
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Enhancement of cutaneous immunity during ageing by blocking
p38 MAPkinase induced inflammation

Citation for published version:
Vukmanovic-Stejic, M, Chambers, ES, Farinas, MS, Sandhu, D, Fuentes-Duculan, J, Patel, N, Agius, E,
Lacy, KE, Turner, CT, Larbi, A, Birault, V, Noursadeghi, M, Mabbott, NA, Rustin, MHA, Krueger, J & Akbar,
AN 2018, 'Enhancement of cutaneous immunity during ageing by blocking p38 MAPkinase induced
inflammation', Journal of Allergy and Clinical Immunology, vol. 142, no. 3, pp. 844-856.
https://doi.org/10.1016/j.jaci.2017.10.032

Digital Object Identifier (DOI):
10.1016/j.jaci.2017.10.032

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Allergy and Clinical Immunology

Publisher Rights Statement:
Open access funded by MRC

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2025

https://doi.org/10.1016/j.jaci.2017.10.032
https://doi.org/10.1016/j.jaci.2017.10.032
https://www.research.ed.ac.uk/en/publications/d32948d4-0aa9-4cdf-82d4-adcdb704886b


Accepted Manuscript

Enhancement of cutaneous immunity during ageing by blocking p38 MAPkinase
induced inflammation

Milica Vukmanovic-Stejic, PhD, Emma S. Chambers, PhD, Mayte Suarez- Farinas,
PhD, Daisy Sandhu, MD, Judilyn Fuentes-Duculan, MD, Neil Patel, MRCP, Elaine
Agius, PhD, Katie E. Lacy, PhD, Carolin T. Turner, PhD, Anis Larbi, PhD, Veronique
Birault, PhD, Mahdad Noursadeghi, PhD, Neil A. Mabbott, PhD, Malcolm H.A. Rustin,
MD, James Krueger, MD PhD, Arne N. Akbar, PhD

PII: S0091-6749(17)31766-9

DOI: 10.1016/j.jaci.2017.10.032

Reference: YMAI 13129

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 8 August 2017

Revised Date: 13 October 2017

Accepted Date: 23 October 2017

Please cite this article as: Vukmanovic-Stejic M, Chambers ES, Farinas MS-, Sandhu D, Fuentes-
Duculan J, Patel N, Agius E, Lacy KE, Turner CT, Larbi A, Birault V, Noursadeghi M, Mabbott NA,
Rustin MHA, Krueger J, Akbar AN, Enhancement of cutaneous immunity during ageing by blocking p38
MAPkinase induced inflammation, Journal of Allergy and Clinical Immunology (2017), doi: 10.1016/
j.jaci.2017.10.032.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jaci.2017.10.032


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

VZV Ag injection

Macrophages

T cells

DC

Blocking 
inflammation 

in old with 
p38 inhibitor

T cells

DC

Macrophages

T cells

DC

Old 
+  

Losmapimod 
(p38 inhibitor)

OldYoung

Saline injection

T cell Macrophage

Ep
id

er
m

is
D

er
m

is

Blood vessel

p38 drives 
inflammatory 

cytokines 
productionT cell

Macrophages

IL-6

TNF-a

IFN-y

6hrs

day 7

T cell Macrophage



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 

  1 

Enhancement of cutaneous immunity during ageing by blocking p38 MAPkinase 2 

induced inflammation 3 

 4 

Milica Vukmanovic-Stejic, PhD1*, Emma S. Chambers, PhD1¶, Mayte Suarez- Farinas, PhD2¶, 5 

Daisy Sandhu, MD1,3, Judilyn Fuentes-Duculan, MD2, Neil Patel, MRCP1, 3, Elaine Agius, PhD1, 3, 6 

Katie E. Lacy, PhD1, 3, 4, Carolin T. Turner, PhD1, Anis Larbi, PhD5, Veronique Birault, PhD6, 7 

Mahdad Noursadeghi, PhD1, Neil A. Mabbott, PhD7, Malcolm H.A. Rustin, MD3, James Krueger, 8 

MD PhD2, Arne N. Akbar PhD1* 9 

 10 

1. Division of Infection and Immunity, University College London, London, WC1E 6EJ, England, 11 

UK  12 

2. Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY 10021, 13 

USA 14 

3. Department of Dermatology, Royal Free Hospital, London, NW3 2QG, England, UK 15 

4. NIHR Biomedical Research Centre at Guy’s and St. Thomas’s Hospitals and King’s College 16 

London, Cutaneous Medicine and Immunotherapy, St. John’s Institute of Dermatology, Division 17 

of Genetics and Molecular Medicine, King’s College London School of Medicine, Guy’s Hospital, 18 

King’s College London, London, UK 19 

5. Biomedical Sciences Institutes: Agency for Science, Technology and Research (A*STAR), 20 

Singapore 138648, Singapore. 21 

6. The Francis Crick Institute, London NW1 1AT, UK 22 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 2 

7. The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, 23 

Easter Bush, Midlothian, EH25 9RG, UK 24 

  25 

*Corresponding author: 26 

Professor Arne N. Akbar or Dr Milica Vukmanovic-Stejic, The Rayne Building, 5 University 27 

Street, Division of Infection and Immunity, University College London, London, WC1E 6EJ. 28 

United Kingdom. 29 

E-mail: a.akbar@ucl.ac.uk or m.vukmanovic-stejic@ucl.ac.uk 30 

Tel: +44-203-108 2172 31 

¶ M.S-F and E.S.C contributed equally to this work. 32 

 33 

Funding: This work was funded by the Medical Research Council (MRC) Grand Challenge in 34 

Experimental Medicine (MICA) Grant (MR/M003833/1 to AA, MVS, VB, NM and MN), MRC New 35 

Investigator award (G0901102 to MVS), Dermatrust (to AA), British Skin Foundation (BSF5012 36 

to AA) and National Institute for Health Research University College London Hospitals 37 

Biomedical Research Centre. MN was supported by the UK  National Institute for Health 38 

Research Biomedical Research Centre award to UCLH. 39 

 40 

41 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 3 

Abstract 42 

Background Immunity declines with age that leads to re-activation of varicella zoster virus 43 

(VZV). In humans, age associated immune changes are usually measured in blood leukocytes 44 

however this may not reflect alterations in tissue-specific immunity. 45 

Objectives We used a VZV antigen challenge system in the skin to investigate changes in 46 

tissue specific mechanisms involved in the decreased response to this virus during ageing.  47 

Methods We assessed cutaneous immunity by the extent of erythema and induration after 48 

intradermal VZV antigen injection. We also performed immune histology and transcriptomic 49 

analyses on skin biopsies taken from the site of challenge in young (<40 yrs) and old (>65 yrs) 50 

subjects. 51 

Results Old humans exhibited decreased erythema and induration, CD4+ and CD8+ T cell 52 

infiltration and attenuated global gene activation at the site of cutaneous VZV antigen challenge 53 

compared to young subjects. This was associated with elevated sterile inflammation in the skin 54 

in the same subjects, related to p38 MAPK-related pro-inflammatory cytokine production (p 55 

<0.0007).  We inhibited systemic inflammation in old subjects by pre-treatment with an oral 56 

small molecule p38 MAP kinase inhibitor (Losmapimod), which reduced both serum C reactive 57 

protein (CRP) and peripheral blood monocyte secretion of IL-6 and TNF-α. In contrast, 58 

cutaneous responses to VZV antigen challenge was significantly increased in the same 59 

individuals (p <0.0006).  60 

Conclusion Excessive inflammation in the skin early after antigen challenge retards antigen-61 

specific immunity. However this can be reversed by inhibition of inflammatory cytokine 62 

production that may be utilized to promote vaccine efficacy and the treatment of infections and 63 

malignancy during ageing.    64 

 65 
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Key Messages: 66 

1) Cutaneous immunity to VZV decreases during ageing 67 

2) Associated with excessive early skin inflammatory response  68 

3) The inflammation is linked to p38 MAP kinase activation 69 

4) An oral p38 inhibitor (Losmapimod) inhibits systemic inflammation 70 

5) Short-term p38 treatment enhances the VZV skin response in old subjects  71 

 72 

Capsule summary: Elevated cutaneous inflammation retards VZV-specific immunity. Inhibiting 73 

inflammatory cytokine production with p38 MAPkinase inhibitors enhances VZV-specific 74 

cutaneous immunity. Targeting inflammation may be used to promote vaccine efficacy and the 75 

treatment of malignancy during ageing. 76 

 77 

Keywords: Ageing; p38 MAP kinase; VZV; inflammation 78 

 79 

Abbreviations: 80 

CBA – cytometric bead array 81 

CRP - C reactive protein 82 

DC – Dendritic cell 83 

DEG - Differentially-expressed genes 84 

DTH – Delayed type hypersensitivity 85 

GSVA - Gene set variation analysis 86 

IL – Interleukin 87 
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PV – perivascular infiltrate 88 

TNF – Tumour necrosis factor 89 

TRM – Resident memory T cells 90 

VZV – Varicella Zoster Virus  91 
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Introduction: 92 

Older individuals have reduced immune function that predisposes them to an increased 93 

incidence of infection and malignancy(1, 2).  In addition, vaccine efficacy against many 94 

pathogens is also reduced in these subjects(3). We developed a human experimental system to 95 

investigate antigen-specific immunity in vivo where healthy volunteers are challenged 96 

intradermally to induce antigen-specific delayed type hypersensitivity (DTH) responses. This 97 

enabled the investigation of the kinetics and the specificity of memory T cell expansion, and the 98 

interactions between different leukocytes after a single episode of immune stimulation in situ(4-99 

6).   100 

VZV is an alpha-herpes virus that causes chickenpox. After resolution of the initial infection VZV 101 

becomes latent within dorsal root ganglia but re-activates in older subjects causing herpes 102 

zoster (shingles)(7, 8). During both primary infection and latent virus reactivation the absence of 103 

