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Abstract

Large language models (LLMs) can store a significant amount of factual knowledge
in their parameters. However, their parametric knowledge may conflict with the
information provided in the context. Such conflicts can lead to undesirable model
behaviour, such as reliance on outdated or incorrect information. In this work,
we investigate whether LLMs can identify knowledge conflicts and whether it is
possible to know which source of knowledge the model will rely on by analysing
the residual stream of the LLM. Through probing tasks, we find that LLMs can
internally register the signal of knowledge conflict in the residual stream, which can
be accurately detected by probing the intermediate model activations. This allows
us to detect conflicts within the residual stream before generating the answers
without modifying the input or model parameters. Moreover, we find that the
residual stream shows significantly different patterns when the model relies on
contextual knowledge versus parametric knowledge to resolve conflicts. This
pattern can be employed to estimate the behaviour of LLMs when conflict happens
and prevent unexpected answers before producing the answers. Our analysis offers
insights into how LLMs internally manage knowledge conflicts and provides a
foundation for developing methods to control the knowledge selection processes.

1 Introduction

Large language models (LLMs) have shown remarkable capability to memorise factual knowledge
and solve knowledge-intensive tasks [Petroni et al., 2019, Brown, 2020, Touvron et al., 2023, Jiang
et al., 2023, Team et al., 2023]. Nevertheless, the knowledge stored in their parameters (parametric
knowledge) can be inaccurate or outdated. To alleviate this issue, retrieval and tool-augmented
approaches have been widely adopted to provide LLMs with external knowledge (contextual knowl-
edge) [Karpukhin et al., 2020, Lewis et al., 2020, Wu et al., 2022, Schick et al., 2024]. However,
such contextual knowledge can include information that conflicts with the parametric knowledge of
the model, which may result in undesired behaviour; for example, the model can rely on inaccurate
information sources and produce inaccurate generations [Mallen et al., 2023, Xie et al., 2024, Su
et al., 2024, Wang et al., 2023, Hong et al., 2024, Zhao et al., 2024].

Prior research found that LLMs tend to prefer contextual knowledge (e.g. retrieved passages) over
their parametric knowledge [Su et al., 2024, Xie et al., 2024]. However, in more general applications,
LLMs should retain the ability to use parametric knowledge when presented with incorrect or
undesirable information [Chen and Shu, 2023b,a, Zou et al., 2024, Mallen et al., 2023, Zhong et al.,
2023]. To achieve this goal, LLMs are expected to acknowledge the existence of conflicts, allowing
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them to alert the user while keeping the decision-making process under the user’s control for further
action. Existing works investigate the fine-tuning and prompting-based strategies to detect knowledge
conflicts [Wang et al., 2023]. These methods need additional interactions with the model, e.g., by
asking the LLMs to examine the conflicts sentence by sentence [Wang et al., 2023], which may result
in high latency times and prevent practical applications of these models. Additionally, they do not
provide insight into how LLMs internally detect and resolve conflicts.

In this work, we analyse the residual stream [Elhage et al., 2021, Olsson et al., 2022] in LLMs to
better understand their behaviour when knowledge conflicts arise, especially between parametric
knowledge and contextual knowledge. Our probing experiments on the residual stream indicate that
the signal of knowledge conflict rises from the intermediate layers (e.g., the 13th layer of Llama3-8B).
Utilising this signal, a simple logistic regression model can achieve 90% accuracy in knowledge
conflict detection without modifying the input and parameters of LLMs while introducing only
a negligible computation overhead. Moreover, we also observe that the residual stream exhibits
different patterns starting from the middle layers (e.g., the 17th layers of Llama3-8B) when the
model takes different source information to resolve the conflict. For example, when the model uses
contextual knowledge, the residual stream exhibits a significantly more skewed distribution compared
with when it uses its parametric knowledge.

In conclusion, our analysis of the residual stream reveals that: 1) LLMs exhibit internal mechanisms
for identifying conflicts, and this signal can be leveraged to detect conflicts effectively in the mid-
layers of LLMs; 2) LLMs display distinct skewness patterns in the residual stream when using
different sources of information, which provides insights on the model’s behaviour.

