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ABSTRACT
Objective  Our main objective is to estimate the trend of 
deaths by COVID-19 on a global scale, considering the six 
continents.
Study design  The study design was a retrospective 
observational study conducted using the secondary data 
provided by the Our World in Data project on a public 
domain.
Setting  This study was conducted based on worldwide 
deaths by COVID-19 recorded for the Our World in Data 
project from 29 February 2020 to 17 February 2021.
Methods  Estimating the trend in COVID-19 deaths is 
not a trivial task due to the problems associated with 
the COVID-19 data, such as the spatial and temporal 
heterogeneity, observed seasonality and the delay between 
the onset of symptoms and diagnosis, indicating a relevant 
measurement error problem and changing the series’ 
dependency structure. To bypass the aforementioned 
problems, we propose a method to estimate the 
components of trend, seasonality and cycle in COVID-19 
data, controlling for the presence of measurement error 
and considering the spatial heterogeneity. We used the 
proposed model to estimate the trend component of 
deaths by COVID-19 on a global scale.
Results  The model was able to capture the patterns in 
the occurrence of deaths related to COVID-19, overcoming 
the problems observed in COVID-19 data. We found 
compelling evidence that spatiotemporal models are more 
accurate than univariate models to estimate the patterns 
of the occurrence of deaths. Based on the measures of 
dispersion of the models’ prediction in relation to observed 
deaths, it is possible to note that the models with spatial 
component are significantly superior to the univariate 
model.
Conclusion  The findings suggested that the spatial 
dynamics have an important role in the COVID-19 
epidemic process since the results provided evidence that 
spatiotemporal models are more accurate to estimate the 
general patterns of the occurrence of deaths related to 
COVID-19.

INTRODUCTION
On 11 March 2020, the WHO declared the 
COVID-19 outbreak as a pandemic, which is 
currently a public health threat in more than 
200 countries. Since the efficacy and safety of 
pharmaceutical treatments to deal with the 
COVID-19 require time and effort,1 2 some 

public health measures have been proposed 
by countries to cope with the rapid spread 
of the COVID-19, such as social distancing, 
self-quarantine and lockdown. However, 
preventing transmission depends on how well 
we can assess the number of infected people. 
Statistical modelling is helpful to obtain the 
trend component and better understand the 
evolution of the confirmed cases and deaths of 
COVID-19 and provide key information about 
the effects of non-pharmaceutical measures 
to control the transmission. Regarding the 
methods for trend estimation, there are 
several different methods reported in the 
literature, which differ in their complexity 
and interpretability. The most prevalent 
trend estimation methods are model-based 
trend extraction, non-parametric filtering, 
singular spectrum analysis and wavelets.3

To estimate COVID-19 trends, some of 
the aforementioned approaches have been 
applied to the current outbreak.4–7 However, 
it should be noted that despite the great 
variety of papers dedicated to studying the 
long-movements of COVID- 19, there is little 
understanding about the spread pattern of 
COVID-19 on a global scale. Also, it is worth 
noting some problems related to COVID-19 
data. First, it is observed that there is a delay 

Strengths and limitations of this study

	► Use of novel statistical decomposition model for 
spatiotemporal analysis to estimate the trend of 
deaths by COVID-19.

	► The proposed model is able to avoid the heteroge-
neity and error measurement problems associated 
with the COVID-19 data.

	► The model’s ability to capture the observed gener-
al patterns in the occurrence of deaths related to 
COVID-19 in a global scale.

	► The model’s applicability to different fields, such as 
epidemiology issues as well as climate events.

	► Study limitations include the reliability of the data 
used, which relies on the government actions that 
differs from country to country. copyright.
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between the onset of symptoms and accurate diagnosis, 
which may vary from country to country, depending on 
the local government’s strategy.8 Also, there are uncon-
formities in the report of new deaths which are counted 
on the day that are included in the system, instead of the 
actual day of the death.9 These problems create a relevant 
measurement error problem, changing the series’ depen-
dency structure. In addition, the delays are also related to 
the lack of personnel available to report cases on week-
ends, which creates a seasonality structure in the cases 
and death reports, generating an additional aggregation 
problem on the time series.10

