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ARTICLE

Distinct Campylobacter fetus lineages adapted as
livestock pathogens and human pathobionts in the
intestinal microbiota
Gregorio Iraola et al.#

Campylobacter fetus is a venereal pathogen of cattle and sheep, and an opportunistic human

pathogen. It is often assumed that C. fetus infection occurs in humans as a zoonosis

through food chain transmission. Here we show that mammalian C. fetus consists of distinct

evolutionary lineages, primarily associated with either human or bovine hosts. We use whole-

genome phylogenetics on 182 strains from 17 countries to provide evidence that C. fetus may

have originated in humans around 10,500 years ago and may have “jumped” into cattle

during the livestock domestication period. We detect C. fetus genomes in 8% of healthy

human fecal metagenomes, where the human-associated lineages are the dominant type

(78%). Thus, our work suggests that C. fetus is an unappreciated human intestinal pathobiont

likely spread by human to human transmission. This genome-based evolutionary framework

will facilitate C. fetus epidemiology research and the development of improved molecular

diagnostics and prevention schemes for this neglected pathogen.
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The species Campylobacter fetus is currently divided in three
subspecies based on traditional biochemical and genotyp-
ing methods: C. fetus subsp. venerealis (Cfv) and C. fetus

subsp. fetus (Cff) are associated with infections in mammals1–3,
while C. fetus subsp. testudinum (Cft) is primarily isolated from
reptiles4. The application of multilocus sequence typing (MLST)
has shown that reptile-associated Cft are genetically distant from
mammal-associated Cfv and Cff, which show high genetic
relatedness5, 6. More recently the comparison of whole-genome
sequences confirmed that Cft and Cff/Cfv represent distinct and
divergent evolutionary lineages associated with reptiles and
mammals, respectively7. Despite the importance of Cff/Cfv in
livestock and human health, its genomic evolution within
mammals remains poorly understood. Two recent whole genome
based studies revealed incongruences between the phylogenetic
structure of the Cff/Cfv population and the biochemical features
used for their discrimination, questioning the clinical relevance of
subtyping mammal strains8, 9. Accordingly, effective infection
prevention and control schemes require a robust phylogenetic
framework describing the host-associated evolution of C. fetus in
mammals. Many important questions remain unanswered
regarding the evolutionary relationship between strains isolated
from bovine and human hosts, the transmission patterns of
C. fetus between mammal hosts, and the actual potential of this
species as a zoonotic pathogen.

In this work, we evidence the presence of distinct C. fetus
lineages that have primarily adapted to humans or cattle. We
propose that C. fetus may have originated as a human pathobiont
present in the intestinal microbiota of healthy individuals and
then host jumped to cattle and adapted as a venereal pathogen.
Our work provides the phylogenetic and evolutionary framework
to guide the development of methods for differentiation and
epidemiological surveillance of the bovine and human lineages.

Results
A global C. fetus collection. To investigate the population
structure and genomic evolution of mammal associated C. fetus
we whole-genome sequenced 177 C. fetus strains isolated from 13
different countries and 5 different hosts, and combined our data
with 11 published genomes sampled from 4 additional countries,
giving a total data set of 188 genomes coming from strains iso-
lated from 1952 to 2015 (63 years). To confirm species mem-
bership, the average nucleotide identity (ANI) was calculated for
all possible pairs of genomes10. This analysis revealed a group of 6
genomes with an ANI <95% compared to the other genomes
(two public and four sequenced as part of our study), which were
assigned to the subspecies Cft due to high genomic divergence
and were therefore removed from subsequent analysis. It is
noteworthy that Cff/Cfv and Cft could be classified in two distinct
species (ANI<95%). The remaining 182 Cff/Cfv genomes belong
to a single species (ANI>95%; Supplementary Fig. 1) and were
isolated from 4 different mammal hosts: 91 from bovines, 77 from
humans, 13 from ovines and 1 from a monkey in captivity
(Supplementary Data 1 and https://microreact.org/project/
Bke4QRtHx).