2 Background and Methods

Residual Stream We examine the Transformer architecture from the perspective of the residual
stream [Elhage et al., 2021, Olsson et al., 2022]. In this framework, tokens flow through the model,
with their embeddings being modified by vector additions from the attention and feed-forward blocks
in each layer. We denote the hidden states at position i at l-th layer as hl

i ∈ Rd, where d is the
dimension of the internal states of the model. The model produces the initial residual stream h0

i
by applying an embedding matrix to the tokens. Then, the model modifies the residual stream by
a sequence of L layers Transformers, where each Transformer layer consists of a Self-Attention
block and MLP at l-th layer. Formally, denote ali and ml

i as the activations of Self-Attention and
MLP respectively, the update of the residual stream at l-th layer is hl′ = LayerNorm(hl−1) + ali and
hl = LayerNorm(hl′) +ml

i.

Linear Probing Linear probing [Conneau et al., 2018, Zhu and Li, 2023, Allen-Zhu and Li, 2023]
is a commonly used technique to analyse whether certain information is encoded within the residual
stream of a language model. Specifically, for an activation x from the residual stream, i.e., h, a, or
m, a logistic regression model is applied to perform binary classification: P (y = 1|x) = δ (xW),
where W ∈ Rd×1 is the learned weight that linearly projects the activation into a scalar value , and δ
is the Sigmoid function that outputs the likelihood of probed information existing in the activation.

3 Experimental Setup

Problem Setup Following previous studies [Longpre et al., 2021, Hong et al., 2024, Xie et al.,
2024, Su et al., 2024, Wang et al., 2023], we use open-domain question-answering (ODQA) tasks
to investigate the behaviours of LLMs when there is a conflict between the model’s parametric
knowledge and contextual knowledge. In ODQA datasets with knowledge conflicts, each instance
is presented as (q, eM , eC , aM , aC), where q is the question, eM is the evidence that supports the
memorised knowledge, eC is the evidence that conflicts with the language model’s memorised
knowledge, aM is the answer based on and eM , and aC is the answer based on the eC . The model’s
parametric knowledge is tested in the close-book setting, where the model generates answer aM
based on the question q without external evidence. We generate the answers using a greedy decoding
strategy. We use three in-context demonstrations to align the answer format and, for fairness, use the
same in-context demonstrations in all experiments.
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Figure 1: Accuracy, AUROC, and AUPRC of probing models on detecting the knowledge conflicts
based on the activations of Llama3-8B. The probing results on hidden state, MLP and Self-Attention
activation are coloured red, blue and green, respectively. More analysis is presented in Appendix B.

Datasets and Models We use NQSwap [Longpre et al., 2021], Macnoise [Hong et al., 2024] and
ConflictQA [Xie et al., 2024] to analyse the residual stream when knowledge conflicts arise. We
present the experiment results of NQSwap using Llama3-8B [Dubey et al., 2024] in the main paper,
and the results of other datasets and models are provided in Appendix B and Appendix C. The training
details of the probing model are presented in Appendix A

4 Results and Findings

In this work, we aim to answer the two following research questions: 1) Can we identify the conflict
between context and parameter knowledge by probing the residual stream? 2) Can we know which
source of knowledge the models will use before they generate the answers? We probe and analyse
the residual stream to answer these two questions in the following parts.

Identifying Knowledge Conflicts by Probing the Residual Stream We analyse whether language
models can identify contextual-parametric knowledge conflicts by probing the residual stream. To
this end, we create two groups of instances, DeC = {(q, eC)} and DeM = {(q, eM )}, where the
model generates answers based on conflict evidence in DeC and non-conflict evidence in DeM . The
probing model is trained to classify whether a given activation is from DeC or DeM . We probe the
residual stream at the final position to determine if the model is aware of the conflict during the first
token generation. This is because the hidden state at the last position in the output layer is used
to predict the first token of the answer. For each activation hl, al and ml at each layer, we train a
probing model to classify whether it belongs to DeM or DeC .