To bypass these problems, we propose to estimate the 
long-term movements of deaths by COVID-19 on a global 
scale through a structural decomposition.11 The main 
idea is to decompose the temporal variability observed in 
the data into the trend, seasonal and cycle components, 
which allows identifying permanent movements, and 
cyclical and seasonal effects, in the presence of measure-
ment errors. In addition, since we are interested to assess 
the spread pattern of COVID-19 on a global scale, the 
importance of a spatial component is undeniable, since 
the use of this information is important in estimating 
the trend and cycle components, due to the nature of 
transmission in an epidemic process, with spatial spread 
dynamics. In the light of this, we include a component 
that considers the spatial heterogeneity among different 
areal unities in the study of COVID-19 evolution. We 
propose two different spatial formulations which rely on 
the definition of neighbourhoods. The first is based on 
regions that present common borders, while the second 
includes information on the air transport network. 
Regarding this context, the contribution of this paper is to 
explore a Bayesian version of the trend-cycle decomposi-
tion in combination with count distributions, considering 
the spatial heterogeneity,12 in the task of estimating the 
permanent movements of deaths by COVID-19 outbreak 
in a global scale.

MATERIAL AND METHODS
In this paper, we present the results of estimating the 
proposed model for COVID-19-related death data for 
countries collected by the Our World in Data project (avail-
able at https://ourworldindata.org/covid-deaths), using 
daily information on new deaths for the period from 29 
February 2020 to 17 February 2021. Therefore, the study 
design was a retrospective observational study conducted 
using secondary data on a public domain. Patients and/
or the public were not involved in the design, or conduct, 
or reporting or dissemination plans of this research. We 
use the countries on that basis that contained information 
on the total population, corresponding to a total of 205 
countries. Also, we use the continental division of coun-
tries as a region definition, and thus k=6, corresponding 
to the continents of Asia, Europe, South America, North 
America, Africa and Oceania.

Patient and public involvement statement
No patient involved.

Statistical model
The proposed model is a generalisation of the Bayesian 
model introduced by Valente and Laurini12 for estimating 
the COVID-19 trend for data in Brazil, controlling for 
problems of measurement error in the construction of 
death statistics. The model is based on a generalised 
decomposition of trend, seasonality and cycle compo-
nents incorporating a time-varying spatial component. 
The spatial component is based on the conditional 
autoregressive (CAR) structure,13 based on the informa-
tion of occurrences in some definition of the neighbour-
hood to formulate prior information for the number of 
occurrences in the region of interest. The structure of the 
model can be summarised by the following equations:

	﻿‍ Y(
i,t
) = Poisson

(
expλ(

i,t
)E
)

,‍�

	﻿‍ λ(
i,t
) = µ(

k,t
) + s(k,t

) + c(k,t
) + ξ(i,t

)
‍�

	﻿‍ ∆2µ(
k,t
) = η{µ(

k,t
)}

‍�
	﻿‍ s(k,t

) = s(k,t−1
) + s(k,t−2

) + . . . + s(k,t−m
) + η{s

(
k,t
)}

‍�

	﻿‍ c(k,t
) = θ1c(k,t−1

) + θ2c(k,t−2
) + η{c

(
k,t
)}

‍�

	﻿‍
ξ{(i,t

)} | ξ{(j,t
)

, i ̸=j, τ
} ∼ N

(
1
ni

∑
{

i∼j
} ξ{(j,t

)}, 1
τni

)
‍�

	﻿‍ ξ{(j,t
)} = Φξ{(j,t−1

)}
‍�

where ‍Y
(

i,t
)
‍ is the total number of occurrences (deaths) 

in region ‍i ‍ and time ‍t‍. ﻿‍E‍ is the exposure offset, controlling 
for the total population regarding the cases in ‍Y(

i,t
)‍. This 

offset allows using common components for regions 
with different population sizes. It is important to high-
light that the used database contains daily information 
on deaths by COVID-19 of 205 countries, thus the region 
‍i‍ corresponds to the country level. However, to estimate 
the latent factors, we define the region ﻿‍k‍, which contains 
a certain group of individuals ‍i‍. In particular, define 
‍k‍ corresponding to each of the six continents, namely, 
Asia, Europe, Oceania, Africa, North America and South 
America, where each continent ﻿‍k‍ contains a certain group 
of countries ‍i‍. In this sense, the component ‍µ(

