pressure augmentation. Furthermore the study report does not disclose whether these interventions were undertaken prior to vasospasm onset. As this is their primary outcome and as angiography was undertaken at enrollment this information is crucial. Whilst this is an interesting study of augmentation of cardiac index, it is not designed to assess the impact of noradrenaline as a prophylactic measure or treatment for vasospasm and cannot inform on this matter. We have updated our
One study was excluded as it was unclear what fraction of the treatment and control groups had the primary outcome of vasospasm at enrollment and both treatment arms received noradrenaline for induction of hypertension. This applies the same reasons for exclusion as Reynolds (2015) and Murphy (2017).

We have argued here that these studies were excluded on similar bases to other studies which were excluded to reviewer one's satisfaction, with reasons documented, following full text review. Were these two studies to be included in our study therefore, this would require modification of our inclusion criteria and consequently repetition of the abstract screening process.

3. If the protocol was not registered beforehand, the authors should submit the protocol with the paper for assessment.
Response: we have submitted the protocol for assessment and also expanded our methods to fully represent it, as per reviewer two.

4. The primary outcome is vague. Which outcomes do the authors refer to? Mortality? Neurologic deficit? The term 'clinical outcome' covers a multitude. The authors should be more specific.
Response: amended: “Our primary research question was: “does prophylactic HHH therapy using crystalloid volume expansion improve outcome as assessed using a standardised neurological clinical outcome score - such as modified Rankin Scale (mRS) or Glasgow Coma Scale (GCS) score - following aneurysmal SAH compared with no those managed with no haemodynamic augmentation?”

5. Where is the table of included studies? In a summary of the literature such as this, a table of included studies in essential to allow the reader to have a clear view of interventions, populations, outcomes etc.
Response: we have produced a table of included studies and referenced to it in the text.

Minor issues
1. Page 6, Line 50:
“...vary considerably: indicating uncertainty...” – incorrect usage of colon.
Response: corrected

2. Page 7, Line 16:
“...the incidence of is believed...” – has the word ‘vasospasm’ been omitted here?
Response: yes – corrected.

3. Page 7, Line 18:
“...it remains unclear if is a prophylactic...” – the word ‘is’ is extraneous here.
Response: corrected

4. Page 11, Line 14:
“...or attempt statistically quantify...” – attempt to
Response: corrected

5. Page 13, Line 3:
“Vasospasm detected...” – should this be ‘Vasospasm was detected...’?
Response: corrected
6. Page 17, Line 25:
"Vermeij et al showed reduced rates of DND at 28 days (P>0.001)". – should this read P<0.001? I was unable to find this figure for DND at 28 days in the Vermeij paper – where was this found?
Response: corrected and clarified. This can be found on page 928 of Vermeij’s paper: “the occurrence of cerebral ischemia in group B was significantly lower than that in group A2 (P<0.00005 by log rank test)”. Our updated manuscript reads: “Vermeij, et al.26 Showed reduced rates of DND at 28 days (P<0.001) and 3 months (p=0.006) in the hypervolaemia group. However, these figures are associated with significant risk of confounding as the hypervolaemia group was treated with nimodipine whereas the normovolaemia group was not. For this analysis both groups received tranexamic acid”

7. Page 20, Line 5:
“One cohort study of moderate quality was included demonstrated…” – should this be “One cohort study of moderate quality demonstrated…” or similar?
Response: amended

8. References
2, 6, 7, 10, 14, 18, 21, 24, 25, 26 are incomplete.
23 and 36 are identical.
Response: All references reviewed and amended where appropriate.

Reviewer: 2

Comments to the Author
In this manuscript, the authors perform a systematic literature review to determine the efficacy of prophylactic “HHH” therapy (e.g., hypervolemia, hypertension, and hemodilution) in the setting of patients with aneurysmal SAH and vasospasm. From their conclusions, they deduce that there is insufficient evidence to determine the efficacy, or non-efficacy, of HHH therapy for the treatment or prophylaxis of vasospasm following SAH. This manuscript is a topic of great interest to physicians involved in the treatment of aneurysmal SAH (e.g., neurosurgeons, vascular neurologists, neuro critical care specialists, and interventional neuroradiologists alike). While the authors’ findings/conclusions have been reported previously, this manuscript provides additional, important information to the existing literature given that it (1) includes a more comprehensive list of scientific articles than published previously, and (2) proposes a new RCT by which these important questions could be adequately answered (including proposed number of patients and statistical power calculations). As such, I believe that it is worth of publication in its current form with minor modifications.
My suggestions are listed below:
1. In the Introduction and Methods section, the authors should more carefully define their definition of “vasospasm” following SAH. Does this include radiographic, clinical, and or NHND?, Do all forms of vasospasm require treatment (e.g., asymptomatic, mild, radiographic spasm)?
Response: given the considerable uncertainty concerning the optimal definition of vasospasm for clinical practice, including threshold for treatment, and wide degree in variation in practice we elected to include studies reporting any definition of vasospasm. The definitions used by each included study are documented in the text and, as suggested we have updated our introduction and methods sections: “Furthermore, a wide range of definitions for vasospasm exists – from the development of new, clinically evident focal or global neurologic deficits not attributable to another cause, to solely radiological diagnoses reliant on cerebral angiography, transcranial doppler, CT evidence of new ischaemic change or cerebral perfusion studies.” “To reflect the high degree of uncertainty concerning the optimal mode of diagnosis of vasospasm following SAH as well as treatment thresholds, we elected to include studies utilizing any means of diagnosis of vasospasm.”

2. To further underscore the importance of the authors’ clinical question, they should include further data on the devastating natural history of untreated, clinically-symptomatic, arterial vasospasm following SAH.

Response: although little quality data exists to allow precise quantification of the impact of untreated vasospasm we have expanded this section: “Undiagnosed and insufficiently treated cerebral arterial vasospasm causing cerebral ischaemia has historically been implicated as a major cause of death at autopsy following subarachnoid haemorrhage, alongside re-bleeding from untreated aneurysms3. Although with modern, active treatment including haemodynamic intervention the association of vasospasm with mortality can be reduced, potentially disabling neurological deficits attributable to vasospasm continue to affect 20% of those who have not died prior to presentation to hospital.”

3. The review protocol should be included in the Methods section, as this is the major crux of the manuscript

Response: We have updated our methods section to include all relevant data from our protocol. We did not include our strategy for meta-analysis as this was not undertaken, but our rationale for not doing this has been described. Our protocol has been submitted alongside this resubmission as per reviewer one.

4. I would recommend that this article be reviewed by a member of the BJNS editorial staff with an expansive knowledge and familiarity of systematic review with specific attention to the methodologies of the manuscript

Response: We agree

Associate Editor’s Comments to Author:

Associate Editor
Comments to the Author:
This is a well written paper but the authors need to address the concerns and recommendations of the reviewers. I have only one additional comment: The authors conclude with the suggestion of performing a randomised controlled trial (RCT). Can you clarify exactly what would be the interventions in the 2 arms of the trial? I think it would be very difficult to convince clinicians to randomise patients into a trial where patients in one arm of the trial do not receive hypertensive therapy.
Response: This is a key issue and we have further developed our suggestion for future research: “Medically induced hypertension is an appropriate intervention for testing in an RCT as it can be more easily quantified and achieved than a positive fluid balance. Furthermore, concerns regarding the theoretically deleterious effects of haemodilution on oxygen carrying capacity of blood are not relevant to medically induced hypertension. As a radiological diagnosis of vasospasm does not always correlate with clinical outcome, primary outcome of such a study must be based on a validated, standardised clinical measure, such as the GOS or mRS. Induced hypertension has become entrenched practice in some UK centers and consequently use of a normotensive control group might be considered to be unacceptable by these centers. A pragmatic solution is to compare high and low hypertensive blood pressure thresholds achieved using a standardised protocol. Protocol development should be informed by a comprehensive national audit of practice. Audit data from centers not routinely employing vasopressor induced hypertension could feed into a before and after observational study with comparison against those enrolled in a subsequent RCT. Recent years have seen a proliferation in neurosurgical research collaboratives, such as the British Neurosurgical Trainees Research Collaborative, which have successfully pooled UK neurosurgical efforts to facilitate patient recruitment to large multicenter studies. Use of a similar collaborative research model may allow for patient recruitment to be successfully completed.”
Medically induced hypertension, hypervolaemia and haemodilution for the treatment and prophylaxis of vasospasm following aneurysmal subarachnoid haemorrhage: Systematic Review

James JM. Loan MRCS MSc¹, Anthony N. Wiggins MRCS², Paul M. Brennan FRCS PhD³.

1) Department of Neurosurgery, Institute of Neurological Sciences, Glasgow, UK
2) Department of Neurosurgery, Aberdeen Royal Infirmary, Foresterhill Road, Aberdeen, UK
3) Department of Clinical Neurosciences, Western General Hospital, Edinburgh, UK

Corresponding author:

Mr. James Loan, Department of Neurosurgery, Aberdeen Royal Infirmary, Foresterhill Road, Aberdeen, UK AB25 2ZN.

Telephone: 01224 551733, Email: james.loan@nhs.net

DISCLOSURE: The authors report no conflict of interest concerning the materials or methods used in this study, or the findings specified in this paper.

FUNDING: None

AUTHOR CONTRIBUTIONS: JJML designed and conducted the study. ANW conducted duplicate assessment of risk of bias of all included studies. PMB designed the study. All authors were involved in manuscript preparation.