As shown in Figure 1(b) and Figure 1(c), the AUROC and AUPRC of the probing models increase
from the first layer to the 14th layer, and this trend is same across the hidden state, MLP, and
Self-Attention activations. In Figure 1(a), the accuracy of the probing models at the early layers is
random; similar to the trend of AUROC and AUPRC, the accuracy also reaches the highest score at
the 14th layer. The above observation indicates that the residual stream does not contain information
about knowledge conflict at the early layers. This information rises from around the 8th layer and
reaches the highest point at the 14th layer.

After the 14th layer, the probing model’s performance decreases slightly until the last layer. Besides,
we also observe that the probing results of MLP and Self-Attention activations show a significantly
lower accuracy than the hidden state after the 14th layer, which may suggest that MLP and Self-
Attention do not provide further conflicting information into the residual stream. We find the same
trend using Llama2-7B as shown in Figure 4.

Analysis of the Residual Stream When LLMs Using Different Sources of Knowledge We
investigate the distribution patterns of the residual stream when the language model uses different
sources of information to generate the answer. Based on the model’s predictions on instances belongs
to DeC , we classify them into two groups: DeC

aC
and DeC

aM
. Here, DeC

aC
represents the set of instances

where the model’s predictions align with aC , while DeC
aM

contains the instances where the predictions

3
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Figure 2: Skewness of the hidden state activations of Llama3-8B when in presence of knowledge
conflicts. Blue and red lines represent the skewness of hidden states from DeC

aC
and DeC

aM
, respectively.

Higher scores indicate a more skewed distribution. Additional analyses are available in Appendix C.
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Figure 3: Accuracy, AUROC, and AUPRC of probing models on predicting which source of knowl-
edge the model will use to predict the answer in Llama3-8B. More results are Skewness of the hidden
state activations of Llama3-8B when the model uses knowledge from different sources to predict the
answer. Additional results are available in Appendix E.

align with aM . The model uses contextual knowledge and parametric knowledge to answer the
questions from DeC

aC
and DeC

aM
, respectively.

First, we examine the residual streams’ distribution patterns in the two groups of instances DeC
aC

and
DeC

aM
. We measure the skewness of the residual stream using Kurtosis, Hoyer and Gini index. We

present the results of NQSwap using Llama3-8B in Figure 2, and more results are provided in the
Appendix C. We find that when the model uses contextual knowledge for prediction (DeC

aC
, blue

lines shown in Figure 2), the residual stream shows a significantly skewed distribution compared
with using parametric knowledge from the 20th to 30th layers. Therefore, the distribution patterns
of the residual stream can indicate the model will use different sources of knowledge. It provides
the foundation for predicting the model’s behaviour in advance, which can be used to mitigate the
generation of undesirable responses in advance.

Based on the above observation, we probe the residual stream to analyse the possibility of predicting
which source of knowledge will be used to generate the answer. The probing model is trained to
classify whether the model will generate aC or aM based on the activation from DeC

aC
or DeC

aM
. We

present the probing results in Figure 3. We observe that the probing model’s performance gradually
improves from the first layer to the 16th layer, which occurs after the signal of knowledge conflict
has already reached its peak at the 13th and 14th layers. This observation suggests that the decision
of which knowledge to use occurs after the detection of the knowledge conflict signal.

5 Related Work

Contextual and parametric knowledge conflict can happen when the retrieved external knowledge
in the context does not agree with the parametric knowledge which is memorised during pre-
training [Longpre et al., 2021, Xu et al., 2024, Xie et al., 2024, Su et al., 2024, Wang et al., 2023,
Mallen et al., 2023]. Previous works found models may prefer the contextual knowledge [Wang et al.,
2023, Su et al., 2024, Xie et al., 2024, Ortu et al., 2024] when parametric and contextual knowledge
conflicts, and the relevance, length, and the number of the evidence will influence the model’s
preferences [Xie et al., 2024, Su et al., 2024]. To detect the conflict, previous work [Wang et al.,
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2023] designed a multi-step prompting strategy to detect the knowledge, which involves parametric
knowledge generation, fine-grained sentence consistency checking, and potential conflict reduction.
However, this pipeline significantly reduces efficiency and lacks an understanding of the mechanism
of how LLMs detect and resolve conflict.