T cell immunity results in VZV-induced pathology(9, 10). Therefore, decreased responsiveness 104 

to VZV challenge in aged skin is a good model for investigating immune decline during.  105 

  106 

Old individuals exhibited reduced erythema and induration (clinical response) after injection of a 107 

VZV skin test antigen that was correlated with decreased T cell infiltration and proliferation in 108 

the skin. This was not due to defective macrophage activation(4) or reduced inherent function of 109 

skin resident memory T cells (TRM)(11). On the contrary, we identified a propensity of the skin of 110 

old but not young subjects to mount an over-exuberant pro-inflammatory response upon sterile 111 

challenge with a physiological saline solution. This was significantly inversely correlated with 112 

decreased VZV antigen responsiveness in the same individuals.  113 

 114 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 7 

Previous studies demonstrated that systemic inflammation, indicated by elevated levels of 115 

serum IL-6, TNFα, and CRP, are strong predictors for frailty and mortality during ageing(12, 13). 116 

Ingenuity Pathway Analysis indicated a significant association between the inflammatory gene 117 

in the skin in old subjects with p38 MAP kinase pathway activation (p value of 1 x 10-18).  We 118 

tested the hypothesis that the magnitude of sterile pro-inflammatory response in the skin and 119 

reduced antigen-specific immunity in the same individuals was linked. To do this we treated old 120 

humans with the oral p38 MAP kinase inhibitor, Losmapimod, for 4 days to inhibit pro-121 

inflammatory cytokine production. This resulted in a significant reduction of CRP and peripheral 122 

blood monocyte secretion of IL-6 and TNF-α after stimulation in vitro but significantly increased 123 

response to cutaneous response to VZV antigen challenge in the same individuals. Therefore, 124 

decreased VZV antigen challenge responsiveness in the skin of old subjects is related to 125 

excessive pro-inflammatory responses. Therefore, anti-inflammatory intervention may be a 126 

strategy for boosting cutaneous immunity during ageing.  127 

  128 
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Materials and Methods 129 

Study design: 130 

This work was approved by the Ethics Committee Queen’s Square (London) and by institutional 131 

review board (UCL R&D). Healthy young individuals <40 years (n=97; median age, 29 years) 132 

and old individuals >65 years (n=78, median age, 75.5 years) were recruited (Supplementary 133 

table 1, Supplementary table 2). Exclusion criteria are described in the online methods section.. 134 

All volunteers provided written informed consent and study procedures were performed in 135 

accordance with the principles of the declaration of Helsinki.  136 

Skin tests: VZV antigen (BIKEN, The Research Foundation for Microbial Diseases of Osaka 137 

University, Japan) was injected intradermally into sun unexposed skin of the medial proximal 138 

volar forearm as per manufacturer’s instructions. Induration, palpability, and the change in 139 

erythema from baseline were measured and scored on day 3 as described previously(14). A 140 

clinical score (range 0-10) based on the summation of these parameters was then 141 

calculated(14). The injection site was sampled by skin biopsy at the different times after 142 

injection with VZV skin test antigen.  143 

Losmapimod treatment: A sub group of 18 old volunteers (8 males, 10 females, age range 65-144 

77:  median age 69) were subjected to VZV antigen skin testing as described above.  145 

Approximately 2-3 months later volunteers received 15 mg Losmapimod (GW856553) BID for 4 146 

days (provided by Glaxo-Smith-Klein under a Medical Research Council Industrial Collaboration 147 

Agreement). The Losmapimod 15 mg BID dose used in this study was chosen on the basis of 148 

the PK, PD and safety profiles of Losmapimod observed in GSK Phase I and II studies(15).   149 

On day 4 of after Losmapimod treatment VZV skin test antigen was injected intradermally and 150 

clinical score recorded 48h later, as before. History of liver disease or elevated liver 151 

transaminases (>1.5 times the upper limit of normal) and abnormal ECG were additional 152 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 9 

exclusion criteria for this part of the study. Serum CRP levels were measured using a high 153 

sensitivity assay (16). To assess compliance, ex vivo whole blood LPS-stimulation assays were 154 

performed before and 4 day after Losmapimod treatment(17). Briefly, peripheral blood was 155 

cultured with LPS (0-1 mg/ml) for 24 h (37oC, 5% CO2).  Levels of TNF-α and IL-6 in plasma 156 

were assessed by cytometric bead array (CBA, BD). 157 

Skin biopsies: Punch biopsies (5 mm diameter) from the site of antigen injection were obtained 158 

from young and old volunteers at various time-points (as indicated) post-VZV skin test antigen 159 

injection. Control skin punch biopsies from normal (un-injected) forearm skin were also 160 

obtained. Biopsies were frozen in OCT (optimal cutting temperature compound; Bright 161 

Instrument Company Ltd) as described(4, 11). 6µm sections were cut and left to dry overnight 162 

and then fixed in ethanol and acetone and stored at -80ºC. 163 

Immunohistochemistry: Skin sections from normal, VZV skin test antigen or saline injected 164 

skin were stained with optimal dilutions of primary antibodies as described(4, 11) 165 

(Supplementary Table 3). The number of positively stained cells per mm2 was counted manually 166 

using computer-assisted image analysis (NIH Image 6.1; http://rsb.info.nih.gov/nih-image). Cell 167 

numbers were expressed as the mean absolute cell number counted within the frame.   168 

Immunofluorescence: Sections were stained with optimal dilutions of primary antibodies and 169 

followed by an appropriate secondary antibody conjugated to various fluorochromes as 170 

described(4, 11) (Supplementary Table 4).  The number of cells in 5 of the largest perivascular 171 

infiltrates present in the upper and mid dermis were selected for analysis and an average was 172 

calculated(18). Macrophage images were imaged on the AxioScan Z1 slide scanner and 173 

Imaged on Zen Blue (Zeiss, Cambridge U.K.)  174 

Skin Biopsy digestion for flow cytometric analysis: Skin biopsies (5 mm) were taken from 175 

normal and saline injected skin (6 h post-injection) and disaggregated by overnight incubation 176 

(37oC; 5% CO2) in 0.8 mg/ml collagenase IV (Sigma Aldrich) with 20% FCS. Single cell 177 
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suspensions were obtained by filtering the suspension through 100, 70 and 40 µm filters. Cells 178 

derived from skin biopsies were assessed by flow cytometric analysis on a BD Fortessa using 179 

FACSDIVA software (BD Biosciences), and subsequently analysed using FlowJo Version X 180 

(Treestar, Ashland, U.S.A). For details off antibodies used see Supplementary Table 5.  181 

Cytometric Bead Array (CBA): IL-6, IL-8 and TNFα plasma concentrations were measured by 182 

CBA assay (BD), according to the manufacturer’s protocol. The lower limit of detection for each 183 

analyte was 1.5 pg/ml. 184 

Transcriptional analyses: 3 mm punch biopsies were collected from the injection site 6 or 72 h 185 

post injection with VZV antigen or normal saline,  immediately frozen in RNAlater. Normal (un-186 

injected) skin from the same site was collected as a control from each volunteer. Frozen tissue 187 

was homogenized and total RNA was extracted from bulk tissue homogenates using RNeasy 188 

Mini Kit (Qiagen). Details of gene expression analyses are in the online methods.  189 

Where indicated, the human skin-punch microarray data were combined with a large collection 190 

of other primary cell gene-expression data sets (745 individual microarray data sets), available 191 

from the GEO database on the same Affymetrix Human Genome U133 Plus 2.0 expression 192 

array platform.  The entire collection of primary cell expression data are available via the GEO 193 

accession number: GSE49910.  Full details of each primary cell data set have been 194 

published(19). Upstream regulator analysis was performed with Ingenuity Pathway Analysis 195 

(Qiagen). 196 

 197 

Statistics: Statistical analysis was performed using GraphPad Prism version 6.00 (GraphPad 198 

Software, San Diego, California, USA).  Paired or unpaired t-test were used when data were 199 

normally distributed and non-parametric tests were utilised when data were not normally 200 

distributed. The Kruskall-Wallis test was used to compare three or more unpaired groups and a 201 
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2-tailed Mann-Whitney test was used when comparing only two unpaired groups. The Wilcoxon 202 

matched pairs test was used when comparing two groups of matched data. Two way ANOVA 203 

was used to compare the effects of Losmapimod and LPS.  204 

  205 
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Results: 206 

Decreased response to VZV challenge in the skin during ageing   207 

We investigated the cutaneous response of young (<40 yrs) and old (>65 yrs) volunteers to VZV 208 

antigen skin challenge. All volunteers had a prior history of chickenpox. At 72 hrs after VZV 209 

injection, young subjects had obvious erythema and induration (clinical responses), whereas the 210 

clinical response of old subjects was significantly lower and correlated inversely with increasing 211 

age (Fig. 1A, p<0.0001, n=184, young n=97; old n=78, middle age 40-65 n=14, Supplementary 212 

figure 1; for participant details see Supplementary Table 1, 2).  There were no differences in the 213 

response of male and female donors in young and old age groups (p = 0.5, Supplementary 214 

table 2). The decrease in clinical score was associated with decreased CD4+ T cell 215 

accumulation at the site of VZV challenge in the skin at all time points investigated (Fig 1B,C,D). 216 

There was a highly significant correlation between the clinical score (measured at 72hrs) and 217 

the extent of CD4+ T cell accumulation and old subjects (measured at 7 days; Fig. 1E). We 218 

stratified old individuals into those who had a low skin response to VZV (clinical score of <4; 219 

88% of old volunteers) and those who showed similar responses to young subjects with a 220 

clinical score >4 (86% of young volunteers).  221 

The decreased cutaneous response to VZV in old donors was not related to differences in the 222 

number of resident memory CD4+ or CD8+ T cells defined by expression of CD69 alone or the 223 

combination of CD69 and CD103(20, 21) in the skin of young and old individuals(11) 224 