BIOGRAPHICAL NOTE
James JM. Loan: Neurosurgery Clinical Development Fellow and Honorary Research Fellow at NHS Grampian and the University of Aberdeen. Academic interest in epidemiology and systematic review methodology.

Paul M. Brennan: Senior Clinical Lecturer and Honorary Consultant Neurosurgeon at the University of Edinburgh and NHS Lothian. He combines his operative work with laboratory research into the origin of gliomas. He also has an active involvement in clinical research and was co-founder of the British Neurosurgical Trainee Research Collaborative that he helped found as Chair of the British Neurosurgical Trainees Association in 2012.
Medically induced hypertension, hypervolaemia and haemodilution for the
treatment and prophylaxis of vasospasm following aneurysmal subarachnoid
haemorrhage: Systematic Review

ABSTRACT: Word count: 282

Purpose: Arterial vasospasm is a major cause of death and long-term disability following subarachnoid haemorrhage (SAH). The use of medically induced hypertension, hypervolaemia and/or haemodilution is widely practiced for prophylaxis and treatment of vasospasm following SAH. We aimed to determine if the quality of available research is adequate to inform use of haemodynamic management strategies to prevent or treat vasospasm following SAH.

Methods: Individual searches of the following databases were conducted: The Cochrane Database of Systematic Reviews, The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE and OpenSIGLE. Pertinent randomised clinical trials and cohort studies comparing any element or combination thereof: medically induced hypertension, hypervolaemia, and haemodilution were included. Data were extracted using standardised proformas and risk of bias assessed using a domain-based risk of bias assessment tool.

Results: 348 study reports were identified by our literature search. Eight studies were included, three of which examined both volume expansion and medically induced hypertension. Three randomised clinical trials and two cohort studies examining prophylactic volume expansion were included. Two trials of prophylactic medically induced hypertension and two cohort studies were included. One trial and one cohort study of medically induced hypertension for treatment of established vasospasm was included. These trials demonstrated no significant difference in any of the clinical outcome measures studied. No trials of blood transfusion were included.

Conclusions: There is currently insufficient evidence to determine the efficacy or non-efficacy of intravenous volume expansion, medically induced hypertension or blood transfusion for the treatment or prophylaxis of vasospasm following SAH. All of these approaches have been associated with adverse events, of unclear incidence. The current evidence base therefore cannot be used to reliably inform clinical practice. This is a priority for further research.

Keywords: subarachnoid haemorrhage, vasospasm, HHH, haemodynamic therapy
Subarachnoid haemorrhage (SAH) accounts for around 5% of all cases of stroke and has a reported incidence of between 7-13 per 100,000 person years.\(^1\) Death occurred by 6 months in 26% of cases in one large series, with angiographic presence of cerebral vasospasm being a major predictor of subsequent morbidity and mortality.\(^2\)

Undiagnosed and insufficiently treated cerebral arterial vasospasm causing cerebral ischaemia has historically been implicated as a major cause of death at autopsy following subarachnoid haemorrhage, alongside rebleeding from untreated aneurysms\(^3\).

Although with modern, active treatment including haemodynamic intervention the association of vasospasm with mortality can be reduced, potentially disabling neurological deficits attributable to vasospasm continue to affect 20% of those who have not died prior to presentation to hospital\(^4\). Controversy exists regarding the optimal strategy for the diagnosis, the prevention and treatment of cerebral vasospasm.\(^5\) Options include use of systemic nimodipine, a calcium channel antagonist\(^6\); cerebral angiography with local application of intra-arterial antispasmodics,\(^7\) angioplasty and stenting\(^8\); and systemic haemodynamic manipulation.

Haemodynamic therapy, including medically induced hypertension, hypervolaemia and haemodilution – often referred to as HHH therapy – has been widely practiced for at least 20 years.\(^9\) American Stroke Association guidelines, based on a review of literature available in a single database prior to 2010, noted that evidence for all aspects of haemodynamic intervention was insufficient and consequently recommended maintenance of euvoaemia and induction of hypertension for management of suspected vasospasm\(^10\). Perhaps as a consequence of the limited strength of these recommendations, HHH therapy continues to be widely practiced - by
100% of respondents to one survey11. In one other recent survey of European practice, HHH was utilised more frequently than medically-induced hypertension alone5. Where haemodynamic augmentation is undertaken, the clinical targets, the timing and the means of their achievement vary considerably11, indicating uncertainty regarding the relative merits and risks of each of the components of HHH.

Aggressive intravenous administration of crystalloid or colloid is associated with hypertension and haemodilution12, 13. This is proposed to optimize blood flow through the vasospastic vessel by improving cerebral perfusion pressure and reducing blood viscosity12. However, excessive hypervolaemia risks precipitating acute heart failure. Significant haemodilution reduces the oxygen carrying capacity of blood and thus may impair cerebral oxygenation. To address these concerns, other approaches including normovolaemic fluid supplementation14, vasopressor support15, and blood transfusion16 have been attempted.

Although the incidence of vasospasm is believed to peak between 6-10 days post-SAH17, 18, it remains unclear if it is a prophylactic or a reactive approach to haemodynamic augmentation is best? It is also unclear which haemodynamic management strategy, if any, is preferable. Furthermore, a wide range of definitions for vasospasm exists – from the development of new, clinically evident focal or global neurologic deficits not attributable to another cause, to solely radiological diagnoses reliant on cerebral angiography, transcranial doppler, CT evidence of new ischaemic change or cerebral perfusion studies19-23.

Given the lack of existing literature to address these uncertainties in clinical practice, and inform guideline development we conducted a sensitive systematic review of published literature using multiple databases to determine if there is sufficient evidence to guide practice in use of medically induced hypertension, hypervolaemia and
haemodilution for the treatment and prophylaxis of vasospasm following aneurysmal SAH.

Methods

Our review protocol was not registered a priori. It is available on request from the corresponding author. This study was conducted as part of a series of systematic reviews and the study protocol specified our inclusion criteria for population, interventions, comparisons, outcomes and study types. It also specified how data extraction and assessment of risk of bias would be conducted.

Objectives

Our primary research question was: “does prophylactic HHH therapy using crystalloid volume expansion improve clinical outcome as assessed using a standardised neurological clinical outcome score - such as modified Rankin Scale (mRS) or Glasgow Coma Scale (GCS) score - following aneurysmal SAH compared with no those managed with no haemodynamic augmentation? Secondary outcomes included comparisons of outcome, rates of clinically evident delayed neurological deficit (DND) and of complications between patients managed with volume expansion, medically induced hypertension and blood transfusion – either therapeutically or as a prophylactic measure.

Inclusion criteria

Types of studies

We sought to identify included studies using a RCTs and or all cohort studies study
methodology. Prospective and retrospective studies were included, comparing HHH, or an element of HHH, with any alternative management strategy. Studies where both arms were treated with an element of HHH (e.g. induced hypervolaemia) but only one was managed with another element (e.g. induced hypertension) were included.

Prospective and retrospective studies were included.

Types of participants

Studies of patients older than the age of 16 who had radiographic or biochemical evidence of SAH were identified. Only studies of patients with intracranial ruptured aneurysms secured using surgical clipping or endovascular coiling were included. Both studies reporting patients with vasospasm prior to intervention commencement and patients without vasospasm prior to intervention commencement were included but were analysed separately.

Types of intervention

Studies comparing HHH, or an element of HHH, with any alternative management strategy were included. Studies where both arms were treated with an element of HHH (e.g. induced hypervolaemia) but only one was managed with another element (e.g. induced hypertension) were included.

Types of comparator group

Studies using a valid comparison group receiving the same management strategy except for the intervention of interest were included.

Types of outcome measure

We included studies meeting the preceding criteria that used any reported outcome
measure, including clinical outcome scores, incidence of vasospasm, and radiological evidence of ischaemic injury. To reflect the high degree of uncertainty concerning the optimal mode of diagnosis of vasospasm following SAH as well as treatment thresholds, we elected to include studies utilizing any means of diagnosis of vasospasm, with different definitions of vasospasm considered separately.

Vasospasm definitions permitted included clinical definitions of DND and radiological evidence of vasospasm, although these groups were considered separately.

Search strategy

Scoping searches identified appropriate MeSH headings and keywords to allow for sensitive systematic searches to be conducted. Keywords were mapped to appropriate MeSH headings and truncated terms mapped to the first 600 appropriate MeSH headings. The following electronic databases were then searched for items published up to 9 May 2017: The Cochrane Database of Systematic Reviews, The Cochrane Central Register of Controlled Trials, MEDLINE (PubMed) and EMBASE (1947-2016). Grey Literature searching was performed for the OpenSIGLE database. Table 1 shows the abbreviated search strategy. Snowballing and Pearl search strategies were used as appropriate. The abstracts of all studies identified by our electronic search were screened and if inclusion criteria were met the full study report was accessed and considered for inclusion. If it was unclear from the abstract if inclusion criteria would be met then the whole study was accessed for review.

Data collection and analysis

Data extraction and quality assessment

Each included study was reviewed by two authors (JL, AW) and the following data
recorded: the study design, participants, details and timing of interventions, comparisons drawn and study results. Any reported outcome measure was collected. For RCTs, risk of bias in the following domains was assessed and judged as high, low or unknown risk, as per the validated Cochrane Risk of Bias Assessment Tool26: Random sequence generation; allocation concealment; blinding of trial participants and trial personnel; blinding of outcome assessment; completeness of data collection; and completeness of data reporting.

For cohort studies the following were assessed26: selection bias; allocation concealment; blinding of trial participants and trial personnel; blinding of outcome assessment; completeness of data collection; and completeness of data reporting.