k,t
)‍ captures 

the general trend of the process for a region ﻿‍k‍ for some 
definition of region, containing a group of individuals 
‍i‍ and representing the average level of occurrences in 
period ‍t‍ for the region ﻿‍ k‍. In our model, k represents 
each continent under analysis. We assume a second-order 
random walk (RW2) structure for the trend component. 
The RW2 is a flexible structure suitable for epidemics 
with rapid spread, which is able to model the evolution 
of the average number of cases in fast-growing processes 
since it assumes that both the average level and the rate 
of growth of the level are non-stationary processes.12 Also, 
it is worth noting that this model has a non-parametric 
nature, since it can be formulated as a spline model, and 
thus suitable for a new epidemic whose parametric case 
structure is unknown.

The model also contains region-specific seasonal (‍s
(

k,t
)

‍) and cycle (‍c
(

k,t
)
‍) components. These two components 
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are used to capture periodic components in the series of 
deaths related to COVID-19, where we assume that these 
components are transient, that is, have a sum equal to 
zero. As discussed by Valente and Laurini,12 these compo-
nents are a way of controlling the effects of measurement 
errors introduced by the mechanism for disclosing the 
number of cases and deaths related to COVID-19, where 
the total number of cases reported on a certain day corre-
sponds to the total recorded in the day, instead of the exact 
date of the diagnosis confirmation or death. Using simu-
lations of an Susceptible-Exposed-Infectious-Removed 
(SEIR) model, the authors12 show that this accounting 
mechanism introduces patterns like seasonality and 
cycle effects in the series of cases and deaths. The ‍s

(
k,t
)
‍ 

component represents a sum of stochastic components, 
with the number of components given by the periodicity 
of the series and with a sum-to-zero restriction. The ‍c

(
k,t
)
‍ 

component is represented by a second-order autoregres-
sive process with possibly complex roots, which permits to 
capture cyclical components, also assuming a restriction 
of zero-sum. It is worth noting that the cyclic component 
also allows us to capture other patterns of periodic depen-
dency in the series, such as transmission waves without 
permanent effects in the series.

The ‍η
{
µ
(

k,t
)}

‍, ‍η
{

s
(

k,t
)}

‍ and ‍η
{

c
(

k,t
)}

‍ components are non-
spatial independent innovations with zero mean Gaussian 
distributions with estimated precision (inverse of vari-
ances). ‍ξ

(
i,t
)
‍ is the spatial random effect component, 

allowing to incorporate spatial variability in the occur-
rence rate, ‍ni‍ is the number of neighbours of region ‍i‍ and 
‍i ∼ j ‍ indicates that the two regions ‍i‍ and ‍j‍ are neighbours. 
The CAR structure used defines a prior for the spatial 
effect in the region ﻿‍ i‍ given by a Gaussian distribution 
with mean given by the average of the values of the spatial 
effects for regions ‍j‍ that are neighbourhood to region ‍i‍, 
and variance controlled by a precision parameter ﻿‍τ ‍ multi-
plied by the number of neighbours. As the spatial vari-
ability in an epidemic process varies over time, we assume 
that this component is also time varying. The dynamic 
formulation for the spatial CAR is parameterised through 
an autoregressive structure, via a parameter ﻿‍Φ‍ controlling 
for the time dependence for this process.

The spatial formulation adopted in this paper depends 
on the definition of the neighbourhood structure. We 
use two definitions of the neighbourhood. The first is 
the spatial contiguity, that is, two regions are considered 
neighbours if there is a common border. The second 
formulation considers both the spatial contiguity and 
also an air transport network, which allows incorporating 
into the model the transmission mechanism given by the 
contact among passengers and air transport crew between 
two countries. We detail the structure used in the analysis 
of air transport network in online supplemental material. 
In online supplemental table S1, the country codes used 
in determining the air transport network are presented, 
and in online supplemental table S2 and figure S1, the 
communities chosen as neighbourhood determinants by 
the passenger transport criterion are presented.