Phylogenetic structure, host-association and transmission. We
built a time-scaled phylogeny and applied a Bayesian-clustering
method (BAPS)11 over the core genome to understand the genetic
structure of the C. fetus population (Supplementary Fig. 2). BAPS
identified eight clusters consistent with the observed phylogenetic
structure (Fig. 1a). The average number of core genome SNPs for
isolates belonging to the same cluster was 90 (IQR = 38–142)
while it increased to 558 for isolates belonging to different clusters
(IQR = 231–885). Based on the phylogeny we estimated the time

of divergence from the most recent common ancestor for the
eight clusters to ~10,500 years ago (95% HPD = 8000–14,000).
This estimation was not affected by confounding effects caused
by previously identified sampling biases12–14 (Supplementary
Figs. 3, 4; Methods section). The average substitution rate was
2.9 × 10−5 s/s/y (95% HPD: 2.1 × 10−5–5.1 × 10−6), which is
comparable to estimations made for C. jejuni (around 3.2 × 10−5

s/s/y)15 and falls within the interval inferred for different gram-
negative and gram-positive bacterial data sets with temporal
structure16. Comparison of the genetic structure defined by the
phylogeny and the host type of each isolate using a Bayesian Tip-
association Significance (BaTS) test17 revealed a significant
association of the population structure to each host type, parti-
cularly for human and bovine hosts (Supplementary Fig. 5). The
uneven distribution of host type across the different C. fetus
clusters is shown Fig. 1b. As a general trend, cluster 1 is associated
to bovine hosts (with 99% of bovine strains) and is referred to as
the modern bovine lineage. The origin of this lineage was traced
around 2500 years ago (95% HPD = 1500–4000), suggesting the
establishment of a successful genotype adapted to bovine hosts.
Clusters 2 to 8 are mainly associated to non-bovine hosts, with up
to 100% of human strains, hence are hereinafter referred as the
human lineages. Thus, our results are consistent with a strong
host-associated evolution of C. fetus lineages that began around
10,500 years ago (95% HPD = 8000–14,000). Interestingly, this
corresponds to the time when humans began to domesticate
cattle18.

To infer the host-to-host transmission patterns of C. fetus we
reconstructed the ancestral states for the internal nodes of the
phylogeny and quantified each specific type of host transmission.
An asymmetric transition model was found to be more consistent
with the data than a symmetric model (Bayes factor = 31), and a
median of 37 host jumps were inferred along the evolutionary
history of C. fetus. By far the most significant directional jump
was from human to bovine hosts (Bayes factor = 124), however
the reverse transmission from bovines to humans was also
supported (Fig. 1c). For most ancestral nodes, including the
C. fetus MRCA, the posterior probability for a human ancestral
host was consistently higher (~0.5) than for the other hosts
(Supplementary Figs. 6, 7; Methods section) supporting a human
origin of the currently sampled mammal C. fetus population. This
was also suggested by the identification of significant switches in
the distribution of bovine hosts across the C. fetus phylogeny
(Supplementary Fig. 8) and by the higher nucleotide sequence
diversity (Π) observed for human isolates in comparison with
bovine isolates (Supplementary Fig. 9). Our results support that
humans were the original mammalian host of the currently
sampled C. fetus population and provide a potential connection
between cattle domestication and the modern bovine lineage that
subsequently evolved within these hosts.

Adaptive selective pressures. To investigate the adaptive evolu-
tion of the bovine and human lineages of C. fetus we analyzed the
core genes under positive selection (Fig. 2a and Supplementary
Table 2). A total of 32 genes were positively selected regardless of
the host. A set of 33 genes were under positive selection exclu-
sively in human lineages and the strongest signal was observed for
the flagellar hook cap protein FlgD. The presence of diversifying
alleles of flagellar genes, including flgD, has been found as a
defining feature of hyper-invasive C. jejuni strains19. This may
suggest parallels with the invasive and systemic bacteremia
observed in many human-associated C. fetus infections. A distinct
set of 30 genes were positively selected only in the bovine lineage
and the enterobactin uptake receptor cfrA presented the strongest
signal. The expression of the CfrA protein is induced under iron-
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restricted conditions and plays a crucial role in iron scavenging
and in vivo colonization of other species like C. jejuni20. Thus, the
core genomes of the bovine and human lineages of C. fetus
contain signatures of diversifying evolution as they are adapted in
a unique way to interact with their hosts.