Differences in reviewer opinion were resolved by consensus discussion.

Data analysis

Following quality assessment and data extraction, outputs of included studies were independently considered as applied to each of the following subgroups to determine their adequacy to inform clinical practice.

- Prophylactic (intervention introduced prior to vasospasm)
 - Crystalloid or colloid volume expansion
 - Blood transfusion
 - Medically induced hypertension

- Therapeutic (intervention introduced following proven or suspected vasospasm)
 - Crystalloid or colloid volume expansion
 - Blood transfusion
 - Medically induced hypertension
Meta-analysis and meta-biases

As significant methodological heterogeneity was found between studies it was not possible for us to attempt meaningful meta-analysis or attempt to statistically quantify for meta-biases such as publication bias.

Results

Description of studies

Our literature search yielded 348 abstracts (Figure 1). Of these, 165 reports of 154 studies were considered for inclusion in our review. One study was excluded as the treatment group included both those with hypervolaemic fluid supplementation and normovolaemic colloid administration and consequently effects of either of these interventions and consequent physiological changes could not be reliably attributed. Two studies were excluded as the majority of patients in the treatment group had suspected vasospasm whilst those in the control did not. One study was excluded as it was unclear what fraction of the treatment and control groups had the primary outcome of vasospasm at enrollment and both treatment arms received noradrenaline for induction of hypertension. Another two were excluded because treatment with hypervolaemic and normovolaemic fluid administration was not dichotomized and fluid boluses were administered in all patients as a response to suspected vasospasm. One other study was excluded as two of the three studied populations contained both patients who were receiving the study intervention to treat vasospasm and also patients for whom it was prophylactic. Eight studies were included in this review (Table 2). Four of the included studies were RCTs. Four were cohort studies; for one of these the study protocol was published prospectively. Seven reported
clinical outcomes.19, 20, 27-30, 33 One reported only on cerebral blood flow (CBF), as measured using CT perfusion scanning.21, 22 In six studies, the intervention was introduced as a prophylactic measure.19, 20, 27-30 In two studies the intervention was with therapeutic intent.21, 22, 33

\textit{Included RCTs: risk of bias (figure 2)}

\textit{Lennihan 2000}19

Patients in this RCT were randomly assigned to prophylactic hypervolaemic fluid management (n=41) or normovolaemia (n=41). All patients had SAH secondary to ruptured aneurysms, which underwent surgical clipping <6 days post-ictus. All patients were managed with intravenous colloid, with those in the hypervolaemic group receiving prophylactic supplementary 5\% albumin solution targeting central venous pressure (CVP) 8mmHg or pulmonary artery diastolic pressure 14mmHg. All patients who developed vasospasm were managed according to the same protocol regardless of their group assignment. The primary outcome measure was difference in mean global CBF. Incidence of vasospasm and 3, 6 and 12 month Glasgow Outcome Scale (GOS) score were also collected.36 12 month GOS was not reported. Patients and outcome assessors were blinded but the treating team was not.

\textit{Egge 2001}20

In this trial, 32 patients with confirmed aneurysmal SAH were randomised to either HHH therapy (n=16) or normovolaemic fluid therapy (n=16). Ruptured aneurysms were secured surgically within 72h of ictus onset. HHH was maintained using 5.0-5.5L daily intravenous fluid supplementation using colloid and crystalloid to target CVP 8-12mmH\textsubscript{2}O\textsubscript{2} and haematocrit 30-35\%. Additional dobutamine infusion was used if
required to maintain mean arterial pressure (MAP) >20mmHg above preoperative baseline. The primary outcome was not stated. GOS at 14 days and 1 year was measured. Vasospasm was detected on transcranial Doppler and single-photon emission computed tomography at day 12 and 1 year. Batteries of neuropsychological tests were also reported at 1 year. Patients and personnel were unblinded. Outcome assessors were blinded for most outcomes except GOS measurement.

Togashi 2015

This trial used a 2x2 factorial design to randomise 20 patients to either 10 days normovolaemia (n=10) or hypervolaemia (n=10) and to either 10 days of conventional blood pressure (CBP) or augmented blood pressure (ABP) control. All patients had angiographically proven SAH, underwent clipping or coiling <72h post-ictus and were randomised <72h post-ictus. Hypervolaemia was achieved with intravenous fluid supplementation at 60ml/kg/24h targeting a positive fluid balance of 1-2L/24h and CVP >8mmHg. The ABP group received noradrenaline or phenylephrine infusion to target systolic blood pressure (SBP) 140-160mmHg or SBP>160mmHg in the presence of vasospasm. The primary outcome measure was the modified Rankin Scale (mRS) score at 6 months post-ictus. Just 20 of 190 screened patients were randomised. This study was single blinded, with adequate allocation concealment and loss of one patient to follow up.

Gathier 2015

This trial randomised 36 patients to induced hypertension (n=13) or no hypertension (n=12). 11 patients were excluded because of protocol violations. All patients had aneurysmal subarachnoid haemorrhage and DND, defined as a decrease ≥ 1 point on the Glasgow coma scale (GCS) or development of new focal neurological deficit not
attributable to other cause.25 Patients in the induced hypertension group received noradrenaline infusion to raise MAP or SBP to a maximum of 130mmHg or 230mmHg, respectively. The primary outcome \textit{as published a priori in the study protocol} was “the proportion of poor outcome three months after randomization, defined as a modified Rankin scale of 4, 5, or death”. This however was not reported in the published report, which provided \textit{change in mean CBF at 36h post-randomisation}, estimated using CT perfusion scanning at development of DND and 24-36h post-randomisation \textit{as the primary outcome measure}. Baseline differences in mean World Federation of Neurosurgical Societies SAH grade between groups were noted and patients and personnel were unblinded. Outcome assessment was blinded.

\textit{Included cohort studies: risk of bias}

\textit{Yano 1993}30

This prospective cohort study compared 15 patients receiving prophylactic intravenous dobutamine infusion \textit{and volume expansion using 25% albumin or plasma fractionates} with 13 patients treated with a dobutamine infusion \textit{and} thromboxane A\textsubscript{2} synthetase inhibitor. Patients were admitted between 1989-1992. Treatment was instituted within 72h post-ictus in all patients immediately following surgical clipping of the ruptured aneurysm and continued until day 14 post-subarachnoid haemorrhage. The primary outcome was DND that the authors could not attribute to intraoperative complication, hydrocephalus, rebleed or metabolic disturbance. Study patients, personnel and outcome assessors were unblinded. Patient selection was not described and the protocol was not published a priori.
Vermeij 1998

This retrospective cohort study compared 176 patients admitted consecutively between 1977-1982 with 172 admitted from 1989-1992 with SAH secondary to angiographically proven aneurysm, or aneurysm suspected on the basis of distribution of blood. 176 patients admitted from 1977-1982 were empirically restricted to 1.5-2.0L daily fluid intake and treated with intravenous tranexamic acid 6g/24h. Those admitted from 1989-1992 prophylactically received >3L fluid intake daily, tranexamic acid 6g/24h and nimodipine (6x60mg/24h oral or 2mg/h intravenous). Patients underwent surgical clipping at day 12 post-ictus (intention to treat). This study was entirely unblinded with no protocol published a priori. Follow up at 3 month was complete. The primary outcome was not stated but DND and rebleeding rates were presented. Suspected ischaemic DND vs. autopsy/ computed tomography (CT) proven data was collected but not presented.

Tagami 2014

This multicenter prospective cohort study compared 62 patients treated with prophylactic HHH therapy with 116 who were not. All patients had angiographically proven aneurysmal SAH and underwent surgical clipping or endovascular coiling <4 days post-ictus. Entry into the treatment arm was selected by the treating physician, as was the means of achieving physiological HHH: either with fluid supplementation or drug induced hypertension. This study was registered with University Hospital Medical Information Network (UMIN) Clinical Trials Registry as UMIN-CTR ID UMIN000003794. The a priori stated primary outcomes were “patients' outcome, incidence of symptomatic vasospasm”. However the study report states the primary outcome as being changes in haemodynamic measures. Delayed cerebral ischaemia at
For Peer Review Only

14 days was defined as symptomatic vasospasm, infarction attributable to vasospasm, or both. Patient selection was not described and the study was unblinded. Follow-up data for 30 patients was incomplete.

Roy 2017

This retrospective cohort study included all patients who were treated at a single US center for DND secondary to SAH between January 2012 and October 2014 with either phenylephrine or noradrenaline. All patients had secured aneurysms. 45 patients received phenylephrine. 18 received norepinephrine. The choice of vasopressor was made at the discretion of the treating physician and no attempt at stratification was made. No blinding was described. Follow-up of all included patients at 3 months was complete. It is unclear if cases where follow up was incomplete were excluded. The primary outcome was not stated but requirement for change of vasopressor, cardiorespiratory complications and neurological outcome, mortality and discharge disposition were presented, with comparisons drawn between patients who received phenylephrine and those who received noradrenaline. Analysis was by intention to treat. Statistical analysis used univariate analyses only and although no significant differences were detected between groups at baseline, more patients in the noradrenaline group had a GCS<12, focal neurological deficits and radiologically proven vasospasm at baseline. No multivariable analysis was undertaken to attempt to adjust for these differences.

Effects of interventions

Included RCTs were highly heterogeneous: they utilised different means of primary outcome assessment and reported these at different time points post-ictus. Statistical assessment of heterogeneity by calculation of the I² statistic would have been unreliable and was therefore not undertaken. Meta-analysis was not attempted because of the high
degree of methodological heterogeneity.