(Supplementary Fig. 2).  225 

 226 

Reduced Dendritic cell/ T cell interaction and T cell proliferation after VZV challenge in 227 

old individuals 228 
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Immune clusters containing both antigen presenting cells and T cells (referred to as skin 229 

associated lymphoid tissue) are generated in the skin during cutaneous immune responses(22). 230 

A highly significant increase in the number of CD11c+ DCs was observed in the skin of young 231 

but not old individuals at different times after VZV antigen challenge (Fig. 2A,B).  Dendritic cells 232 

accumulate around blood vessels and form large perivascular clusters with CD4+ T cells (Fig. 233 

2C) and to a lesser extent CD8+ T cells (not shown). By 3 days after VZV antigen challenge the 234 

majority of the DCs within these infiltrates in the skin of young individuals were CD1c-negative 235 

and expressed DC-LAMP, a marker of mature inflammatory DCs. In the skin of old individuals 236 

after VZV antigen challenge, DC infiltration was significantly reduced compared to the young 237 

group (Fig. 2A,B).  238 

 239 

In young individuals, proliferating (Ki67+) CD4+ T cells were undetectable in normal skin but a 240 

significant increase was observed from 3 days post-VZV antigen challenge compared to 241 

baseline (Supplementary Fig 3A, B). Proliferation of CD8+ T cells was also observed but to a 242 

lesser extent than in CD4+ T cells (Supplementary Fig. 3 C, D).  In contrast, in the skin of old 243 

individuals CD4+ and CD8+ T cell proliferation was extremely low even after 7 days of VZV 244 

antigen challenge (Supplementary Fig. 3). This indicates that in young subjects, the increased 245 

accumulation of T cells in the skin after VZV antigen challenge occurs in part from their 246 

proliferation at the site of injection.   247 

 248 

We investigated whether decreased endothelial cell activation contributed to the reduced T cell 249 

infiltration in the skin of old subjects. At 6 h after VZV antigen injection, 20% of the CD31+ 250 

capillary loops in young and old skin expressed both E-selectin and VCAM-1, that was 251 

significantly higher than the expression observed in unchallenged (Day 0) skin from either age 252 

group (Supplementary Fig. 4). This suggests that endothelial cells in old individuals are not 253 
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defective and can be activated to the same extent as young subjects early in the response. At 254 

later time points, capillary loops in young individuals showed significantly increased expression 255 

of E-selectin when compared to old individuals (Supplementary Fig. 4). Therefore, reduced 256 

response to VZV antigen challenge was not due to defects in the initiation of the response, but 257 

was related to either active inhibition and/or lack of immune amplification at later stages. 258 

 259 

Global decrease in the magnitude of gene expression in the skin following VZV challenge 260 

in old individuals  261 

We next performed global gene expression analyses to identify genes that may be associated 262 

with the decreased response to VZV antigen challenge in old subjects.  In each young or old 263 

donor, skin punch biopsies were taken from the site of either VZV antigen challenge (6h and 264 

72h post-injection) or saline injection (6h and 72h post-injection; control) in the contralateral arm 265 

of the same individual (resulting in a total of 4 biopsies per individual). The gene expression was 266 

compared to the signature in biopsies taken for normal, un-injected skin from 6 young and 9 old 267 

donors (Fig. 3). In a previous study we showed that there was no evidence for inflammatory 268 

responses in either group at steady state(11).    269 

Six hours post-VZV antigen challenge there were 935 significantly up-regulated and 1042 down-270 

regulated genes in the skin of young individuals and 820 up-regulated and 550 down-regulated. 271 

genes in the old group (Supplementary Fig. 5A). Although similar pathways were activated in 272 

the skin of young and old individuals at 6 hours after VZV antigen challenge, the magnitude of 273 

their expression was reduced in the old group (Supplementary Fig. 5B, 5C). At 72h after VZV 274 

antigen challenge, young individuals exhibited a strong transcriptional response that was 275 

considerably reduced in the old group (>5000 differentially-expressed genes (DEG) in young, 276 

666 DEG in the old, Fig. 3A,B).  The top 30 genes that are significantly differentially expressed 277 

are shown in Fig. 4B, indicating that the same genes are upregulated in the both groups but that 278 
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the expression was reduced in the old subjects, indicating attenuated immune amplification.  279 

Genes associated with T cell and DC activation including ITGAX (which encodes CD11c), CD2, 280 

CD28, CD69, CD83, CD86, EOMES, ICOS, and STAT1 were more highly expressed in the skin 281 

at 72 hrs of VZV challenge in young compared to the old group (Supplementary Table 6). There 282 

was activation of signalling pathways associated with immune responses, inflammation, and 283 

immune response to viruses, and pathways induced by type I IFN and IFN-γ signalling in young 284 

but not old individuals (Supplementary Fig. 5). 285 

 286 

Saline injection induces an inflammatory response in old donors which inversely 287 

correlates with cutaneous VZV response 288 

Sterile saline solution was a physiological control that was injected into to the contralateral arm 289 

of the same individuals who received VZV skin antigen challenge (Fig 4A). In young individuals, 290 

saline injection had a negligible effect on gene expression compared to normal skin (Fig. 4A, B; 291 

30 DEG at 6 hrs post injection). However, in old subjects, saline injection induced significant 292 

early expression of numerous inflammatory genes (Fig. 4A, B; 856 DEG, FDR<0.05; FCH>2, 293 

Supplementary Table 7) including IL6, CXCL8 and PTX3 and also genes indicative of myeloid 294 

cell activation including CXCL2, IL1B, ICAM1 and FCGR3A (Fig. 4B; Supplementary Table 7). 295 

 296 

Using Ingenuity Pathway Analysis we found a significant association with predicted p38 MAP 297 

kinase  pathway activation (p value of 1 x 10-18) when the genes that were upregulated after 298 

saline injection (6 hours) in old skin were compared to unchallenged control old skin.  The 299 

majority of the top 30 genes activated after 6 hours saline injection (Fig, 4C; indicated by 300 

asterisk) are induced by p38 MAP kinase signalling or are regulators of p38 MAP kinase 301 

activation. Pathway analysis further suggested that the response to saline in the skin of old 302 
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subjects involved the activation of inflammatory pathways relating to Type I IFN production, 303 

TNF-α signalling, MAP kinase activation, IFN-γ responses and IL-17 production (Fig. 4D).  304 

Principal component analysis demonstrated that gene expression in response to saline injection 305 

in young and old individuals was distinct (Supplementary Fig. 6B) and that a large number of the 306 

genes which were upregulated by 6 h after saline injection in old skin were also induced by VZV 307 

antigen challenge at the same time point (Fig. 4C, Supplementary Fig. 6). These data indicate 308 

that the early transcriptional response to VZV antigen challenge in the skin of old subjects 309 

includes an inflammatory component that may not be specific for the antigen itself.  310 

 311 

We investigated if the propensity to exhibit sterile inflammatory responses at 6 hours after 312 

nonspecific (saline-induced) inflammation in ageing skin was associated with decreased clinical 313 

response to VZV challenge in the contralateral arm of the same individuals at 48 hours.  To 314 

address this, the expression levels of 384 genes designated as positive regulators of 315 

inflammatory response (Supplementary Table 8) were compared in the skin of young and old 316 

individuals (n=10 old, n=6 young) at 6 h after saline injection. Using GSVA analysis each 317 

individual was assigned a numerical score (denoted as inflammatory index) based on the 318 

variation in expression of all these inflammatory genes.  A highly significant inverse correlation 319 

was observed when the inflammatory index value to saline injection for each individual was 320 

plotted against the clinical response to intradermal VZV antigen challenge in the contralateral 321 

arm (Fig. 4E).  A similar, significant inverse correlation was observed between the expression 322 

level of IL-1β, IL-6, IL-12p35 and IL-12p40 as determined by qRT-PCR and an individual’s 323 

clinical response to VZV antigen challenge were compared (Supplementary Fig 7). This 324 

indicates an association between propensity to exhibit early sterile inflammation and reduced 325 

responses to VZV antigen challenge in the skin of the same old subjects in vivo.  326 

 327 
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Non-specific inflammation induced by saline injection is associated with mononuclear 328 

phagocytes 329 

In order to identify the cell type which may contribute to the elevated pro-inflammatory response 330 

to saline injection in ageing skin, the DEG identified at 6 h after saline-injection (FDR<0.05; 331 

FCH>2, Table S2) were imported into BioLayout Express3D (see methods; Fig. 5A).  332 

Comparison of the mean cellular expression profiles of the gene clusters derived from this 333 

network graph suggested that many of the genes within them were strongly associated with 334 

cells of the monocyte/macrophage lineage (Fig. 5A, Supplementary Table 9). Furthermore, 335 

immunohistological analysis also demonstrated a significant increase in the number of CD163+ 336 

mononuculear phagocytes in the skin of old subjects within 6h of saline injection (Fig. 5B,C). 337 

This was confirmed by multi-parameter flow cytometry where we identified significantly 338 

increased proportions of HLA-DR+CD14+ mononuclear phagocytes in old compared to young 339 

skin biopsies 6h after saline injection (Fig.  5D and Supplementary Fig 8). This rapid increase in 340 

the frequency of CD14 expressing mononuclear phagocytes was probably a result of 341 

recruitment from the blood as these cells were not in cycle (not shown)(23). The increase in 342 