A host-adapted accessory genome. To further explore the host-
association of the C. fetus populations, we defined the accessory

genomes and observed signals of adaptive evolution. First, we
evidenced the presence of recombinant blocks shared by different
phylogenetic clusters that are unlikely to be explained by the
clonal frame (Supplementary Fig. 10a). Second, we explored the
relationship between the synonymous divergence in the core
genome and the genomic fluidity of the accessory genome to
demonstrate the absence of a significant correlation between these
two measures (Supplementary Fig. 10b), hence supporting
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adaptive evolution. Third, we found a positive and significant
correlation between the genomic fluidity and the number of
positions within recombinations (Supplementary Fig. 10c).
Finally, we found substantial signals of homoplasy in more than
50% of the accessory genes using a maximum-parsimony
approach (Supplementary Fig. 11a, b; Methods section). These
findings led us to conclude that C. fetus accessory gene patterns
are substantially influenced by an adaptive rather than neutral
evolutionary forces.

Figure 3a shows how accessory gene patterns are differentially
distributed across host-adapted lineages. Also we revealed that the
accessory genome of the bovine lineage is substantially larger than
that of human lineages, and contains a unique set of accessory
genes including those putatively involved in host–pathogen
interactions (Fig. 3b, c). For example, conjugative transfer
(tra/trb) systems and type IV secretion system (T4SS) genes
(virB1–virB11) were more frequent in the bovine lineage
(Supplementary Fig. 12). T4SS genes have been found previously
in C. fetus carried on plasmids or pathogenicity islands21, 22, and
here we evidence they were potentially horizontally acquired from
other Campylobacter and Helicobacter species (Supplementary
Table 3 and Supplementary Fig. 13). T4SS are used to transfer
plasmids between bacteria or to deliver virulence effectors to host
cells in a variety of pathogens such as Helicobacter pylori23.
We also noted differences between the lineages in the LPS
biosynthesis pathway genes which has important roles in
LPS structures and host-interactions. For example, the glf
(UDP-glucopyranose mutase) and wcaG (GDP-fucose biosynth-
esis) genes were more abundant in human lineages while
wbbJ (galactoside O-acetyltransferase) was more frequent in the
bovine lineage (Supplementary Fig. 12). Thus, the accessory
genomes of bovine and human lineages harbor distinct gene sets
that are potentially important for genome evolution and
host–pathogen interactions, and likely reflect the adaptations to
different hosts.

Interestingly, other accessory genes involved in blocking the
incorporation of foreign DNA, like Cas protein coding genes,
were more abundant in human lineages (Supplementary Fig. 14a).
The CRISPR spacer loci were also unevenly distributed in bovine
and human lineages (Supplementary Fig. 14b), supporting
previous evidence of their suitability for host type tracking24.
Restriction–modification system genes (R–M), which also play a
role in maintaining genome integrity after foreign DNA
incorporation25, also grouped genomes according to host type
(Supplementary Fig. 15a). In particular, the abundance of type I
R–M genes was greater in bovine respect to human lineages
(Supplementary Fig. 15b). Hence, the differences in CRISPR/Cas
and R–M systems may explain the smaller accessory genomes in
human lineages and the stabilization of horizontally acquired
DNA in the bovine lineage, contributing to host adaptation.

A pathobiont in the intestinal microbiota. Taken together, the
genomic distinctions observed in the bovine and human lineages
raise the possibility of having distinct natural reservoirs. Con-
sidering that other farm animals, like poultry and pigs, are not
considered reservoir hosts26, 27 we hypothesized that C. fetus
could be an unrecognized member of the human gastrointestinal
microbiota. To determine if healthy humans may act as natural
reservoir of C. fetus, we compared all genomes (n = 182) to the
Human Pan-Microbe Communities database28. This allowed us
to scan 7121 shotgun metagenomic data sets representing an
international sampling of human feces. Interestingly, C. fetus was
detected in ~8% of the samples from healthy humans. In contrast,
the commensal Escherichia coli was detectable in 7% of the
samples and the human pathogens C. jejuni and C. coli were
detected in less than 0.5% of the samples. Of the 10 C. fetus
genotypes detected in the gastrointestinal microbiota of healthy
individuals, 22.11% belonged to strains from the modern bovine
lineage and 77.89% belonged to strains from human lineages
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(Fig. 4a). No correlation was observed with gender, sex, age,
ethnicity, or geographical origin of the donor or originating
sample. Equally, co-abundance data showed no enrichment in
other members of the microbiota. Taken together, this data
suggests that microbiota community structure is not a determi-
nant for C. fetus colonization success. Surprisingly, of the strains
found from the human lineages, TW2 represented 94% of strains
found within healthy individuals suggesting clonal expansion of
this genotype in the sampled human population (Fig. 4b). The
TW2 genotype belongs to cluster 5 which also includes the CA24
genotype that was responsible for a C. fetus outbreak among men
who have sex with men, where human-to-human transmission
was highly probable29.