Vasospasm prophylaxis: hypervolaemia vs. normovolaemia

Three RCTs compared prophylactic volume expansion using supplementary crystalloid or colloid to normovolaemic management.\(^\text{19, 20, 28}\) Lennihan, et al.\(^\text{19}\) demonstrated no statistically or clinically significant difference in their primary outcome of mean global CBF or in 3 or 6 month GOS. Complications occurred similarly frequently between groups.

Egge, et al.\(^\text{20}\) likewise demonstrated no significant differences in 14 day or 1 year GOS, radiological, or neuropsychological outcomes. They did however demonstrate a significant (\(p<0.001\)) increase in pooled complications occurring in the volume expansion group, including haemorrhagic diathesis and congestive cardiac failure.

Togashi, et al.\(^\text{28}\) also demonstrated no significant difference in 6-month mRS between groups. A non-significant trend towards increased serious adverse events in the hypervolaemic groups was demonstrated (risk ratio 4.0; 95\% confidence interval 0.5-29.8; \(p=0.12\)).

Two cohort studies compared prophylactic volume expansion to normovolaemic treatment.\(^\text{27, 29}\) Vermeij, et al.\(^\text{29}\) Showed reduced rates of DND at 28 days (\(P<=0.001\)) and 3 months (\(p=0.006\)) in the hypervolaemia group. However, these figures are associated with significant risk of confounding as the hypervolaemia group was treated with nimodipine whereas the normovolaemia group was not. For this analysis both groups received tranexamic acid. Rebleeding occurred in 59\% of hypervolaemic cases vs. 31\% of normovolaemic cases (\(p=0.011\)). Although some patients included in Tagami et al.’s\(^\text{27}\) study population received fluid supplementation, the proportion that did is not clear and outcome cannot be commented on.
None of the included studies examined the impact of prophylactic blood transfusion following SAH on vasospasm rates or clinical outcome.

Vasospasm prophylaxis: medically induced hypertension

Two RCTs compared medically induced hypertension to normotensive management as prophylaxis for vasospasm. Egge et al. used dobutamine in addition to fluid supplementation to raise MAP to >20mmHg above baseline blood pressure and the results of this trial are discussed above. Togashi et al. used noradrenaline or phenylephrine to augment blood pressure and demonstrated no difference in 6 month mRS in the ABP group compared with CBP group. Neuropsychological outcomes were significantly worse in the ABP group compared with the CBP group (57 vs. 85; p=0.04). There were no differences in adverse events between groups.

Two cohort studies compared medically induced hypertension to normovolaemic therapy. Tagami et al.’s study has been discussed above. In Yano et al.’s study the induced hypertension group was the control group for comparison with experimental use of a thromboxane A2 synthetase inhibitor. This study demonstrated unexpectedly high rates of DND in the experimental group and does not provide a valid comparison group to inform normal clinical practice.

Vasospasm treatment: induced hypertension

One RCT by Gathier, et al. examined the impact of noradrenaline infusion on change in CBF during active vasospasm. This study demonstrated a non-significant trend toward reduced drop in CBF during vasospasm with the treatment group having a
median difference of 0.1 (range −31 to 43) and the control having −8.5 (−42 to 30; p=0.25). Five serious adverse events, including death, myocardial infarction and cardiac arrhythmia, were recorded in the treatment group versus one in the control group.

One cohort study by Roy, et al.33 compared outcomes between patients treated for DND with noradrenaline with those treated with phenylephrine. This demonstrated that significantly more patients in the noradrenaline group exhibited neurological improvement (94% vs. 71%; p=0.01) and were discharged to home or an acute rehabilitation facility (94% vs 73%; p=0.02) than in the phenylephrine group. More patients in the phenylephrine group crossed over to use of a different vasopressor (64% vs. 33%; p=0.03). Similar numbers of complications were noted in both groups: 49% vs. 50% cardiac arrhythmia, 16% vs. 11% troponin elevation, and 24% vs. 22% pulmonary oedema for phenylephrine and noradrenaline, respectively.

\textit{Vasospasm treatment: volume expansion and blood transfusion}

No studies were included that examined the use of volume expansion or blood transfusion as treatments for vasospasm following SAH.

\textbf{Discussion}

\textbf{Summary of Evidence}

This systematic review included three small RCTs19,21,22,28. These did not demonstrate any significant difference in \textcolor{red}{any clinical} outcome \textcolor{red}{score} following induced hypervolaemia and haemodilution using intravenous fluid administration for vasospasm prophylaxis.19,20,28 One trial demonstrated a significant increase in serious adverse events associated with intravenous fluid administration.20
Two small RCTs were included which did not demonstrate any significant difference in outcome following medically induced hypertension for vasospasm prophylaxis.20, 28 Induced hypertension, hypervolaemia, and haemodilution were associated with increased serious adverse events in one trial.20 Isolated induced hypertension was associated with worsened neuropsychological performance in another trial.28

One small RCT was included which did not demonstrate any significant difference in outcome following medically induced hypertension for the treatment of established vasospasm.21, 22 More patients in the hypertension group suffered serious adverse events than in the control group, although this was not statistically quantified. One cohort study of moderate quality was included which demonstrated significant improvements in clinical outcome associated with initial noradrenaline use for treatment of DND, compared with phenylephrine was included33. Three low quality cohort studies were included, however, methodological and reporting limitations to these studies mean that they are unable to meaningfully inform on any of the studied interventions.27, 29, 30

\textit{What our study adds}

Our study identified two additional RCTs, not identified by the most recent previous systematic review of this subject, one of which is the largest RCT of any haemodynamic intervention in SAH conducted to date19, 20, 39. Furthermore, we have identified an additional three cohort studies, which, although identified, have been omitted from this prior\textit{not been included in previous} systematic reviews29, 30, 33, 39. Our study therefore provides the most comprehensive contemporary review of the limited evidence base and unanswered questions available to guide concerning the use of haemodynamic therapy for the treatment and prophylaxis of vasospasm following SAH. In spite of
years of intense research and the publication of numerous studies, it is disappointing
that because, of methodological limitations and a lack of statistical power, the efficacy
or non-efficacy of haemodynamic interventions for SAH remains unproven. Induced
hypertension using vasopressor or inotropic support is at present recommended in favor
of HHH by most guidelines and many units have adopted this approach. Indeed, a
perceived lack of equipoise by treating clinicians may have been a factor in the
HIMALAIA study’s failure to match recruitment targets. However, at present only
insufficiently powered randomised studies, observational studies and anecdote exist on
which to base this. As induction of hypertension may be associated with increased
serious adverse events it is essential that an adequately powered As a consequence,
recommendations from RCT be conducted to provide clinical guideline writing groups
lack a strong and individual clinicians with the evidence necessary to balance risks and benefits when recommending widespread adoption of
high risk management strategies.

Recommendations for further study

The studies included in this review do not provide a satisfactory evidence base on which
to guide clinical practice. Studies performed when the majority of aneurysms were
treated with surgical clipping may not be relevant in centers where endovascular coiling
predominates. It is therefore important that the efficacy of potentially harmful
haemodynamic manipulations for the treatment or prophylaxis of vasospasm following
SAH be investigated in an appropriately powered, blinded and randomised study.

Medically induced hypertension is an appropriate intervention for testing in an
RCT as it can be more easily quantified and achieved than a positive fluid balance.
Furthermore, concerns regarding the theoretically deleterious effects of haemodilution
on oxygen carrying capacity of blood are not relevant to medically induced
hypertension. As a radiological diagnosis of vasospasm does not always correlate with
clinical outcome, primary outcome of such a study must be based on a validated,
standardised clinical measure, such as the GOS or mRS.24, 36, 40 One RCT included in
this study was terminated early because of slow patient recruitment21. We estimate to
have 80% power to detect a 10% increase in patients with a favorable in 3-month GOS
(4-5) an RCT would have to recruit 133 patients to each treatment and control arm41.

\textbf{Induced hypertension has become entrenched practice in some UK centers and}
consequently use of a normotensive control group might be considered to be
unacceptable by these centers10. A pragmatic solution is to compare high and low
hypertensive blood pressure thresholds achieved using a standardised protocol. Protocol
development should be informed by a comprehensive national audit of practice. Audit
data from centers not routinely employing vasopressor induced hypertension could feed
into a before and after observational study with comparison against those enrolled in a
subsequent RCT. Recent years have seen a proliferation in neurosurgical research
collaboratives, such as the British Neurosurgical Trainees Research Collaborative,
which have successfully pooled UK neurosurgical efforts to facilitate patient
recruitment to large multicenter studies42-44. Use of a similar collaborative research
model may allow for patient recruitment to be successfully completed.10

\textbf{Limitations}

The trials included in this study were all small and not powered to reliably detect
differences in clinical outcomes. As a consequence it is not possible to determine
efficacy or non-efficacy of any of the studied interventions on the basis of this
systematic review. As the included trials were heterogeneous, meta-analysis would
have been misleading and was therefore not conducted.
Our study only surveyed the published literature and it is therefore possible that our conclusions are distorted by publication bias. However, publication bias tends to distort towards type 1 error, whereas our study has not demonstrated any statistically significant findings in favor of intervention.45

Conclusions

There is currently insufficient evidence to determine the efficacy or non-efficacy of intravenous volume expansion for prophylaxis or treatment of vasospasm following SAH. The use of intravenous pharmacological agents to induce systemic hypertension also lacks evidence of efficacy or non-efficacy for the treatment or prophylaxis of vasospasm following SAH. Both approaches are associated with serious adverse effects, the incidence of which is poorly quantified.