“inflammatory” monocytes in old subjects was transient and coincided with the transient sterile 343 

inflammatory response that was only observed at 6 h but not 24 h after saline injection.  A 344 

similar significant transient increase in mononuclear phagocytes is observed when old 345 

individuals were injected with VZV (Supplementary Fig 4E). 346 

 347 

Short-term p38 MAP kinase-blockade improves clinical response to VZV skin challenge 348 

in older individuals 349 

We tested the hypothesis that excessive pro-inflammatory cytokine secretion that is driven by 350 

p38 MAP kinase signalling in mononuclear phagocytes early in the skin response. To do this we 351 

treated 18 healthy old volunteers who had a low previous skin response to VZV challenge 352 
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(clinical score <4) with Losmapimod, a potent and selective oral p38 MAP kinase inhibitor, 353 

before VZV antigen re-challenge in the skin(16, 24) (Fig 6A). These individuals were 354 

investigated 2-3 months after the first skin test and were pre-treated with the drug for 4 days 355 

before re-challenge with VZV antigen in the skin.  In parallel studies we showed that the re-356 

challenge of old volunteers with VZV skin test antigens did not significantly boost their original 357 

clinical score (n=14, p=0.58, Supplementary  Fig. 9).  358 

 359 

CRP production in the liver is upregulated by p38 MAP kinase-dependent cytokines such as IL-360 

1 and IL-6(25, 26). Serum CRP was significantly reduced after Losmapimod pre-treatment (Fig. 361 

6B, p=0.04, n=18). In addition, TNFα, IL-6  and IL-8 production by LPS-stimulated PBMCs from 362 

the same donors was also significantly reduced after Losmapimod pre-treatment (Fig. 6C, 363 

Supplementary Fig 10). In contrast, Losmapimod pre-treatment significantly enhanced the 364 

clinical response to VZV antigen challenge in the skin of 13 of 18 old subjects (Fig. 6D, n=18, 365 

p=0.0006). This increase in clinical score to VZV challenge correlated with the decrease in CRP 366 

in the serum in the same individuals (Fig 6E). Losmapimod pre-treatment had no effect on CD4+ 367 

or CD8+ T cell function in response to CD3 and IL-2 stimulation in the same donors as defined 368 

by cytokine expression (IFNγ, IL-2 and TNFα) or proliferation as defined by Ki67 expression 369 

(Supplementary Fig 10). Histological assessment of biopsies collected from 4 old subjects who 370 

showed an increased clinical response after Losmapimod treatment showed that there was a 371 

significant increase in the number of CD11c+ DCs in the perivascular infiltrates (p=0.04) that 372 

were associated with increased numbers of CD4+ T cells in immune clusters (representative 373 

experiment shown in Fig. 6F, top and bottom right panels). These clusters were not found in 4 of 374 

the individuals who did not respond to Losmapimod treatment (Fig. 6F top and bottom left 375 

panels). These clusters resembled those found after VZV challenge of skin in young subjects 376 

(see Fig. 2). This shows that p38 MAP kinase inhibition significantly reduced pro-inflammatory 377 
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responses and that this was associated with enhancement of antigen-specific immune 378 

responses in the skin of old individuals in vivo. 379 

380 
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Discussion 381 

The cutaneous recall response to intradermal antigen challenge is a manifestation of immune 382 

memory and this reaction decreases with age(4, 27-29).  We have investigated reasons for this 383 

decrease in order to explain the increased incidence of cutaneous infection and malignancy 384 

during ageing(2, 30).  Early inflammation (erythema and induration, 48 hours)  is required to 385 

initiate the cascade of events leading to optimal cellular infiltration in the skin that occurs later 386 

(peak at 7 days)(14). An unexpected observation therefore was that excessive inflammation 387 

during the early phase after VZV challenge hinders the amplification of the response in old 388 

subjects. The response to VZV in older individuals is not inhibited from the outset since the 389 

endothelium of old and young subjects are activated equally at 6 h and gene expression at this 390 

time is similar.  Furthermore, the decreased response after VZV antigen challenge in these 391 

individuals was not due to intrinsic changes in the functionality of cutaneous TRM cells or 392 

macrophages since these cells from both age groups were equally responsive when isolated 393 

from skin and activated in vitro(4, 11).  394 

 395 

In other studies, elevated systemic inflammation has been shown to have a negative impact on 396 

the cutaneous recall response to candida antigens (31), however this study did not investigate 397 

the response of old subjects or events that occur in the skin itself. The reduced efficacy of 398 

vaccination has also been linked to excessive inflammation for influenza(32), yellow fever(33), 399 

tuberculosis(34) and Hepatitis B vaccines(35). Furthermore, inflammatory macrophages in 400 

patients with chronic artery disease suppress T cell activation and expansion in vitro and this is 401 

associated with defective VZV-specific T cell immunity in the peripheral blood of these 402 

patients(36). The proposed mechanism for this inhibition involves the upregulation of the 403 

inhibitory receptor ligand PD-L1 on the inflammatory macrophages that inhibit function of PD1 404 

expressing T cells(36). This suggests that the infiltration of inflammatory monocytes that 405 
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express PD-L1 during sterile inflammation may block early activation of cutaneous resident 406 

memory T cells (TRM) since this latter population expresses significantly higher levels of PD-1 407 

during ageing(11).  408 

 409 

Type I IFN has been shown to interfere with antigen-specific T cell responses and excessive 410 

levels of these mediators impair the clearance of both viral and mycobacterial infections in mice 411 

in vivo(37, 38). In the present study we also found a strong type I IFN signature in the skin of old 412 

subjects after saline injection although other inflammatory pathways were also upregulated. The 413 

impact of excessive inflammation on the inhibition of antigen-specific T cell function is 414 

particularly important for ageing since older individuals have widespread low grade systemic 415 

inflammation termed “inflammageing”(12) that is linked to expression of inflammasome gene 416 

modules that may underpin clinical frailty and immune dysfunction(13).  417 

 418 

It is not clear why saline injection induces an early but transient inflammation in the skin of old 419 

individuals (observed at 6 h but not at 24 h after injection).  However, NaCl itself is pro-420 

inflammatory and has been shown to induce Th17 cells whilst conversely inhibiting Foxp3+ Treg 421 

function(39, 40) and to also activate inflammatory cascades in monocytes and bone-marrow 422 

derived macrophages in vitro(41, 42). The saline control that we used in the current study 423 

contained 0.9% NaCl, which is similar to the concentration used in the diluent of the VZV skin 424 

test antigen (0.68% NaCl). Therefore a component of the transcriptional response of old 425 

subjects to VZV antigen would also include a response to NaCl in the diluent that may hinder 426 

the induction of antigen-specific immunity in old subjects. This response is not observed in 427 

young subjects. We identified mononuclear phagocytes as the source of the saline-induced 428 

cutaneous inflammation.  429 
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 430 

Many of the inflammatory mediators induced by saline injection in older subjects were linked 431 

directly or indirectly to the activation of the p38 MAP kinase pathway. Many pharmaceutical 432 

companies have generated small molecule p38 MAP kinase inhibitors in humans in vivo in 433 

phase I,II and III trials to block inflammatory diseases/disorders(43). Although most trials with 434 

p38 MAP kinase inhibitors were discontinued because of hepatotoxicity after long term 435 

treatment (>3 months) and adaptation of cell-signalling  pathways leading to reduced drug 436 

efficacy(44), these inhibitors do not show evidence of toxicity in the short-term (weeks) in 437 

humans in vivo.  We therefore treated old subjects who were not responsive to cutaneous VZV 438 

antigen challenge with Losmapimod (GW856553), a selective, reversible, competitive inhibitor 439 

of p38 MAP kinase, to test the hypothesis that reducing inflammation in the skin would enhance 440 

antigen-specific cutaneous immunity. The key observation was that Losmapimod pre-treatment 441 

significantly enhanced the cutaneous response to VZV in older subjects. Although our previous 442 

studies have shown that that p38 inhibition can enhances T cell proliferation in vitro(45-47), in 443 

the current study Losmapimod treatment did not affect peripheral blood T proliferation or 444 

cytokine production after stimulation CD3/IL-2. Thus the enhancement of cutaneous immunity is 445 

likely to be due to the anti-inflammatory effects of the drug. 446 

 447 

This raises the question of whether the short-term inhibition of p38 MAP kinase signalling and/or 448 

inhibition of inflammation would also enhance immunity in other tissues. An interesting 449 

possibility is that this would be a strategy to improve vaccine efficacy that is decreased in 450 

ageing individuals(3, 48). Another point to consider is that increasing the strength of adjuvants 451 

to enhance vaccine responses during ageing may be counter-productive if they further increase 452 

inflammatory responses and it may be important to stratify old vaccinees on the basis of their 453 

baseline inflammatory responses in the future(13). Our study may appear to challenge the 454 
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concept that antigen-specific immunization is more successful in the presence of an adjuvant 455 

that is designed to increase inflammatory responses. However while adjuvants may enhance 456 

the induction of immunity in draining lymph nodes, excessive inflammation that is present at the 457 

site of the effector phase of a response may inhibit T cell responsiveness. This may be a 458 

mechanism to protect against pathology induced by excessive immune stimulation in the 459 

tissues.  Furthermore excessive inflammation is detrimental for cancer progression(49) and the 460 

temporary inhibition of inflammation in this situation may be a strategy for boosting 461 

immunotherapy in these patients. While the current challenge is to identify the optimal way to 462 

reduce excessive inflammation and to enhance immunity in ageing humans, it is serendipitous 463 

that some drugs that may do this have already been developed and may therefore be 464 

repurposed.  465 

   466 
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Figure Legends 

 

Figure 1. Cutaneous response to Varicella Zoster Virus (VZV) antigen is reduced in old 

individuals 

Healthy young and old volunteers were injected VZV skin antigen test ( female =circles and  male 

= diamonds). A clinical score at day 3 in response to VZV, was calculated based on induration, 

palpability and redness. (A) Clinical score versus participant’s age. (B) Haematoxylin and eosin 

staining (x10), PV, perivascular infiltrates 5mm punch biopsies were performed on days 0, 1, 3 or 

7 post injection (with 4-7 volunteers per timepoint. (C) Representative skin sections stained for 

CD4 (green) (original magnification: x400).  (D) Collated data of T cell numbers at different times 

after VZV injection in young and old volunteers. Each symbol represents the average number of 

CD4+ T cells within perivascular infiltrates for each individual (n=4-7 per time point; Mann 

Whitney test, horizontal bar represent the mean). (E) Clinical score at 48 h (peak clinical 

response) correlated with the number of CD4+ T cells in the perivascular infiltrate at the peak of 

cellular response on day 7 (n=10 young [black circles] and 22 old [white circles]).  * = p<0.05, ** = 

p<0.01, *** = p<0.001. 