The prior structure assumes log-gamma distribution for 
all precision components, with values (1, 5e−05) for the 
trend and seasonal components, and the spatial random 
effect. For the cycle (AR(2) structure) component, we 
use a penalised complexity prior14 for the precision, with 
values (3, 0.01), and for the first-order and second-order 
partial autocorrelation parameters, we use penalised 
complexity priors with values (0.5, 0.5) and (0.5, 0.4). The 
prior for the coefficient ‍Φ‍ is also a penalised complexity 
prior for the correlation parameter, with values defined 
as (3, 0.01).

The resulting additive hierarchical structure allows 
us to perform a Bayesian inference procedure within 
the Integrated Nested Laplace Approximations (INLA) 
approach,15 which provides accurate and efficient 
approximations on additive hierarchical models that can 
be represented as Gaussian Markov Random Fields.16 For 
reasons of space, we do not detail the INLA method here, 
which is widely discussed by Rue et al15 and by Valente and 
Laurini.12

RESULTS
To estimate the trend of deaths by COVID-19 outbreak on 
a global scale, we performed inference procedures based 
on the model described in equation (1), considering three 
different formulations. First, we estimated the parame-
ters without the effects of the spatial component (model 
M1, hereafter), where the estimated parameters are the 
precision of the trend (‍1/η{µ(k,t

)}
‍), seasonal (‍1/η{s

(
k,t
)}

‍) 
and cycle (‍1/η{c

(
k,t
)}

‍) parameters for Asia, Africa, Europe, 
North America, South America and Oceania, and the 
parameters of the second-order autoregressive process 
of the cycle (Partial Autocorrelation Function (PACF)1 
and PACF2) for each continent. In the second and third 
formulations (M2 and M3, respectively), we consider a 
time-varying spatial component, modelled as a spatial 
random effect with a CAR structure with time depen-
dency, where the estimated values at any given region 
are conditional on neighbouring values. The difference 
between models M2 and M3 is how the neighbourhood 
structure was defined. While in model M2, the neigh-
bourhood structure was constructed based on contiguity, 
using the territorial division, in model M3 not only conti-
guity was considered to define, but also information of an 
air transport network. In the case of models M2 and M3, 
the estimated parameters also include the log precision 
parameter τ, and parameter Φ of time dependency.

It is worth noting that the precision coefficients are not 
directly interpretable due to the different scales of the 
latent components, but a higher precision indicates less 
variability of the estimated latent component. A higher 
precision parameter indicates a smoother component 
or with less temporal variability. In this case, the most 
direct interpretation is for the estimated path of the 
latent component. The PACF1 and PACF2 components 
are the representations of the first-order and second-
order autoregressive coefficients in terms of partial 
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Table 1  Estimated parameters of deaths reported in worldwide—models M1, M2 and M3

Mean SD 0.025quant 0.5quant 0.975quant Mode

Model without spatial component (M1)

 � Precision for trend (Asia) 47 065.94 1.71e+04 22 255.2 44 171.67 8.86e+04 38 965.84

 � Precision for trend (Europe) 18 244.38 5.04e+03 10 229.53 17 617.95 2.99e+04 16 431.35

 � Precision for trend (Africa) 25 340.83 9.38e+03 11 735.89 23 766.84 4.80e+04 20 918.04

 � Precision for trend (North America) 8287.844 2.39e+03 4505.762 7995.11 1.38e+04 7439.043

 � Precision for trend (South America) 31 740.07 1.24e+04 13 512.98 29 788.63 6.14e+04 26 043.59

 � Precision for trend (Oceania) 3631.989 1.67e+03 1285.369 3340.437 7.72e+03 2758.72

 � Precision for seasonality (Asia) 37 041.63 2.47e+04 8771.08 31 026.05 1.01e+05 21 071.69

 � Precision for seasonality (Europe) 1480.084 5.50e+02 695.524 1383.102 2.83e+03 1211.254

 � Precision for seasonality (Africa) 14 441.12 1.08e+04 3037.376 11 564.34 4.29e+04 7337.345

 � Precision for seasonality (North America) 1904.256 6.96e+02 889.365 1789.016 3.58e+03 1579.576