Table Caption

Table 1: Search terms

Table 2: Characteristics of included studies. NICU specialist neurointensive care unit; ICU general or not specified intensive care unit; MCU medium care unit; A Treatment was prophylactic (P) if commenced prior to suspicion of vasospasm and reactive (R) if introduced as a consequence of this. HV induced hypervolaemia; NV normovolaemia; NT normotension; HTN hypertension; B % lost to follow-up; C comparison group; I intervention group; NS primary outcome not stated – a representative outcome reported instead; CBF Cerebral blood flow; TXA\textsubscript{2} Thromboxane A\textsubscript{2}; FR fluid restriction; D means of achieving HHH varied from patient to patient and HHH was defined by treating clinician; MAP Mean arterial pressure; CI Cardiac index; GEDI Global end diastolic volume index; PE phenylephrine; NA Noradrenaline
Figure captions

Figure 1: Flow diagram of study selection: see text for details of excluded and included studies

Figure 2: Risk of bias in included RCTs. (Green – low risk; Red high risk)

References

URL: http://mc.manuscriptcentral.com/cbjn

38. Vergouwen MD, Vermeulen M, van Gijn J, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in

PRISMA 2009 Flow Diagram

Records identified through database searching (n = 434)

Additional records identified through other sources (n = 0)

Records after duplicates removed (n = 348)

Records excluded (n = 333)

Records screened (n = 348)

Full-text articles assessed for eligibility (n = 16)

Full-text articles excluded, with reasons (n = 6)

Studies included in qualitative synthesis (n = 8 studies; 9 articles)

Studies included in quantitative synthesis (meta-analysis) (n = 0)

For more information, visit www.prisma-statement.org.

URL: http://mc.manuscriptcentral.com/cbjn
Figure 2: Risk of bias in included RCTs. (Green – low risk; Red high risk)

113x178mm (72 x 72 DPI)
Search terms

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Treat</td>
</tr>
<tr>
<td>2</td>
<td>Therap*</td>
</tr>
<tr>
<td>3</td>
<td>1 OR 2</td>
</tr>
<tr>
<td>4</td>
<td>HHH</td>
</tr>
<tr>
<td>5</td>
<td>Triple H</td>
</tr>
<tr>
<td>6</td>
<td>Hypertens*</td>
</tr>
<tr>
<td>7</td>
<td>Haemodilut*</td>
</tr>
<tr>
<td>8</td>
<td>Hemodilut*</td>
</tr>
<tr>
<td>9</td>
<td>Hypervolaemi*</td>
</tr>
<tr>
<td>10</td>
<td>Hypervolemi*</td>
</tr>
<tr>
<td>11</td>
<td>4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10</td>
</tr>
<tr>
<td>12</td>
<td>3 AND 11</td>
</tr>
<tr>
<td>13</td>
<td>Subarachnoid haemorrhage</td>
</tr>
<tr>
<td>14</td>
<td>Subarachnoid hemorrhage</td>
</tr>
<tr>
<td>15</td>
<td>SAH</td>
</tr>
<tr>
<td>16</td>
<td>13 OR 14 OR 15</td>
</tr>
<tr>
<td>17</td>
<td>Cerebral vasospasm</td>
</tr>
<tr>
<td>18</td>
<td>Delayed cerebral ischaemia</td>
</tr>
<tr>
<td>19</td>
<td>Delayed cerebral ischemia</td>
</tr>
<tr>
<td>20</td>
<td>17 OR 18 OR 19</td>
</tr>
<tr>
<td>21</td>
<td>16 AND 20</td>
</tr>
<tr>
<td>22</td>
<td>12 AND 21</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Lennihan 2000</td>
<td>RCT</td>
</tr>
<tr>
<td>Egge 2001</td>
<td>RCT</td>
</tr>
<tr>
<td>Togashi 2015</td>
<td>RCT</td>
</tr>
<tr>
<td>Gather 2015</td>
<td>RCT</td>
</tr>
<tr>
<td>Yano 1993</td>
<td>Prospective cohort</td>
</tr>
<tr>
<td>Vermeij 1998</td>
<td>Retrospective cohort</td>
</tr>
<tr>
<td>Tagami 2014</td>
<td>Prospective cohort</td>
</tr>
<tr>
<td>Roy 2017</td>
<td>Retrospective cohort</td>
</tr>
</tbody>
</table>

^A prophylactic vs. reactive

^B attrition at primary outcome assessment
Medically induced hypertension, hypervolaemia and haemodilution for the treatment and prophylaxis of vasospasm following aneurysmal subarachnoid haemorrhage: Systematic Review Study Protocol

James JM. Loan MRCS MSc, Anthony N. Wiggins MRCS, Paul M. Brennan FRCS PhD.

1) Department of Neurosurgery, Institute of Neurological Sciences, Glasgow, UK

2) Department of Neurosurgery, Aberdeen Royal Infirmary, Foresterhill Road, Aberdeen, UK

3) Department of Clinical Neurosciences, Western General Hospital, Edinburgh, UK

Corresponding author:

Mr. James Loan, Department of Neurosurgery, Aberdeen Royal Infirmary, Foresterhill Road, Aberdeen, UK AB25 2ZN.

Telephone: 07792243876, Email: james.loan@nhs.net
PROTOCOL

Methods

Questions

1) Do medically induced prophylactic hypertension, haemodilution and hypervolaemia (HHH), or any combination thereof, improve clinical outcome following subarachnoid haemorrhage (SAH) compared with any other haemodynamic management strategy?

2) Do medically induced therapeutic hypertension, haemodilution and hypervolaemia (HHH), or any combination thereof, improve clinical outcome following subarachnoid haemorrhage (SAH) with delayed neurological deficit or vasospasm compared with any other haemodynamic management strategy?

Searches

We will search the following electronic databases: The Cochrane Database of Systematic Reviews, The Cochrane Central Register of Controlled Trials, MEDLINE (PubMed) and EMBASE (1947-2016). Grey Literature searching will be conducted on the OpenSIGLE database.

The search strategy has been designed using MeSH headings and Keywords identified by scoping searches.

Where references are identified from pearl or snowballing search strategies, these will be reported.

Search terms

Our search strategy has been developed on PubMed and includes the following terms (using standard abbreviations):

((((((subarachnoid haemorrhage) OR subarachnoid hemorrhage) OR SAH))
AND (((Cerebral vasospasm) OR delayed cerebral ischaemia) OR delayed cerebral ischemia))) AND (((((((HHH) OR Triple H) OR Hypertens*) OR Haemodilut*) OR Hemodilut*) OR Hypervolaemi*) OR Hypervolemi*))

This will be adapted for all other electronic databases.

Inclusion criteria
Condition being studied

We will include studies of all patients with spontaneous aneurysmal SAH where clipping or endovascular coiling has secured the aneurysm.

Participants

We will include studies of patients aged greater than 16 years. These may be drawn from any population with the condition of interest.

Intervention

We will include studies comparing patients with medically induced hypertension, hypervolaemia and/or haemodilution, or any combination thereof, with any other systemic haemodynamic management strategy for treatment/prophylaxis of vasospasm.

Comparator

Studies using valid comparison group receiving the same management strategy except for the intervention of interest will be included.

Types of study to be included

We will include studies using Randomised Clinical Trial (RCT) or Cohort study methodology.

Setting

We will include studies of patients managed in any hospital environment including critical care.

Outcome

We will include studies reporting any clinical outcome measure, including clinical outcome scores, vasospasm, and radiological evidence of ischaemic injury. Different definitions of vasospasm reported in the included literature will be described and analysed separately. Our primary outcomes are clinical outcome score using the Glasgow Outcome Score or modified Rankin score. Secondary outcomes include mortality and incidences of hyponatraemia, pulmonary oedema and cardiac events. Where other outcomes are reported these will be described.

Data handling and analysis

Data extraction

For each included study, the following data will be recorded: study design, participants, details and timing of interventions, comparisons drawn and study results. Any reported outcome measure will be collected.

Risk of bias assessment
For each included study risk of bias will be assessed by two authors (JJML, ANW). Any discrepancies between outcomes of risk of bias assessment will be resolved with consensus discussion between the whole review team. Risk of bias for RCTs will be assessed using the Cochrane Risk of Bias Assessment Tool. This assesses risk of bias in the following domains: random sequence generation; allocation concealment; blinding of trial participants and trial personnel; blinding of outcome assessment; completeness of data collection; and completeness of data reporting. Risk of bias for Cohort studies will be assessed in the following domains: selection bias; allocation concealment; blinding of trial participants and trial personnel; blinding of outcome assessment; completeness of data collection; and completeness of data reporting.

Strategy for data synthesis

All included studies will be reviewed for heterogeneity in methodology or differences in study populations, interventions and outcome assessment. Where low heterogeneity between multiple studies is detected on narrative review and effect size is reported, the I-squared statistic (%) will be calculated, with greater than 50% suggesting substantial heterogeneity. If substantial heterogeneity is detected, meta-analysis will not be attempted and we will present a narrative review only. If low heterogeneity is detected meta-analysis will be conducted according to the Cochrane Handbook For Systematic Reviews of Interventions.