 

Figure 2. Perivascular cluster formation is reduced in the skin of old individuals.  

5 mm punch biopsies were performed on days 0, 1, 3 or 7 post- VZV injection (with 3-6 

volunteers per time point). (A) Representative staining of skin sections immunostained for CD11c 

(original magnification x10). (B) Cumulative data showing mean CD11c+ cell number per field 

(young - filled bars, old- open bars). Data shown as mean ± SEM. * = p<0.05, ** = p<0.01. (C) 

Representative staining showing CD11c+ DC (red) and CD4+ T cells (green) in a perivascular 

cluster (representative young donor, day 3 after VZV injection,  x400).   
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Figure 3. Transcriptomic analysis of young and old skin after VZV antigen challenge. 

3mm punch biopsies were collected from old (n=10) and young individuals (n=6) at 6 and 72 h 

post-VZV injection. Normal skin punch biopsies were collected from and additional group of 

young (n=9) and old individuals (n=6). Total skin RNA was isolated, amplified and hybridized to 

Affymetrix Human Genome U133 2.0 plus arrays. (A) Heatmap showing the relative expression 

of differentially expressed genes between VZV injected and normal skin in young (left panel) and 

old (right panel) at FCH>2 and FDR>0.05 in normal/unmanipulated skin, 6 hours post-VZV  and 

72 hours post-VZV challenged skin in each grouup. For each gene, only the probeset with the 

largest average expression is shown. Unsupervised clustering was carried out using Pearson 

correlation distance with Mcquitty agglomeration scheme of DEG at 6 h following VZV.  (B) Table 

shows top 30 up-regulated genes at 72h in young and old subjects compared to normal skin in 

each group. 

 

Figure 4.  Comparison of global gene expression between normal, saline-injected and VZV 

antigen-injected skin.   

(A) Schematic representation of biopsy collection for transcriptional analysis. (B). Heatmap 

showing the relative expression of DEG (FCH>2 and FDR>0.05) between normal skin and 

saline-injected skin at 6 hours after treatment in young (left panel) and old (right panel) 

individuals.  (C) Table showing the top 20 upregulated genes at 6 hours in the saline-injected old 

and young skin compared to normal skin.  Genes not reaching statistical significance are 

indicated in blue. Asterisk indicates genes related to p38 MAP kinase signalling. (D) Bubble plot 

shows expression of pathways in saline-injected skin versus normal skin. KEGG and GO 

collection, as well as a curated skin-related collection were interrogated and the most relevant 

pathways amongst them with FDR<0.05 are presented. (E) Inflammatory index was calculated 
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for each individual (see methods) and plotted against VZV clinical score at 72 hours (young n=6 

and old n=10). 

Figure 5 Identification of a monocyte/macrophage-related gene expression signature in 

saline-injected aged skin.  

(A) Transcriptomic analysis using the tool Biolayout Express3D  of the genes upregulated in the 

skin of elderly humans 6 hours after saline treatment which clusters together in a large network of 

monocyte/macrophage-related genes (C_, cluster no.; nodes represent individual genes; edges 

represent Pearson correlations >0.7). (B) representative images of CD163 stained saline-injected 

skin from young and old and (C) cumulative data of CD163+ cells in paired analysis from normal 

and saline injected skin at 6 hours individuals (n=4-5 per age group).  (D) The frequency of 

mononuclear phagocytes determined as being CD45+ Lineage- (CD3-, CD19-, CD20- and CD56-) 

and  HLA-DR+ and either CD14+ and/or CD16+, expressed as a % of CD45+ lineage negative, in 

young (white) and old (black) pre- and post-saline as assessed by flow cytometry.  Data 

assessed by paired t-test.  

 

Figure 6. Effects of Losmapimod treatment on VZV response in the skin.  

(A). Responses to VZV skin challenge were investigated in old individuals (n=18, 8M, 10F) pre- 

and post-Losmapimod treatment  (15 mg twice daily for 4 days). (B) Serum CRP levels before 

pre- and post-Losmapimod treatment (n=18, p=0.04, Wilcoxon paired test). (C) Whole blood LPS 

stimulation was performed pre- and post-Losmapimod treatment, and TNF-α production 

measured by CBA (LPS p<0.0001, Losmapimod p<0.0001, Two way ANOVA n=18). (D) Clinical 

score was measured at 48 hrs after VZV antigen challenge pre and post Losmapimod (p=0.0006, 

Wilcoxon  paired test, red symbol indicates the mean). (E) Correlation between change in serum 

CRP and change in clinical score after Losmapimod treatment (Pearson correlation). (F) 
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Representative images of skin sections collected 7 days post-VZV injection, stained for CD4 

(red) and CD11c (pale blue) pre- and post-Losmapimod treatment in one of the individuals who 

showed an increased clinical score in response to VZV improved after Losmapimod treatment 

(top and bottom right panels) and one of individuals whose clinical score remained low following 

Losmapimod treatment (top and bottom left panels).  White arrows indicate a dendritic cell 

interacting with surrounding T cells. 
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List of Supplementary material:  

Tables:  

Supplementary Table 1. Information on age, gender and clinical score of participants 

recruited into the study  

Supplementary table 2.  Detailed information on gender and clinical score of 

participants recruited into the study. 

Supplementary Table 3: Antibodies used in immunohistochemistry 

Supplementary Table 4: Antibodies used in immunofluorescence 

Supplementary Table 5: Antibodies used for Flow-cytometric analysis 

Supplementary Table 6.  VZV injected vs normal skin differentially expressed genes  

Supplementary Table 7. Saline injected vs normal skin differentially expressed genes 

Supplementary Table 8. List of 384 genes (positive regulators of inflammation) used 

in the inflammatory index 

Supplementary table 9. Contents of clusters described in Fig 5A. 

Figures: 

Supplementary Figure 1. Clinical response to VZV antigen challenge in different age 

groups. 

Supplementary Figure 2. Phenotype of CD4 and CD8 T cells resident in normal skin 

of young and old individuals. 

Supplementary figure 3. Proliferation of CD8 T cells following VZV antigen challenge 

is reduced in the old. 

Supplementary Figure 4. Activation of dermal endothelium at site of VZV challenge  

Supplementary Figure 5. Pathway analysis of gene expression in young and old skin 

at 6 and 72 h post VZV antigen challenge. 
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 Supplementary Figure 6. Overlap of differentially expressed genes (DEG) in the skin 

of young and old individuals in the skin after injection of saline or VZV antigen. 

Supplementary Figure 7. Inflammatory response induced by saline injection inversely 

correlates with the response to VZV antigen challenge 

Supplementary Figure 8. Saline injection increases the frequency of HLA-DR+ cells 

and mononuclear phagocytes in old but not young individuals.   

Supplementary figure 9. Repeat skin testing with VZV skin antigen does not affect 

the clinical response in old individuals. 

Supplementary Figure 10. Effect of Losmapimod treatment on immune function 

 

Supplementary text: 

Methods:  

Participant exclusion criteria: Individuals with history of neoplasia, 

immunosuppressive disorders or inflammatory skin disorders were excluded from 

this investigation. Furthermore, we excluded individuals with co-morbidities that are 

associated with significant internal organ or immune dysfunction including heart 

failure, severe COPD, diabetes mellitus and rheumatoid arthritis and individuals on 

immunosuppressive regimes for the treatment of autoimmune or chronic 

inflammatory diseases (e.g. oral glucocorticoids, methotrexate, azathioprine and 

cyclosporin). We did not exclude volunteers with a history of uncomplicated 

hypertension or hypercholesterolaemia as this would have prevented the majority of 

ageing volunteers from participating in this study. The blood pressure and cholesterol 

level were not specifically measured for each volunteer, but those volunteers taking 

medication for a previously confirmed diagnosis of hypertension or 

hypercholesterolaemia were identified. 
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PBMC stimulation: PBMCs were isolated as standard and then subsequently stored 

at -80oC. The PBMCs were defrosted, counted and then cultured overnight at 5x105 

cells/ml with plate bound anti-CD3 (1µg/ml) and IL-2 (50IU/ml) for eighteen hours at 

37oC with 5% CO2. Brefeldin A (5µg/ml) was added two hours into the incubation. 

The cells were removed and cell surface stained with the following antibodies CD3, 

CD4, CD8 (clones UCHT1, SK3, SK9 respectively; BD) and Live/Dead after two 

washed the cells were fixed and permeabilised in Foxp3 staining buffers (as per the 

manufacturer’s instructions; eBiosciences) and intracellularly stained with the 

following antibodies: IFNγ, IL-2, TNFα and Ki67 (clones 4S.B3, MQ1-17H12, Mab11 

and Ki-67 respectively; Biolegend. Samples were acquired on the BD Symphony (BD 

Biosciences) and were subsequently analysed using FLowJo Version X (Treestar). 