Discussion
Our results support a broad view of the natural history of C. fetus
where the bacterium originally colonized humans, likely the gut
microbiota. Then within the past 10,500 years C. fetus likely
began to colonize and adapt to cattle, giving rise to a modern day
bovine lineage that displays significant genomic distinctions from
the other genomes belonging to the human lineages, linked to
host-microbe interactions and genome stability. This observation
is reminiscent to evolutionary patterns observed in other bacteria
that moved between humans and animals30, 31. Furthermore, the
presence of distinctive patterns of accessory genes in the bovine
and human lineages is mostly explained by adaptive evolution.
This is supported both by empirical evidence of homoplasy
provided here and by recent theoretical models32, 33 that explain
the emergence of these genomic distinctions as an adaptive
process linked to niche transitions, such as the host jump
observed in C. fetus. We also provide evidence that human-
adapted C. fetus acts as an intestinal pathobiont capable of
asymptomatic carriage and likely human to human transmission.
Our work supports a previously unappreciated source of infection
and transmission essential to properly understand the epide-
miology of symptomatic C. fetus infections in humans. Interest-
ingly, the absence of the bovine associated lineage in symptomatic
individuals in our analysis suggests that zoonotic transmission of
the bovine C. fetus lineage to humans is not as common as
human-to-human transmission. In contrast, the detection of the
human-associated lineages in bovine samples introduces humans
as a possible source of infection to cattle. Together, these obser-
vations will guide the development of phylogenetically based
genetic markers capable of differentiating bovine and human
lineages, and inform C. fetus diagnosis and epidemiology.

Methods
Sequencing, species typing, and pan-genome. Strains were retrieved from
independent collections over the world (information of each sequenced strain can
be found in Supplementary Data 1). Genomic DNA was prepared and sequenced
using the Illumina Hi-Seq platform with library fragment sizes of 200–300 bp and
read length of 100 bp at the Wellcome Trust Sanger Institute, as previously
described34. Each sequenced genome was de novo assembled and improved using
an in-house pipeline developed at the Wellcome Trust Sanger Institute35. Briefly,
raw reads are first screened with Kraken36 software in order to discard significant
amounts of contaminating reads from other organisms. Data summary statistics
are then generated using FastQC (www.bioinformatics.babraham.ac.uk/projects/
fastqc). Then, reads are assembled using Velvet37 to generate multiple assemblies
by varying the k-mer size between 66 and 90 % of the read length using with
VelvetOptimiser38. From this set of assemblies the one with highest N50 is chosen.
Iterative assembly improvement steps are subsequently run to scaffold the contigs
using SSPACE39 and to fill in sequence gaps using GapFiller40. Finally, contigs are
excluded from the assembly if they are shorter than the target fragment size
(normally 300–500 bases). Remaining contigs are sorted by size and renamed in a
standardized manner to include the raw sequencing data accession number. To
assess the quality of the assembly and to produce summary statistics, the reads are
aligned back to the final assembly using SMALT41. The assemblies are then
automatically annotated using Prokka42 with a genus-specific database from
RefSeq. The resulting annotated assemblies are in GFF3 format. A more detailed
explanation of parameters used for each software at each step can be found in
Page et al.35 The membership to the species C. fetus was assessed by comparing
each assembled genome against each other and the published genomes using the
ANI, as previously implemented43.