Analysis of subgroups

We will analyse patients who receive haemodynamic interventions as a prophylactic or therapeutic measure separately. Different means of achieving the same physiological goal will be analysed separately.
Medically induced hypertension, hypervolaemia and haemodilution for the treatment and prophylaxis of vasospasm following aneurysmal subarachnoid haemorrhage: Systematic Review

ABSTRACT: Word count: 282
Purpose: Arterial vasospasm is a major cause of death and long-term disability following subarachnoid haemorrhage (SAH). The use of medically induced hypertension, hypervolaemia and/or haemodilution is widely practiced for prophylaxis and treatment of vasospasm following SAH. We aimed to determine if the quality of available research is adequate to inform use of haemodynamic management strategies to prevent or treat vasospasm following SAH.
Methods: Individual searches of the following databases were conducted: The Cochrane Database of Systematic Reviews, The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE and OpenSIGLE. Pertinent randomised clinical trials and cohort studies comparing any element or combination thereof: medically induced hypertension, hypervolaemia, and haemodilution were included. Data were extracted using standardised proformas and risk of bias assessed using a domain-based risk of bias assessment tool.
Results: 348 study reports were identified by our literature search. Eight studies were included, three of which examined both volume expansion and medically induced hypertension. Three randomised clinical trials and two cohort studies examining prophylactic volume expansion were included. Two trials of prophylactic medically induced hypertension and two cohort studies were included. One trial and one cohort study of medically induced hypertension for treatment of established vasospasm was included. These trials demonstrated no significant difference in any of the clinical outcome measures studied. No trials of blood transfusion were included.
Conclusions: There is currently insufficient evidence to determine the efficacy or non-efficacy of intravenous volume expansion, medically induced hypertension or blood transfusion for the treatment or prophylaxis of vasospasm following SAH. All of these approaches have been associated with adverse events, of unclear incidence. The current evidence base therefore cannot be used to reliably inform clinical practice. This is a priority for further research.
Keywords: subarachnoid haemorrhage, vasospasm, HHH, haemodynamic therapy
Introduction

Subarachnoid haemorrhage (SAH) accounts for around 5% of all cases of stroke and has a reported incidence of between 7-13 per 100,000 person years. Death occurred by 6 months in 26% of cases in one large series, with angiographic presence of cerebral vasospasm being a major predictor of subsequent morbidity and mortality.

Undiagnosed and insufficiently treated cerebral arterial vasospasm causing cerebral ischaemia has historically been implicated as a major cause of death at autopsy following subarachnoid haemorrhage, alongside rebleeding from untreated aneurysms. Although with modern, active treatment including haemodynamic intervention the association of vasospasm with mortality can be reduced, potentially disabling neurological deficits attributable to vasospasm continue to affect 20% of those who have not died prior to presentation to hospital. Controversy exists regarding the optimal strategy for the diagnosis, prevention and treatment of cerebral vasospasm. Options include use of systemic nimodipine, a calcium channel antagonist; cerebral angiography with local application of intra-arterial antispasmodics; angioplasty and stenting; and systemic haemodynamic manipulation.

Haemodynamic therapy, including medically induced hypertension, hypervolaemia and haemodilution – often referred to as HHH therapy – has been widely practiced for at least 20 years. American Stroke Association guidelines, based on a review of literature available in a single database prior to 2010, noted that evidence for all aspects of haemodynamic intervention was insufficient and consequently recommended maintenance of euvoalaemia and induction of hypertension for management of suspected vasospasm. Perhaps as a consequence of the limited strength of these recommendations, HHH therapy continues to be widely practiced - by
100% of respondents to one survey11. In one other recent survey of European practice, HHH was utilised more frequently than medically-induced hypertension alone5. Where haemodynamic augmentation is undertaken, the clinical targets, the timing and the means of their achievement vary considerably11,11 indicating uncertainty regarding the relative merits and risks of each of the components of HHH.

Aggressive intravenous administration of crystalloid or colloid is associated with hypertension and haemodilution.12, 13 This is proposed to optimize blood flow through the vasospastic vessel by improving cerebral perfusion pressure and reducing blood viscosity.12 However, excessive hypervolaemia risks precipitating acute heart failure. Significant haemodilution reduces the oxygen carrying capacity of blood and thus may impair cerebral oxygenation. To address these concerns, other approaches including normovolaemic fluid supplementation,14 vasopressor support,15 and blood transfusion16 have been attempted.

Although the incidence of vasospasm is believed to peak between 6-10 days post-SAH,17, 18 it remains unclear if is a prophylactic or a reactive approach to haemodynamic augmentation is best? It is also unclear which haemodynamic management strategy, if any, is preferable. Furthermore, a wide range of definitions for vasospasm exists – from the development of new, clinically evident focal or global neurologic deficits not attributable to another cause, to solely radiological diagnoses reliant on cerebral angiography, transcranial doppler, CT evidence of new ischaemic change or cerebral perfusion studies.19-23

Given the lack of existing literature to address these uncertainties in clinical practice, and inform guideline development we conducted a sensitive systematic review of published literature using multiple databases to determine if there is sufficient evidence to guide practice in use of medically induced hypertension, hypervolaemia and
haemodilution for the treatment and prophylaxis of vasospasm following aneurysmal SAH.

Methods

Our review protocol was not registered a priori. It is available on request from the corresponding author. This study was conducted as part of a series of systematic reviews and the study protocol specified our inclusion criteria for population, interventions, comparisons, outcomes and study types. It also specified how data-extraction and assessment of risk of bias would be conducted.

Objectives

Our primary research question was: “does prophylactic HHH therapy using crystalloid volume expansion improve clinical outcome as assessed using a standardised neurological clinical outcome score - such as modified Rankin Scale (mRS) or Glasgow Coma Scale (GCS) score - following aneurysmal SAH compared with no those managed with no haemodynamic augmentation?". Secondary outcomes included comparisons of outcome, rates of clinically evident delayed neurological deficit (DND) and of complications between patients managed with volume expansion, medically induced hypertension and blood transfusion – either therapeutically or as a prophylactic measure.

Inclusion criteria

Types of studies

We sought to identify included studies using a RCTs and or all cohort studies study
methodology. Prospective and retrospective studies were included, comparing HHH, or an element of HHH, with any alternative management strategy. Studies where both arms were treated with an element of HHH (e.g. induced hypervolaemia) but only one was managed with another element (e.g. induced hypertension) were included.

Types of participants

Studies of patients older than the age of 16 who had radiographic or biochemical evidence of SAH were identified. Only studies of patients with intracranial ruptured aneurysms secured using surgical clipping or endovascular coiling were included. Both studies reporting patients with vasospasm prior to intervention commencement and patients without vasospasm prior to intervention commencement were included but were analysed separately.

Types of intervention

Studies comparing HHH, or an element of HHH, with any alternative management strategy were included. Studies where both arms were treated with an element of HHH (e.g. induced hypervolaemia) but only one was managed with another element (e.g. induced hypertension) were included.

Types of comparator group

Studies using a valid comparison group receiving the same management strategy except for the intervention of interest were included.

Types of outcome measure

We included studies meeting the preceding criteria that used any reported outcome.
measure, including clinical outcome scores, incidence of vasospasm, and radiological
evidence of ischaemic injury. To reflect the high degree of uncertainty concerning the
optimal mode of diagnosis of vasospasm following SAH as well as treatment
thresholds, we elected to include studies utilizing any means of diagnosis of vasospasm,
with different definitions of vasospasm considered separately.

Vasospasm definitions permitted included clinical definitions of DND and radiological
evidence of vasospasm, although these groups were considered separately.

Search strategy

Scoping searches identified appropriate MeSH headings and keywords to allow for
sensitive systematic searches to be conducted. Keywords were mapped to appropriate
MeSH headings and truncated terms mapped to the first 600 appropriate MeSH
headings. The following electronic databases were then searched for items published up
to 9 May 2017: The Cochrane Database of Systematic Reviews, The Cochrane Central
Register of Controlled Trials, MEDLINE (PubMed) and EMBASE (1947-2016). Grey
Literature searching was performed for the OpenSIGLE database. Table 1 shows the
abbreviated search strategy. Snowballing and Pearl search strategies were used as
appropriate. The abstracts of all studies identified by our electronic search were
screened and if inclusion criteria were met the full study report was accessed and
considered for inclusion. If it was unclear from the abstract if inclusion criteria would
be met then the whole study was accessed for review.

Data collection and analysis

Data extraction and quality assessment

Each included study was reviewed by two authors (JL, AW) and the following data
recorded: the study design, participants, details and timing of interventions, comparisons drawn and study results. Any reported outcome measure was collected.

For RCTs, risk of bias in the following domains was assessed and judged as high, low or unknown risk, as per the validated Cochrane Risk of Bias Assessment Tool:\(^26\):

Random sequence generation; allocation concealment; blinding of trial participants and trial personnel; blinding of outcome assessment; completeness of data collection; and completeness of data reporting.

For cohort studies the following were assessed\(^26\): selection bias; allocation concealment; blinding of trial participants and trial personnel; blinding of outcome assessment; completeness of data collection; and completeness of data reporting.

Differences in reviewer opinion were resolved by consensus discussion.

Data analysis

Following quality assessment and data extraction, outputs of included studies were independently considered as applied to each of the following subgroups to determine their adequacy to inform clinical practice.

- **Prophylactic** (intervention introduced prior to vasospasm)
 - Crystalloid or colloid volume expansion
 - Blood transfusion
 - Medically induced hypertension

- **Therapeutic** (intervention introduced following proven or suspected vasospasm)
 - Crystalloid or colloid volume expansion
 - Blood transfusion
 - Medically induced hypertension
Meta-analysis and meta-biases

As significant methodological heterogeneity was found between studies it was not possible for us to attempt meaningful meta-analysis or attempt to statistically quantify for meta-biases such as publication bias.