Transcriptional analysis of skin biopsies: Target amplification and labelling was 

performed according to standard protocols using Nugen Ovation WB Kit.  RNA was 

hybridized to Affymetrix Human Genome U133 2.0 plus arrays. Affymetrix gene chips 

were scanned for spatial artefacts using the Hirshlight package50. Gene expression 

measures were obtained using the GCRMA algorithm51 and was modelled using 

mixed-models in R’s limma framework. Differences between groups were estimated 

from this model and its significance assessed using the moderated (paired/unpaired) 

t-test. Resulting P-values were adjusted for multiple hypotheses using the Benjamini-

Hochberg procedure. Gene set variation analysis (GSVA)52 was used to obtained the 

per-pathway scores for each patient and sample; using a collection of skin-specific 

pathways curated by the Krueger lab.  

Network analysis of the genes expressed within skin biopsies was performed as 

described19. Briefly, normalized, nonlog-transformed, annotated, gene-expression 

data were imported into BioLayout Express3D (www.biolayout.org), a tool designed 

specifically for the visualization of large gene-expression network graphs53.  Network 

graphs were then created using a Pearson correlation coefficient cut-off threshold of 
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r = 0.95. Each network graph was then clustered into groups of genes sharing similar 

profiles using the Markov clustering algorithm. The graphs were then explored to 

understand the biological significance of the gene clusters, identify those expressed 

by the young and old skin samples and their functional relationships to the other cell 

populations represented.   

 

Figure legends: 

Supplementary Figure 1.  Effect of age on clinical response to intradermal 

injection of VZV antigen. Healthy young and old volunteers were injected with 0.02 

ml VZV skin test antigen and  clinical score based on a combination of extent of 

induration, palpability and redness at the injection site was measured  at day  3 post 

challenge. Volunteers were split into age groups and mean, median and range f 

clinical scores calculated (A). Graph shows mean ± SEM for each age group. Mann-

Whitney test was used to compare changes between age groups 

.Supplementary Figure 2. Phenotype of CD4 and CD8 T cells resident in normal 

skin of young and old individuals. Sections of normal skin were immunostained to 

detect CD4, CD8, CD69, CD103 using an indirect immunofluorescence method. (A). 

Representative image of normal skin immunostained for CD4 (green), CD69 (red) 

and CD103 (white). (B) The proportion of CD4+ cells expressing CD69 in young and 

old skin (n=11). (C) The proportion of CD4+CD69+ cells expressing CD103 in young 

and old skin (n=10). (D) The proportion of CD8+ cells expressing CD69 in young and 

old skin (n=11). (E) The proportion of CD8+CD69+ cells expressing CD103 in young 

and old skin (n=10).  For B-E the line indicates the mean. 

Supplementary Figure 3. Proliferation of T cells following VZV antigen 

challenge is reduced in the old.   (A) Representative immunostaining of ki67 

expression in skin afterday 3 and 7 post-VZV injection (Ki67 green; CD4 red). (B) 
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Cumulative data showing the frequency of CD4+ cells expressing Ki67 per 

perivascular infiltrate (young - filled bars, old- open bars).  (C) Representative 

immunostaining on days 3 and 7 post-injection: Ki67 (green) and CD8 (red). (D) 

Cumulative data of the percentage of CD8+ cells expressing Ki67 per perivascular 

infiltrate in each donor. Data shown as mean ± SEM. * = p<0.05, ** = p<0.01, *** = 

p<0.001. 

Supplementary Figure 4. Activation of dermal endothelium at site of VZV 

challenge Immunofluorescence staining for CD31 and E-selectin or VCAm1 

expression was performed on skin sections from biopsies taken from normal skin and 

6 h, day 1 and day 3 after cutaneous challenge with VZV antigen from young and old 

volunteers (n=4-5 per age group at each time point). The number of double positive 

staining vessels expressed as a proportion of the total number of vessels in the 

superficial and mid-dermis of each section was used for analysis for each individual. 

(A) Representative images are shown CD31 (green) and E-selectin (red). (B) 

cumulative data (p values indicated, Mann Whitney test). (C) Expression of  VCAM1 

on CD31+ capillary loops 6hrs after VZV injection. (D) Healthy young and old 

volunteers (n=5) were injected with 0.02 ml VZV skin antigen test and 5 mm punch 

biopsies were performed 6hrs post injection.  Skin sections were immunostained with 

CD11c, CD4 and neutrophil elastase and the number of positive cells was counted 

per field. For B-D data shown as mean ± SEM. (E) Normal and VZV (6 hours post-

injection) paired skin biopsies were assessed for mononuclear phagocyte numbers 

by immunofluorescence staining utilising HLA-DR, CD14 and CD16. Any cell that 

was HLA-DR+ and CD14+ and/or CD16+ was defined as being a mononuclear 

phagocyte, analysis was performed in young (black, n=5) and old (white, n=5). For E 

data was assessed by a paired t-test * = p<0.05..  

Supplementary Figure 5. Pathway analysis of gene expression in young and 

old skin at 6 and 72 h post VZV antigen challenge . Differentially expressed genes 
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between VZV injected and normal skin in young or old at FCH>2 and FDR>0.05. 

Unsupervised clustering was carried out using Pearson correlation distance with 

Mcquitty agglomeration scheme. (A) Venn diagrams show numbers of DEG at 6 h 

following VZV antigen injection compared to normal skin. Up-regulated genes are 

shown in red, down-regulated genes in blue. (B) Table shows top 30 up-regulated 

genes at 6 h in young, genes not significantly up-regulated in old skin are indicated in 

bold italics. (C). Bubble plot representing the overall representation of relative gene 

expression in VZV-injected skin versus normal skin. KEGG and GO collection, as 

well as a curated skin-related collection were interrogated and the most relevant 

pathways amongst them with FDR<0.05 are presented.  The area of each circle is 

proportional to the differences in the GSVA-derived pathway scores between VZV-

injected and normal skin in each group. Colours indicate the direction of 

dysregulation red (up) and blue (down).  Colour intensity represents the strength of 

the dysregulation determined by FDR. 

Supplementary Figure 6. Overlap of differentially expressed of genes (DEG) in 

the skin of young and old individuals in the skin after injection of saline or VZV 

antigen. A selection of differentially expressed genes of interest are indicated for 

each (red, up-regulated and blue, down-regulated). (B) Principal component analysis 

of global gene expression in normal skin and 6 h after injection with saline or VZV 

antigen. (C) Table shows top 30 up-regulated genes at 6 h in saline and VZV injected 

skin. 

Supplementary Figure 7. Inflammatory response induced by saline injection 

inversely correlates with the response to VZV antigen challenge.  The 

expression of individual inflammatory genes in the skin 6 h after saline was 

compared by qRT-PCR analysis and plotted against the clinical score following VZV 

antigen injection at 48 hours. 
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Supplementary Figure 8. Frequency of HLA-DR+ cells and mononuclear 

phagocytes following saline injection 5mm punch biopsies were collected from 

normal or injected skin and digested overnight to provide single cell suspension. (A) 

Gating strategy employed to identify mononuclear phagocytes and dendritic cells in 

human skin; CD45+ lineage cocktail negative single cells were identified, 

subsequently, HLA-DR+ CD14+ and/or CD16+ were mononuclear phagocytes and 

HLA-DR+CD14-CD16-  were dendritic cells (DCs) either CD141+ or CD11c+ DCs. (B) 

cumulative data of mononuclear phagocyte populations 24 hours post-saline 

injection. (C) Phenotype of mononuclear phagocytes in the young and old donors 

(CD14+CD16- grey, CD14+CD16+ white, CD16+CD14- black). * = p<0.05 

Supplementary figure 9. Repeat skin testing with VZV skin antigen does not 

affect the clinical response in old individuals. 14 individuals with clinical score 

below 4 were re-challenged with VZV in the skin 2-5 months after the original skin 

test. Clinical score for both skin tests are shown in the table (p>0.5).  

Supplementary figure 10. Effect of Losmapimod treatment on immune 

functionA). Whole blood LPS stimulation was performed pre- and post-Losmapimod 

treatment in the same donors, and IL-6 and IL-8 was production measured by CBA 

(LPS p<0.0001, Losmapimod p<0.0001, Two way ANOVA n=18). PBMCs were 

stimulated overnight with CD3 and IL-2 were assessed by flow cytometric analysis in 

CD4+ T cells (B) for intracellular cytokine expression and (C) Ki67 expression and 

additionally in CD8 T cells (D) for intracellular cytokine expression and (E) Ki67 

expression pre- and post-losmapimod treatment (white circles and black squares 

respectively). Figure B-E were assessed by a paired t-test and no significant 

difference was observed.  
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 Old female Old male Young female Young male  

number 47 31 56 41 

Age range 65-93 65-93 20-39 20-39 

Average age 75.7 77.5 28.3 29.6 

Median age 74 77 29 29 

Score range 0-8 0-6 0-9 0-9 

Mean score 2.3 1.9 5.5 5.5 

Median score 2 1 5 6 
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Supplementary Table 2: 

 young middle old 

number 97 14 78 

Age range 20-39 41-64 65-93 

Median age 29 52 75.5 

Gender  56F/41M 8F/6M 47F/31M 

Score range 0-9 0-7 0-8 

Mean score 5.5 4.5 2.18 

Median score 6 5 2 
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Supplementary Table 3: 

 

 

 

 

 

 

 

 

Antibody name Clone Company 

CD11c B-ly6 BD Bioscience 

CD4 SK3 BD Bioscience 

CD163 5C6-FAT Acris 

DC-LAMP 104.G4 Beckman Coulter 

Neutrophil elastase NP75 Dako 
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Supplementary Table 3: 

Antibody name Clone Company 

CD4 SK3 or YNB46.1.8 BD Bioscience 

CD8 RPA-T8 BD Bioscience 

Ki67 - FITC B56 BD Bioscience 

CD31 - FITC WM59 BD Bioscience 

CD11c B-ly6 BD Bioscience 

Ki67 - FITC B56 BD Bioscience 

CD69 FN50 Biolegend 

CD103 2G5.1 Thermofisher 

Foxp3 - Biotin PCH101 eBioscience 

PD-1 NAT105 Abcam 
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 E-selectin ENA1 Abcam 