6 Conclusions

In this work, we analyse the residual stream of the language models when context-parameter knowl-
edge conflicts. First, we find that LLMs exhibit internal mechanisms for identifying conflicts in the
mid-layers. Second, we find that the residual stream shows distinct skewness patterns when the model
uses context and parametric knowledge to predict. Our analysis provides insights into the behaviour
of LLMs in the presence of knowledge conflicts.
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A Probing Model Training Settings

For all probing experiments, we train the probing model with an L1 norm regularisation. The training
objective is L = − logP (y = yi) + λ∥W∥1, where we set λ to 3 × 10−4 and yi is the label. We
train 20 times with different random seeds for each probing task, and we report the average and
deviation in our experiments. We split the training and test datasets for the probing tasks, ensuring no
overlapping questions between them.

B More Experimental Results on Knowledge Conflict Probing

We present the knowledge conflict probing results on Macnoise, NQSwap, ConflictQA using Llama2-
7B in Figure 4, Figure 5 and Figure 6. The results match the trend discussed in Section 4, where the
model exhibits an internal mechanism for identifying conflicts. The signal of knowledge conflict
peaks around the 13th to 14th layers and gradually decreases in the later layers.
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Figure 4: Knowledge conflict probing results using Llama2-7B on NQSwap.
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Figure 5: Knowledge conflict probing results using Llama2-7B on Macnoise.
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Figure 6: Knowledge conflict probing results using Llama2-7B on ConflictQA.
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C More Analysis of Skewness Patterns of Residual Streams

We present the skewness of the hidden state of Llama2-7B on NQSwap in Figure 7. It shows the same
pattern as we discussed in Figure 2, where the residual stream exhibits significantly more skewed
distribution when using contextual knowledge compared with using parametric knowledge from the
17th layer.

In addition to NQSwap, we analyse the skewness pattern using Macnoise [Hong et al., 2024] and
ConflictQA [Xie et al., 2024]. As shown in Figure 8, Figure 9, Figure 10, we find that the model also
shows a similar skewness pattern with NQSwap, where the residual stream exhibits a more skewed
distribution from middle layers when the model uses the contextual knowledge.

We also analyse the skewness of MLP and Self-Attention activations, presented in Figure 11, Fig-
ure 12, Figure 13, and Figure 14. However, we do not observe a specific skewness pattern in MLP
and Self-Attention activations.
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Figure 7: Skewness of the hidden states of Llama2-7B on NQSwap.
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Figure 8: Skewness of the hidden states of Llama3-8B on Macnoise.
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Figure 9: Skewness of the hidden states of Llama2-7B on Macnoise.
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Figure 10: Skewness of the hidden states of Llama-27B on ConflictQA.
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Figure 11: Skewness of the MLP activation of Llama3-8B on NQSwap.
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Figure 12: Skewness of the Self-Attention activation of Llama3-8B on NQSwap.
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Figure 13: Skewness of the MLP activation of Llama2-7B on NQSwap.
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Figure 14: Skewness of the Self-Attention activation of Llama2-7B on NQSwap.
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D L1 Norm and L2 Norm Values of Residual Streams

We present L1 Norm and L2 Norm of the residual stream in the Figure 15 and Figure 16. We found
that though the residual stream show distinct skewness patterns in DeC

aC
and DeC

aM
, the L1 norm and

L2 norm of the them do not have a significant difference.
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Figure 15: L1 norm and L2 norm of the hidden states of Llama3-8B on NQSwap.
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Figure 16: L1 norm and L2 norm of the hidden states of Llama2-7B on NQSwap.
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E More Experimental Results on Knowledge Selection Probing

We present additional knowledge selection probing results on NQSwap and Macnoise using Llama2-
7B and Llama3-8B in Figure 17, Figure 18 and Figure 19. The results show a similar trend as shown
in Figure 3, where the probing model reaches the highest accuracy at around the 17th layer, which is
later than the aggregation of knowledge conflict signal at the 14th layer.
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Figure 17: Knowledge selection probing results using Llama2-7B on NQSwap.
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Figure 18: Knowledge selection probing results using Llama2-7B on Macnoise.
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Figure 19: Knowledge selection probing results using Llama3-8B on Macnoise.
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