Results

Description of studies

Our literature search yielded 348 abstracts (Figure 1). Of these, 165 reports of 154 studies were considered for inclusion in our review.15, 16, 19, 22, 27, 30, 33 One study was excluded as the treatment group included both those with hypervolaemic fluid supplementation and normovolaemic colloid administration and consequently effects of either of these interventions and consequent physiological changes could not be reliably attributed.35 Two studies were excluded as the majority of patients in the treatment group had suspected vasospasm whilst those in the control did not.15, 34 One study was excluded as it was unclear what fraction of the treatment and control groups had the primary outcome of vasospasm at enrollment and both treatment arms received noradrenaline for induction of hypertension.31 Another two were excluded because treatment with hypervolaemic and normovolaemic fluid administration was not dichotomized and fluid boluses were administered in all patients as a response to suspected vasospasm.31, 32 One other study was excluded as two of the three studied populations contained both patients who were receiving the study intervention to treat vasospasm and also patients for whom it was prophylactic.16 Eight studies were included in this review (Table 2).19, 22, 27, 30, 33

Four of the included studies were RCTs.19, 22, 28 Four were cohort studies27, 29, 30, 31; for one of these the study protocol was published prospectively.27 Seven reported
clinical outcomes. One reported only on cerebral blood flow (CBF), as measured using CT perfusion scanning. In six studies, the intervention was introduced as a prophylactic measure. In two studies the intervention was with therapeutic intent.

Included RCTs: risk of bias (figure 2)

Lennihan 2000\(^{19}\)

Patients in this RCT were randomly assigned to prophylactic hypervolaemic fluid management (n=41) or normovolaemia (n=41). All patients had SAH secondary to ruptured aneurysms, which underwent surgical clipping <6 days post-ictus. All patients were managed with intravenous colloid, with those in the hypervolaemic group receiving prophylactic supplementary 5% albumin solution targeting central venous pressure (CVP) 8mmHg or pulmonary artery diastolic pressure 14mmHg. All patients who developed vasospasm were managed according to the same protocol regardless of their group assignment. The primary outcome measure was difference in mean global CBF. Incidence of vasospasm and 3, 6 and 12 month Glasgow Outcome Scale (GOS) score were also collected. 12 month GOS was not reported. Patients and outcome assessors were blinded but the treating team was not.

Egge 2001\(^{20}\)

In this trial, 32 patients with confirmed aneurysmal SAH were randomised to either HHH therapy (n=16) or normovolaemic fluid therapy (n=16). Ruptured aneurysms were secured surgically within 72h of ictus onset. HHH was maintained using 5.0-5.5L daily intravenous fluid supplementation using colloid and crystalloid to target CVP 8-12mmHg and haematocrit 30-35%. Additional dobutamine infusion was used if
required to maintain mean arterial pressure (MAP) >20mmHg above preoperative baseline. The primary outcome was not stated. GOS at 14 days and 1 year was measured. Vasospasm was detected on transcranial Doppler and single-photon emission computed tomography at day 12 and 1 year. Batteries of neuropsychological tests were also reported at 1 year. Patients and personnel were unblinded. Outcome assessors were blinded for most outcomes except GOS measurement.

Togashi 201528

This trial used a 2x2 factorial design to randomise 20 patients to either 10 days normovolaemia (n=10) or hypervolaemia (n=10) and to either 10 days of conventional blood pressure (CBP) or augmented blood pressure (ABP) control. All patients had angiographically proven SAH, underwent clipping or coiling <72h post-ictus and were randomised <72h post-ictus. Hypervolaemia was achieved with intravenous fluid supplementation at 60ml/kg/24h targeting a positive fluid balance of 1-2L/24h and CVP >8mmHg. The ABP group received noradrenaline or phenylephrine infusion to target systolic blood pressure (SBP) 140-160mmHg or SBP>160mmHg in the presence of vasospasm. The primary outcome measure was the modified Rankin Scale (mRS) score at 6 months post-ictus.24 Just 20 of 190 screened patients were randomised. This study was single blinded, with adequate allocation concealment and loss of one patient to follow up.

Gathier 201521, 22

This trial randomised 36 patients to induced hypertension (n=13) or no hypertension (n=12). 11 patients were excluded because of protocol violations. All patients had aneurysmal subarachnoid haemorrhage and DND, defined as a decrease ≥ 1 point on the Glasgow coma scale (GCS) or development of new focal neurological deficit not
attributable to other cause. Patients in the induced hypertension group received noradrenaline infusion to raise MAP or SBP to a maximum of 130mmHg or 230mmHg, respectively. The primary outcome as published a priori in the study protocol was "the proportion of poor outcome three months after randomization, defined as a modified Rankin scale of 4, 5, or death". This however was not reported in the published report, which provided was change in mean CBF at 36h post-randomisation, estimated using CT perfusion scanning at development of DND and 24-36h post-randomisation as the primary outcome measure. Baseline differences in mean World Federation of Neurosurgical Societies SAH grade between groups were noted and patients and personnel were unblinded. Outcome assessment was blinded.

Included cohort studies: risk of bias

Yano 1993

This prospective cohort study compared 15 patients receiving prophylactic intravenous dobutamine infusion and volume expansion using 25% albumin or plasma fractionates with 13 patients treated with a dobutamine infusion and thromboxane A2 synthetase inhibitor. Patients were admitted between 1989-1992. Treatment was instituted within 72h post-ictus in all patients immediately following surgical clipping of the ruptured aneurysm and continued until day 14 post-subarachnoid haemorrhage. The primary outcome was DND that the authors could not attribute to intraoperative complication, hydrocephalus, rebleed or metabolic disturbance. Study patients, personnel and outcome assessors were unblinded. Patient selection was not described and the protocol was not published a priori.
Vermeij 1998

This retrospective cohort study compared 176 patients admitted consecutively between 1977-1982 with 172 admitted from 1989-1992 with SAH secondary to angiographically proven aneurysm, or aneurysm suspected on the basis of distribution of blood. 176 patients admitted from 1977-1982 were empirically restricted to 1.5-2.0L daily fluid intake and treated with intravenous tranexamic acid 6g/24h. Those admitted from 1989-1992 prophylactically received >3L fluid intake daily, tranexamic acid 6g/24h and nimodipine (6x60mg/24h oral or 2mg/h intravenous). Patients underwent surgical clipping at day 12 post-ictus (intention to treat). This study was entirely unblinded with no protocol published a priori. Follow up at 3 month was complete. The primary outcome was not stated but DND and rebleeding rates were presented. Suspected ischaemic DND vs. autopsy/ computed tomography (CT) proven data was collected but not presented.

Tagami 2014

This multicenter prospective cohort study compared 62 patients treated with prophylactic HHH therapy with 116 who were not. All patients had angiographically proven aneurysmal SAH and underwent surgical clipping or endovascular coiling <4 days post-ictus. Entry into the treatment arm was selected by the treating physician, as was the means of achieving physiological HHH: either with fluid supplementation or drug induced hypertension. This study was registered with University Hospital Medical Information Network (UMIN) Clinical Trials Registry as UMIN-CTR ID UMIN000003794. The a priori stated primary outcomes were “patients' outcome, incidence of symptomatic vasospasm”. However the study report states the primary outcome as being changes in haemodynamic measures. Delayed cerebral ischaemia at
14 days was defined as symptomatic vasospasm, infarction attributable to vasospasm, or both. Patient selection was not described and the study was unblinded. Follow-up data for 30 patients was incomplete.

Roy 2017

This retrospective cohort study included all patients who were treated at a single US center for DND secondary to SAH between January 2012 and October 2014 with either phenylephrine or noradrenaline. All patients had secured aneurysms. 45 patients received phenylephrine. 18 received norepinephrine. The choice of vasopressor was made at the discretion of the treating physician and no attempt at stratification was made. No blinding was described. Follow-up of all included patients at 3 months was complete. It is unclear if cases where follow up was incomplete were excluded. The primary outcome was not stated but requirement for change of vasopressor, cardiorespiratory complications and neurological outcome, mortality and discharge disposition were presented, with comparisons drawn between patients who received phenylephrine and those who received noradrenaline. Analysis was by intention to treat. Statistical analysis used univariate analyses only and although no significant differences were detected between groups at baseline, more patients in the noradrenaline group had a GCS<12, focal neurological deficits and radiologically proven vasospasm at baseline. No multivariable analysis was undertaken to attempt to adjust for these differences.

Effects of interventions

Included RCTs were highly heterogeneous: they utilised different means of primary outcome assessment and reported these at different time points post-ictus. Statistical assessment of heterogeneity by calculation of the I^2 statistic would have been unreliable and was therefore not undertaken. Meta-analysis was not attempted because of the high
degree of methodological heterogeneity.

Vasospasm prophylaxis: hypervolaemia vs. normovolaemia

Three RCTs compared prophylactic volume expansion using supplementary crystalloid or colloid to normovolaemic management. Lennihan, et al. demonstrated no statistically or clinically significant difference in their primary outcome of mean global CBF or in 3 or 6 month GOS. Complications occurred similarly frequently between groups.

Egge, et al. likewise demonstrated no significant differences in 14 day or 1 year GOS, radiological, or neuropsychological outcomes. They did however demonstrate a significant (p<0.001) increase in pooled complications occurring in the volume expansion group, including haemorrhagic diathesis and congestive cardiac failure.

Togashi, et al. also demonstrated no significant difference in 6-month mRS between groups. A non-significant trend towards increased serious adverse events in the hypervolaemic groups was demonstrated (risk ratio 4.0; 95% confidence interval 0.5-29.8; p=0.12).