CD163 RM3/1 Abcam 
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Antibody name Clone Company 

CD11c 3.9 Biolegend 

CD14 HCD14 Biolegend 

CD16 3G8 Biolegend 

CD19 HIB19 Biolegend 

CD20 2H7 Biolegend 

CD56 HCD56 Biolegend 

CD163 GHI/61 Biolegend 

HLA-DR 104.G4 BD Biosciences 

CD3 UCHT1 BD Biosciences 

CD45 2D1 BD Biosciences 
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lgFCH_Y.VZV72vsNormalFCH_Y.VZV72vsNormalpvals_Y.VZV72vsNormalfdrs_Y.VZV72vsNormalStatusFCH2FDR0.05_Y.VZV72vsNormallgFCH_Y.VZV6vsNormalFCH_Y.VZV6vsNormalpvals_Y.VZV6vsNormal

117_at 0.93 1.91 0.0275 0.0616 0 0.35 1.28 0.399

1294_at 2.01 4.02 6.27E-07 7.08E-06 1 -0.85 -1.8 0.0233

1316_at -0.89 -1.86 0.00755 0.021 0 -1.21 -2.31 0.000401

1405_i_at 5.92 60.73 1.67E-07 2.30E-06 1 0.18 1.13 0.861

1438_at -1.83 -3.56 3.25E-07 4.05E-06 -1 -0.55 -1.46 0.0963

1552256_a_at -1.41 -2.66 8.26E-07 8.95E-06 -1 -0.4 -1.32 0.134

1552263_at 1.43 2.7 7.78E-05 0.000416 1 0.16 1.11 0.65

1552264_a_at 1.18 2.26 1.79E-05 0.000118 1 0.47 1.39 0.0678

1552283_s_at -1.35 -2.54 0.0093 0.025 -1 -0.69 -1.62 0.173

1552286_at -1.24 -2.36 2.20E-06 2.03E-05 -1 -0.76 -1.69 0.00243

1552302_at 2.4 5.28 2.08E-09 6.28E-08 1 0.74 1.67 0.0371

1552303_a_at 2.32 4.98 1.36E-12 2.37E-10 1 0.43 1.35 0.115

1552316_a_at 2.98 7.89 4.59E-09 1.18E-07 1 -0.32 -1.25 0.479

1552318_at 2.33 5.03 4.84E-06 3.94E-05 1 -0.94 -1.92 0.0483

1552320_a_at 4.5 22.67 7.06E-11 4.61E-09 1 0.47 1.38 0.427

1552323_s_at 1.04 2.05 0.00937 0.0252 1 -1.4 -2.64 0.000579

1552327_at -2.1 -4.29 8.29E-09 1.94E-07 -1 -1.83 -3.55 2.67E-07

1552343_s_at 1.99 3.98 8.90E-06 6.59E-05 1 -0.54 -1.46 0.197

1552344_s_at 1.29 2.45 1.39E-06 1.39E-05 1 1.07 2.1 4.08E-05

1552365_at -1.53 -2.88 6.04E-05 0.000334 -1 -0.29 -1.22 0.422

1552367_a_at -1.43 -2.69 0.000795 0.00307 -1 -0.22 -1.17 0.588

1552398_a_at 2.57 5.93 0.00971 0.0259 1 0.36 1.29 0.707

1552400_a_at -0.36 -1.28 0.421 0.545 0 -1.8 -3.49 0.00011

1552474_a_at -1.01 -2.02 0.000301 0.00133 -1 -0.72 -1.65 0.00848

1552480_s_at 4.8 27.87 8.41E-10 3.11E-08 1 0.66 1.58 0.335

1552482_at -1.18 -2.27 0.00039 0.00166 -1 -0.47 -1.38 0.144

1552485_at 1.33 2.52 0.000143 0.000702 1 1 2 0.00345

1552486_s_at 1.61 3.05 1.08E-06 1.12E-05 1 1.16 2.23 0.000271

1552487_a_at -0.47 -1.39 0.162 0.261 0 1.44 2.71 5.33E-05

1552491_at 0.01 1.01 0.975 0.984 0 1.33 2.51 9.99E-06

1552496_a_at -1.43 -2.69 3.85E-07 4.67E-06 -1 -0.35 -1.27 0.176

1552497_a_at 6.2 73.51 3.24E-11 2.55E-09 1 0.26 1.2 0.743

1552502_s_at -1.19 -2.29 0.00142 0.00503 -1 0.01 1.01 0.981

1552509_a_at -2.25 -4.77 7.50E-05 0.000402 -1 -0.88 -1.85 0.103

1552532_a_at -1.15 -2.23 3.82E-07 4.65E-06 -1 -0.12 -1.09 0.562

1552553_a_at 2.85 7.19 7.98E-09 1.88E-07 1 0.95 1.93 0.0321

1552562_at 0.33 1.26 0.148 0.243 0 1.01 2.01 3.72E-05

1552566_at -1.54 -2.9 0.00148 0.00522 -1 0.52 1.43 0.267

1552575_a_at -3.54 -11.64 7.78E-12 8.67E-10 -1 -0.93 -1.9 0.0354

1552584_at 4.63 24.75 3.45E-10 1.57E-08 1 0.53 1.44 0.408

1552612_at 2.69 6.45 2.08E-07 2.78E-06 1 0.16 1.11 0.74

1552613_s_at 2.44 5.42 9.23E-10 3.32E-08 1 0.27 1.21 0.436

1552618_at 1.04 2.06 0.0146 0.0365 1 0.66 1.58 0.115

1552619_a_at -1.2 -2.29 0.0103 0.0271 -1 -1.38 -2.6 0.00332

1552626_a_at 1.41 2.66 1.89E-06 1.79E-05 1 0.48 1.4 0.0809

1552633_at 2.14 4.41 2.50E-10 1.24E-08 1 0.13 1.09 0.655

Supplementary table 6
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117_at -0.34 -1.26 0.417 1 0 -0.14 -1.1 0.734

1552487_a_at -0.01 -1.01 0.975 1 0 0.91 1.88 0.00797

1552491_at -0.16 -1.12 0.56 1 0 0.7 1.62 0.0147

1552641_s_at -0.25 -1.19 0.556 1 0 0.31 1.24 0.465

1553749_at -0.05 -1.04 0.818 1 0 0.47 1.38 0.0366

1553787_at -0.24 -1.18 0.557 1 0 -0.96 -1.95 0.0201

1553789_a_at -0.26 -1.2 0.455 1 0 -0.9 -1.87 0.0106

1553861_at 0.17 1.12 0.702 1 0 0.38 1.3 0.382

1554008_at 0.22 1.16 0.543 1 0 1.42 2.69 0.000145

1554283_at 0.04 1.03 0.902 1 0 0.8 1.74 0.0133

1554406_a_at 0.47 1.38 0.55 1 0 0.21 1.16 0.789

1554704_at -0.45 -1.36 0.192 1 0 -1.6 -3.04 1.09E-05

1554748_at 0.06 1.04 0.914 1 0 -0.08 -1.06 0.882

1554834_a_at 0.42 1.34 0.458 1 0 0.85 1.81 0.136

1555131_a_at 0.25 1.19 0.499 1 0 -1.23 -2.34 0.00163

1555167_s_at -0.41 -1.33 0.488 1 0 1.36 2.56 0.0252

1555318_at -0.35 -1.28 0.608 1 0 -1.83 -3.56 0.00906

1555427_s_at 0.06 1.04 0.881 1 0 0.7 1.63 0.0637

1555600_s_at 0.64 1.55 0.294 1 0 1 1.99 0.103

1555638_a_at 0.17 1.12 0.85 1 0 0.1 1.07 0.915

1555756_a_at 0.45 1.37 0.555 1 0 0.3 1.23 0.692

1555760_a_at -0.43 -1.34 0.354 1 0 0.14 1.11 0.752

1555870_at 0.36 1.28 0.394 1 0 -0.63 -1.55 0.134

1556069_s_at -0.39 -1.31 0.537 1 0 -0.23 -1.17 0.717

1556081_at -0.54 -1.45 0.0793 1 0 0.46 1.37 0.136

1556185_a_at -0.34 -1.27 0.356 1 0 0.14 1.1 0.715

1556210_at -0.36 -1.29 0.387 1 0 -1.42 -2.67 0.00116

1556211_a_at -0.18 -1.13 0.639 1 0 -1.02 -2.02 0.00843

1556212_x_at -0.03 -1.02 0.944 1 0 -0.9 -1.87 0.0204

1556253_s_at 0.52 1.43 0.264 1 0 -0.07 -1.05 0.876

1556300_s_at -1.38 -2.61 0.0126 1 0 0.21 1.16 0.7

1556321_a_at -0.35 -1.28 0.313 1 0 0.67 1.59 0.059

1556361_s_at -0.26 -1.2 0.541 1 0 0.81 1.75 0.0592

1556385_at 0.07 1.05 0.911 1 0 1.2 2.3 0.0465

1556402_at -0.45 -1.37 0.26 1 0 -0.61 -1.52 0.13

1556579_s_at 0.3 1.23 0.512 1 0 -0.03 -1.02 0.939

1556589_at -0.15 -1.11 0.74 1 0 -1.08 -2.12 0.0185

1556590_s_at -0.06 -1.04 0.91 1 0 -0.82 -1.76 0.115

1556758_at -0.43 -1.34 0.186 1 0 0.16 1.12 0.617

1556770_a_at -0.31 -1.24 0.537 1 0 -1.07 -2.09 0.0363

1556867_at -0.04 -1.03 0.931 1 0 1.55 2.93 0.00148

1556989_at -0.83 -1.78 0.168 1 0 0.35 1.28 0.554

1557155_a_at 1.22 2.33 0.00354 1 0 1.23 2.34 0.0033

1557383_a_at -0.26 -1.2 0.578 1 0 -1.42 -2.68 0.00346

1557458_s_at 0.2 1.15 0.57 1 0 0.7 1.63 0.0491

1557553_at 0.18 1.13 0.779 1 0 -0.18 -1.14 0.767
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PositiveRegulators