The annotated assemblies in GFF3 format were input to Roary, a tool that
builds large-scale pan-genomes, to construct the core and accessory genomes44.
Briefly, coding sequences are extracted from annotation files and converted into
protein sequences, filtered to remove partial sequences and iteratively pre-clustered
with CD-HIT45. Then all-against-all comparisons of pre-cluster representatives are
performed with BLASTP using an user defined percentage sequence identity cut-
off. Sequences are then clustered with MCL46 and finally the pre-clustering results
from CD-HIT are merged together with the results of MCL. Then homologous
groups containing paralogs are split into groups of true orthologs using conserved
gene neighborhood information. A graph of relationships between clusters is
constructed based on their order of occurrence in the input sequences for providing
context to each gene. Full details of the method and outputs are provided in the
original paper by Page et al.44 As the percentage sequence identity cut-off is an
important parameter for defining core and accessory gene sets we ran multiple
pan-genome estimations by varying this parameter from 80 to 95% by a step of 5%.
Results for this analysis are shown in Supplementary Fig. 2. As no significant
differences were found fundamentally in the size of the inferred core genome, all
the analyses were performed with 90% of identify. Additionally, to check the core
genome quality we inspected that the housekeeping genes belonging to the C. fetus
MLST scheme clustered in the corresponding homologous groups.

Phylodynamics, population structure, and host jump analyses. The core gen-
ome alignment extracted with Roary (1,098,169 aligned positions representing 980
concatenated single copy genes) was filtered using Gubbins47 to remove high SNP
density regions which indicate putative recombination events (44,213 positions
removed representing ~4% of the core genome alignment). We used the BEAST
v1.7.5 package48 to jointly estimate the substitution rate, a dated phylogeny and the
reconstruction of host ancestral states using a continuous-time Markov chain
(CTMC) discrete model. Briefly, we tested various combinations for the molecular
clock prior (strict vs. relaxed), the demographic function prior (constant,
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exponential, and logistic) and the host jump model (symmetric vs. asymmetric).
We analyzed four independent runs using 100 million generations sampled every
hundred steps, checking for effective sample sizes (greater than 200 for each
parameter) to ensure convergence. A burn-in of 10% of states was discarded from
each run. Models were compared by calculating Bayes factors (BFs) using the
stepping stone algorithm49. Since no significant differences were found for the
molecular clock and demographic function priors we used a relaxed-lognormal
clock with a constant population function. A significant BF was found supporting
an asymmetric over a symmetric CTMC discrete model. The significance of each
directional host jump was assessed by calculating BFs over the non-zero rates. We
also used the approach described in TreeBreaker50 for identifying branches in the
C. fetus tree where the distribution of hosts has significantly changed. Sequence
nucleotide diversity (Π) was calculated with the APE v4.0 package51. Phylogenetic
trees were visualized using R v3.2.152 and Microreact53.

To evaluate the population structure observed in the core genome phylogeny,
we compared it with the output of HierBAPS11. This approach performs a Bayesian
analysis of population structure to cluster similar samples based on their genomic
relatedness. We used two clustering layers and 5, 10, 20, and 30 expected numbers
of clusters (k) as input parameters. The monophyletic clades seen in the phylogeny
totally agreed with the first layer of clustering. The association between the
phylogenetic structure and host types was assessed with Befi-BaTS software
v0.1.117.

Accounting for confounding effects for time-dating and sampling bias. To
account for the confounding effects due to sampling biases of the C. fetus collection
we implemented different approaches. First, we built two additional data sets
subsampled from the complete data set, one just with European strains to minimize
the uneven sampling at distant geographic regions, and other with the same
number of strains belonging to each host type to minimize the overrepresentation
of bovine and human strains at some phylogenetic clusters. Second, we built
another two data sets by filtering out alignment sites likely to be subject to
selection: one approach consisted in removing 106 core genes with evidence of
negative selection (dN/dS << 1) and the 95 previously identified core genes with
evidence of positive selection (dN/dS>1); giving a filtered core genome alignment
representing 779 neutrally evolving genes (839,185 aligned positions). The other
data set was generated by calculating position-specific dN/dS values across the
core genome alignment using the “kaksCodon” function from the CorMut
package65, this resulted in masking 9032 positions with evidence of negative
(dN/dS << 1) or positive (dN/dS > 1) selection. Over all data sets we first evaluated
the presence of time signal by calculating the linear regression between the root-to-
tip distance and the isolation year. Null distributions of R2 values were generated
by 1000 permutations on the actual isolation year using three approaches: (i)
random permutations, (ii) clustered permutations as suggested by Murray et al.54,
and (iii) clustered permutations by inputing the clusters according to BAPS
results. Then, we implemented the Bayesian clustered permutation approach also
described in Murray et al.54 using the “rand.xmls.R” R script to generate the
randomized inputs to BEAST analyses. To account for confounding effects due
to sampling bias we applied the CTMC host state reconstruction analysis in
BEAST by performing 10 independent runs with the complete data set and
both subsampled data sets (European and host-balanced). Posterior estimates for
the bovine and human host states at the MRCA node are displayed as boxplots in
Supplementary Fig. 7.