Two cohort studies compared prophylactic volume expansion to normovolaemic treatment. Vermeij, et al. showed reduced rates of DND at 28 days (P<0.001) and 3 months (p=0.006) in the hypervolaemia group. However, these figures are associated with significant risk of confounding as the hypervolaemia group was treated with nimodipine whereas the normovolaemia group was not. For this analysis both groups received tranexamic acid. Rebleeding occurred in 59% of hypervolaemic cases vs. 31% of normovolaemic cases (p=0.011). Although some patients included in Tagami et al.’s study population received fluid supplementation, the proportion that did is not clear and outcome cannot be commented on.
Vasospasm prophylaxis: blood transfusion vs. no transfusion

None of the included studies examined the impact of prophylactic blood transfusion following SAH on vasospasm rates or clinical outcome.

Vasospasm prophylaxis: medically induced hypertension

Two RCTs compared medically induced hypertension to normotensive management as prophylaxis for vasospasm. Egge et al. used dobutamine in addition to fluid supplementation to raise MAP to >20mmHg above baseline blood pressure and the results of this trial are discussed above.

Togashi et al. used noradrenaline or phenylephrine to augment blood pressure and demonstrated no difference in 6 month mRS in the ABP group compared with CBP group. Neuropsychological outcomes were significantly worse in the ABP group compared with the CBP group (57 vs. 85; p=0.04). There were no differences in adverse events between groups.

Two cohort studies compared medically induced hypertension to normovolaemic therapy. Tagami et al.’s study has been discussed above. In Yano et al.’s study the induced hypertension group was the control group for comparison with experimental use of a thromboxane A2 synthetase inhibitor. This study demonstrated unexpectedly high rates of DND in the experimental group and does not provide a valid comparison group to inform normal clinical practice.

Vasospasm treatment: induced hypertension

One RCT by Gathier, et al. examined the impact of noradrenaline infusion on change in CBF during active vasospasm. This study demonstrated a non-significant trend toward reduced drop in CBF during vasospasm with the treatment group having a
median difference of 0.1 (range −31 to 43) and the control having -8.5 (−42 to 30; p=0.25). Five serious adverse events, including death, myocardial infarction and cardiac arrhythmia, were recorded in the treatment group versus one in the control group.

One cohort study by Roy, et al.33 compared outcomes between patients treated for DND with noradrenaline with those treated with phenylephrine. This demonstrated that significantly more patients in the noradrenaline group exhibited neurological improvement (94% vs. 71%; p=0.01) and were discharged to home or an acute rehabilitation facility (94% vs 73%; p=0.02) than in the phenylephrine group. More patients in the phenylephrine group crossed over to use of a different vasopressor (64% vs. 33%; p=0.03). Similar numbers of complications were noted in both groups: 49% vs. 50% cardiac arrhythmia, 16% vs. 11% troponin elevation, and 24% vs. 22% pulmonary oedema for phenylephrine and noradrenaline, respectively.

\textit{Vasospasm treatment: volume expansion and blood transfusion}

No studies were included that examined the use of volume expansion or blood transfusion as treatments for vasospasm following SAH.

\textbf{Discussion}

\textbf{Summary of Evidence}

This systematic review included three small RCTs19, 21, 22, 28. These did not demonstrate any significant difference in \textit{any clinical outcome score} following induced hypervolaemia and haemodilution using intravenous fluid administration for vasospasm prophylaxis.19, 20, 28 One trial demonstrated a significant increase in serious adverse events associated with intravenous fluid administration.20
Two small RCTs were included which did not demonstrate any significant difference in outcome following medically induced hypertension for vasospasm prophylaxis.20, 28 Induced hypertension, hypervolaemia, and haemodilution were associated with increased serious adverse events in one trial.20 Isolated induced hypertension was associated with worsened neuropsychological performance in another trial.28

One small RCT was included which did not demonstrate any significant difference in outcome following medically induced hypertension for the treatment of established vasospasm.21, 22 More patients in the hypertension group suffered serious adverse events than in the control group, although this was not statistically quantified.

One cohort study of moderate quality \textit{was included which} demonstrated significant improvements in clinical outcome associated with initial noradrenaline use for treatment of DND, compared with phenylephrine \textit{was included}.33

Three low quality cohort studies were included, however, methodological and reporting limitations to these studies mean that they are unable to meaningfully inform on any of the studied interventions.27, 29, 30

\textit{What our study adds}

Our study identified two additional RCTs, not identified by the most recent previous systematic review of this subject, one of which is the largest RCT of any haemodynamic intervention in SAH conducted to date19, 20, 39. Furthermore, we have identified an additional three cohort studies, which, \textit{although identified}, have been omitted from this prior not \textit{been included in previous} systematic reviews29, 30, 33, 39. Our study therefore provides the most comprehensive contemporary review of the \textit{limited} evidence base and unanswered questions available to guide concerning the use of haemodynamic therapy for the treatment and prophylaxis of vasospasm following SAH. In spite of
years of intense research and the publication of numerous studies, it is disappointing
that because, of methodological limitations and a lack of statistical power, the efficacy
or non-efficacy of haemodynamic interventions for SAH remains unproven. Induced
hypertension using vasopressor or inotropic support is at present recommended in favor
of HHH by most guidelines and many units have adopted this approach.5,10,11 Indeed, a
perceived lack of equipoise by treating clinicians may have been a factor in the
HIMALAIA study’s failure to match recruitment targets.21,22 However, at present only
insufficiently powered randomised studies, observational studies and anecdote exist on
which to base this. As induction of hypertension may be associated with increased
serious adverse events it is essential that an adequately powered As a consequence,
recommendations from RCT be conducted to provide clinical guideline writing groups
lack a strong groups and individual clinicians with the evidence - evidence basebase
necessary to balance risks and benefits when recommending widespread adoption of
high risk management strategies.10

\textit{Recommendations for further study}

The studies included in this review do not provide a satisfactory evidence base on which
to guide clinical practice. Studies performed when the majority of aneurysms were
treated with surgical clipping may not be relevant in centers where endovascular coiling
predominates.13 It is therefore important that the efficacy of potentially harmful
haemodynamic manipulations for the treatment or prophylaxis of vasospasm following
SAH be investigated in an appropriately powered, blinded and randomised study.

Medically induced hypertension is an appropriate intervention for testing in an
RCT as it can be more easily quantified and achieved than a positive fluid balance.
Furthermore, concerns regarding the theoretically deleterious effects of haemodilution
on oxygen carrying capacity of blood are not relevant to medically induced
hypertension. As a radiological diagnosis of vasospasm does not always correlate with clinical outcome, primary outcome of such a study must be based on a validated, standardised clinical measure, such as the GOS or mRS.24,36,40 One RCT included in this study was terminated early because of slow patient recruitment21. We estimate to have 80% power to detect a 10% increase in patients with a favorable in 3-month GOS (4-5) an RCT would have to recruit 133 patients to each treatment and control arm41.

Induced hypertension has become entrenched practice in some UK centers and consequently use of a normotensive control group might be considered to be unacceptable by these centers10. A pragmatic solution is to compare high and low hypertensive blood pressure thresholds achieved using a standardised protocol. Protocol development should be informed by a comprehensive national audit of practice. Audit data from centers not routinely employing vasopressor induced hypertension could feed into a before and after observational study with comparison against those enrolled in a subsequent RCT. Recent years have seen a proliferation in neurosurgical research collaboratives, such as the British Neurosurgical Trainees Research Collaborative, which have successfully pooled UK neurosurgical efforts to facilitate patient recruitment to large multicenter studies42-44. Use of a similar collaborative research model may allow for patient recruitment to be successfully completed.10

Limitations

The trials included in this study were all small and not powered to reliably detect differences in clinical outcomes. As a consequence it is not possible to determine efficacy or non-efficacy of any of the studied interventions on the basis of this systematic review. As the included trials were heterogeneous, meta-analysis would have been misleading and was therefore not conducted.
Our study only surveyed the published literature and it is therefore possible that our conclusions are distorted by publication bias. However, publication bias tends to distort towards type 1 error, whereas our study has not demonstrated any statistically significant findings in favor of intervention.45

Conclusions

There is currently insufficient evidence to determine the efficacy or non-efficacy of intravenous volume expansion for prophylaxis or treatment of vasospasm following SAH. The use of intravenous pharmacological agents to induce systemic hypertension also lacks evidence of efficacy or non-efficacy for the treatment or prophylaxis of vasospasm following SAH. Both approaches are associated with serious adverse effects, the incidence of which is poorly quantified.

Table Caption

Table 1: Search terms

Table 2: Characteristics of included studies. NICU specialist neurointensive care unit; ICU general or not specified intensive care unit; MCU medium care unit; A Treatment was prophylactic (P) if commenced prior to suspicion of vasospasm and reactive (R) if introduced as a consequence of this. HV induced hypervolaemia; NV normovolaemia; NT normotension; HTN hypertension; B % lost to follow-up; C comparison group; I intervention group; NS primary outcome not stated – a representative outcome reported instead; CBF Cerebral blood flow; TXA2 Thromboxane A2; FR fluid restriction; D means of achieving HHH varied from patient to patient and HHH was defined by treating clinician; MAP Mean arterial pressure; CI Cardiac index; GEDI Global end diastolic volume index; PE phenylephrine; NA Noradrenaline
Figure captions

Figure 1: Flow diagram of study selection: see text for details of excluded and included studies

Figure 2: Risk of bias in included RCTs. (Green – low risk; Red high risk)

References

38. Vergouwen MD, Vermeulen M, van Gijn J, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in
clinical trials and observational studies: proposal of a multidisciplinary research