ABCB9

ADAM10

ADAM17

ADAM8

ADK

ADORA2B

AIF1

AKT1

AP3B1

AP3D1

AQP3

ATF1

ATF2

AXL

BAD

BCAR1

BCL10

BCL2

BDKRB1

BIRC2

BIRC3

BLM

BLOC1S3

BMI1

BTK

C1QA

C1QB

C1QC

C1R

C1RL

C1S

C2

C3

C3AR1

C4BPB

C6

C7

CACNB3

CADM1

CAMK1D

CARD11

CARD9

CASP8

CAV1

CCL19

CCL21
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Gene symbol:probe set IDSymbol DescriptionID EntrezID Chrom ChromLoc PathwayID PathDesc

BID;211725_s_atBID BH3 interacting domain death agonist211725_s_at 637 22 18216905 04115, 04210, 04650, 05010, 05014, 05200, 05416p53 signaling pathway, Apoptosis, Natural killer cell mediated cytotoxicity, Alzheimer s disease, Amyotrophic lateral sclerosis (ALS), Pathways in cancer, Viral myocarditis

C1orf38;207571_x_atC1orf38 chromosome 1 open reading frame 38207571_x_at 9473 1 28199054 - -

C1orf38;210785_s_atC1orf38 chromosome 1 open reading frame 38210785_s_at 9473 1 28199054 - -

C5AR1;220088_atC5AR1 complement component 5a receptor 1220088_at 728 19 47813103 04080, 04610Neuroactive ligand-receptor interaction, Complement and coagulation cascades

CCR1;205098_atCCR1 chemokine (C-C motif) receptor 1205098_at 1230 3 46243199 04060, 04062Cytokine-cytokine receptor interaction, Chemokine signaling pathway

CCR1;205099_s_atCCR1 chemokine (C-C motif) receptor 1205099_s_at 1230 3 46243199 04060, 04062Cytokine-cytokine receptor interaction, Chemokine signaling pathway

CD300A;209933_s_atCD300A CD300a molecule209933_s_at 11314 17 72462521 - -

CHST11;226368_atCHST11 carbohydrate (chondroitin 4) sulfotransferase 11226368_at 50515 12 1.05E+08 00532, 00920Chondroitin sulfate biosynthesis, Sulfur metabolism

CHST11;226372_atCHST11 carbohydrate (chondroitin 4) sulfotransferase 11226372_at 50515 12 1.05E+08 00532, 00920Chondroitin sulfate biosynthesis, Sulfur metabolism

CLEC4E;222934_s_atCLEC4E C-type lectin domain family 4, member E222934_s_at 26253 12 8685900 - -

CLEC7A;1554406_a_atCLEC7A C-type lectin domain family 7, member A1554406_a_at 64581 12 10269375; 10279923- -

CLEC7A;1555756_a_atCLEC7A C-type lectin domain family 7, member A1555756_a_at 64581 12 10269375; 10279923- -

CLEC7A;221698_s_atCLEC7A C-type lectin domain family 7, member A221698_s_at 64581 12 10269375; 10279923- -

CSF2RB;205159_atCSF2RB colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage)205159_at 1439 22 37309674 04060, 04210, 04630Cytokine-cytokine receptor interaction, Apoptosis, Jak-STAT signaling pathway

CTSS;202902_s_atCTSS cathepsin S202902_s_at 1520 1 1.51E+08 04142, 04612Lysosome, Antigen processing and presentation

CYBB;203923_s_atCYBB cytochrome b-245, beta polypeptide203923_s_at 1536 X 37639269 4670 Leukocyte transendothelial migration

CYTH4;219183_s_atCYTH4 cytohesin 4219183_s_at 27128 22 37678494 - -

DOK3;223553_s_atDOK3 docking protein 3223553_s_at 79930 5 176928914; 176930751- -

EFHD2;222483_atEFHD2 EF-hand domain family, member D2222483_at 79180 1 15736390 - -

EMR2;207610_s_atEMR2 egf-like module containing, mucin-like, hormone receptor-like 2207610_s_at 30817 19 14843204 - -

FCGR2A;203561_atFCGR2A Fc fragment of IgG, low affinity IIa, receptor (CD32)203561_at 2212 1 1.61E+08 04666, 05322Fc gamma R-mediated phagocytosis, Systemic lupus erythematosus

FGR;208438_s_atFGR Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog208438_s_at 2268 1 27938802 4062 Chemokine signaling pathway

HCK;208018_s_atHCK hemopoietic cell kinase208018_s_at 3055 20 30639990 04062, 04666Chemokine signaling pathway, Fc gamma R-mediated phagocytosis

IGSF6;206420_atIGSF6 immunoglobulin superfamily, member 6206420_at 10261 16 21652605 - -

ITGAX;210184_atITGAX integrin, alpha X (complement component 3 receptor 4 subunit)210184_at 3687 16 31366508 4810 Regulation of actin cytoskeleton

LILRA2;207857_atLILRA2 leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 2207857_at 11027 19 55085256 - -

LILRA2;211100_x_atLILRA2 leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 2211100_x_at 11027 19 55085256 - -

LILRA2;211101_x_atLILRA2 leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 2211101_x_at 11027 19 55085256 - -

LILRB1;211336_x_atLILRB1 leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 1211336_x_at 10859 19 55128628; 55141907; 55141967- -

LILRB1;229937_x_atLILRB1 leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 1229937_x_at 10859 19 55128628; 55141907; 55141967- -

LILRB2;207697_x_atLILRB2 leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2207697_x_at 10288 19 54777675 - -

LILRB2;210146_x_atLILRB2 leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2210146_x_at 10288 19 54777675 - -

LILRB3;211135_x_atLILRB3 leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 3211135_x_at 11025 19 54720146 4662 B cell receptor signaling pathway

LYN;202625_atLYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog202625_at 4067 8 56792385 04062, 04662, 04664, 04666, 04730, 05120Chemokine signaling pathway, B cell receptor signaling pathway, Fc epsilon RI signaling pathway, Fc gamma R-mediated phagocytosis, Long-term depression, Epithelial cell signaling in Helicobacter pylori infection

LYN;202626_s_atLYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog202626_s_at 4067 8 56792385 04062, 04662, 04664, 04666, 04730, 05120Chemokine signaling pathway, B cell receptor signaling pathway, Fc epsilon RI signaling pathway, Fc gamma R-mediated phagocytosis, Long-term depression, Epithelial cell signaling in Helicobacter pylori infection

LYN;210754_s_atLYN v-yes-1 Yamaguchi sarcoma viral related oncogene homolog210754_s_at 4067 8 56792385 04062, 04662, 04664, 04666, 04730, 05120Chemokine signaling pathway, B cell receptor signaling pathway, Fc epsilon RI signaling pathway, Fc gamma R-mediated phagocytosis, Long-term depression, Epithelial cell signaling in Helicobacter pylori infection

LYZ;1555745_a_atLYZ lysozyme (renal amyloidosis)1555745_a_at 4069 12 69742133 - -

NA;204961_s_atNA NA 204961_s_atNA - - - -

NA;210225_x_atNA NA 210225_x_atNA - - - -

NA;210784_x_atNA NA 210784_x_atNA - - - -

NA;211133_x_atNA NA 211133_x_atNA - - - -

NA;227184_atNA NA 227184_at NA - - - -

NA;228685_atNA NA 228685_at NA - - - -

NADK;213607_x_atNADK NAD kinase213607_x_at 65220 1 1682677 00760, 01100Nicotinate and nicotinamide metabolism, Metabolic pathways

PILRA;219788_atPILRA paired immunoglobin-like type 2 receptor alpha219788_at 29992 7 99971067 - -

PILRA;222218_s_atPILRA paired immunoglobin-like type 2 receptor alpha222218_s_at 29992 7 99971067 - -

PTAFR;206278_atPTAFR platelet-activating factor receptor206278_at 5724 1 28473677 04020, 04080Calcium signaling pathway, Neuroactive ligand-receptor interaction

PTAFR;211661_x_atPTAFR platelet-activating factor receptor211661_x_at 5724 1 28473677 04020, 04080Calcium signaling pathway, Neuroactive ligand-receptor interaction

PTPRE;221840_atPTPRE protein tyrosine phosphatase, receptor type, E221840_at 5791 10 129705324; 129845812- -
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Supplementary Figure No.1
Click here to download high resolution image

http://ees.elsevier.com/jaci/download.aspx?id=1326769&guid=375750dd-e2fe-4957-850a-74dbef82de47&scheme=1


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Supplementary Figure No.2
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Supplementary Figure No.3
Click here to download high resolution image

http://ees.elsevier.com/jaci/download.aspx?id=1326771&guid=875441ca-5652-4b44-a49e-3e1adffad9a4&scheme=1


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Supplementary Figure No.4
Click here to download high resolution image

http://ees.elsevier.com/jaci/download.aspx?id=1326772&guid=d8857247-4fd1-4848-b268-1d8b405ed555&scheme=1
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Supplementary Figure No.5
Click here to download high resolution image

http://ees.elsevier.com/jaci/download.aspx?id=1326773&guid=ac077276-4c3f-4bcf-ad79-b64f63c8c420&scheme=1
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Supplementary Figure No.6
Click here to download high resolution image
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Supplementary Figure No.7
Click here to download high resolution image
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Supplementary Figure No.8
Click here to download high resolution image
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Supplementary Figure No.9
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