Analysis of selective pressures. The aligned nucleotide sequences of each
980 single copy core genes were extracted from Roary’s output. The ratio
between the number of non-synonymous mutations (Ka) and the number of
synonymous mutations (Ks) was calculated for the whole alignment and for
the respective subsets of strains belonging to the bovine and human lineages. The
Ka/Ks ratio for each gene alignment was calculated with SeqinR v3.1. A Ka/Ks > 1
was considered as the threshold for identifying genes under positive selection.
To evaluate the strength of the positive pressure acting over the same gene in
bovine and non-bovine strains, we used the ranked absolute difference between
the individual Ka/Ks ratios calculated over each subset of the corresponding
alignments.

Accessory genome analyses. The accessory genome was defined as gene sets
present in less than 100% of the analyzed genomes. The Jaccard pair-wise distance
between accessory gene patterns was calculated with the APE v4.0 package51.
A discriminant analysis of principal components was used to identify differences in
the distribution of accessory genes across the genomes, as implemented in the
Adegenet v2.0.1 package55. The identification of virulence genes was performed by
comparing the annotated protein sequences of each genome with Blast + blastp56

against the VFDB database57, the Victors database (http://www.phidias.us/victors/)
and the PATRIC database of manually curated virulence genes58. First, genes
were considered as present with query coverage or subject coverage �80% and
identity �80%. Then, a second round of blastp was performed as previous but
incorporating into the databases the C. fetus genes recovered from the first
round, in order to minimize possible false negatives due to sequence divergence.
The same approach was used to confirm the presence or absence of accessory

genes present in bovine-associated or human-associated lineages. The Cas genes
were identified by running hmmsearch59 (e-value < 1 × 10−5) against the Cas
HMM profiles retrieved from Pfam60. The CRISPR spacers were identified with
CRISPRdetect61.

Evaluation of adaptive evolution. To evaluate the presence of adaptive signals
governing the evolution of accessory genes we implemented two main approaches:
(i) as described by Andreani et al.62, the correlation between synonym
diversity (a measure of effective population size) in the core genome and genomic
fluidity63 (a robust measure of accessory genome diversity) can be used to test
for neutral evolution. We calculated genomic fluidity from accessory gene patterns
as the ratio of unique gene families to the sum of gene families in pairs of
genomes averaged over randomly chosen genome pairs from within a group of
sampled genomes. For this we took 10,000 random samples of 50 genomes.
Then we performed a linear regression analysis of genomic fluidity values against
synonym diversity values calculated over the same random samples by applying
natural logarithms to both measures. The same regression analysis was performed
using the genomic fluidity values against the number of recombinant bases
present on each sample. (ii) To test if the observed accessory gene patterns are not
likely to be explained only by the clonal frame (evidence of homoplasy), for
each accessory gene we calculated its consistency index (CI) using phangorn64.
CI is defined as minimum number of changes divided by the number of changes
required on the tree by maximum parsimony, and is equal to one if there is no
homoplasy. We then set an empirical threshold of CI<0.25 to define genes with
evidence of homoplasy.

Analysis of human gut metagenomes. Human gastrointestinal metagenome
analysis was performed using the Human Pan-Microbe Community database
(http://www.hpmcd.org/). Genomes were included in the normalized database
generation and scanned using the standard scanning algorithm. Abundance was
scaled by genome uniqueness as described previously28. Abundance was scaled by
read count for sample comparison.

Data availability. The assembled genomic data and raw sequences have been
deposited in the European Nucleotide Archive under the accession codes provided
in Supplementary Data 1. The authors declare that all other data supporting the
findings of the study are available in this article and its Supplementary Information
files, or from the corresponding authors upon request.
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