 � Precision for seasonality (South America) 2935.316 1.37e+03 1126.925 2651.206 6.40e+03 2174.777

 � Precision for seasonality (Oceania) 16 849.83 1.94e+04 1802.661 11 049.72 6.73e+04 4780.553

 � Precision for cycle (Asia) 61.37 5.57e+00 51.092 61.142 7.30e+01 60.716

 � PACF1 for cycle (Asia) 0.044 7.00e−02 −0.089 0.043 1.84e−01 0.038

 � PACF2 for cycle (Asia) −0.002 6.10e−02 −0.121 −0.003 1.20e−01 −0.006

 � Precision for cycle (Europe) 74.313 8.67e+00 58.553 73.883 9.26e+01 73.107

 � PACF1 for cycle (Europe) 0.116 7.60e−02 −0.033 0.116 2.64e-01 0.116

 � PACF2 for cycle (Europe) −0.011 6.80e−02 −0.147 −0.01 1.20e-01 −0.006

 � Precision for cycle (Africa) 32.364 3.32e+00 26.235 32.231 3.93e+01 32.01

 � PACF1 for cycle (Africa) 0.016 7.10e−02 −0.123 0.015 1.56e-01 0.014

 � PACF2 for cycle (Africa) 0.049 7.20e−02 −0.092 0.048 1.92e-01 0.045

 � Precision for cycle (North America) 43.924 4.60e+00 35.433 43.744 5.35e+01 43.454

 � PACF1 for cycle (North America) 0.204 6.80e−02 0.07 0.203 3.37e−01 0.201

 � PACF2 for cycle (North America) −0.032 6.70e−02 −0.163 −0.033 1.02e−01 −0.035

 � Precision for cycle (South America) 20.575 1.89e+00 17.05 20.511 2.45e+01 20.412

 � PACF1 for cycle (South America) −0.177 7.20e−02 −0.315 −0.178 −3.30e−02 −0.18

 � PACF2 for cycle (South America) 0.127 6.50e−02 −0.001 0.127 2.54e−01 0.126

 � Precision for cycle (Oceania) 6.376 1.75e+00 3.535 6.182 1.04e+01 5.811

 � PACF1 for cycle (Oceania) 0.103 1.32e−01 −0.161 0.105 3.55e−01 0.11

 � PACF2 for cycle (Oceania) −0.363 1.84e−01 −0.68 −0.378 3.50e−02 −0.413

Spatial model with Continent-specific trend, seasonal and cycle components (M2)

 � Precision for trend (Asia) 1915.711 188.693 1601.403 1894.92 2337.895 1839.906

 � Precision for trend (Europe) 2656.69 333.928 2066.338 2633.714 3375.658 2586.415

 � Precision for trend (Africa) 6258.313 1048.8 4712.686 6076.868 8763.297 5635.089

 � Precision for trend (North America) 2466.706 332.468 1857.129 2453.747 3160.465 2436.044

 � Precision for trend (South America) 4711.425 698.155 3365.212 4716.521 6076.105 4777.84

 � Precision for trend (Oceania) 2331.846 409.061 1748.527 2255.167 3321.72 2066.046

 � Precision for seasonality (Asia) 1903.494 257.954 1460.44 1880.728 2470.376 1831.028

 � Precision for seasonality (Europe) 1215.008 184.489 924.436 1189.277 1641.535 1128.188

 � Precision for seasonality (Africa) 1898.143 265.922 1441.209 1874.799 2482.773 1824.655

 � Precision for seasonality (North America) 2130.874 308.402 1566.844 2118.774 2773.613 2103.005

 � Precision for seasonality (South America) 2463.529 466.222 1803.158 2374.758 3596.307 2162.728

 � Precision for seasonality (Oceania) 2637.863 942.551 1603.34 2379.593 5126.215 1864.649

 � Precision for cycle (Asia) 96.186 14.71 71.998 94.499 129.396 90.733

Continued
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Mean SD 0.025quant 0.5quant 0.975quant Mode

 � PACF1 for cycle (Asia) 0.177 0.074 0.02 0.182 0.309 0.199

 � PACF2 for cycle (Asia) 0.027 0.07 −0.114 0.029 0.159 0.036

 � Precision for cycle (Europe) 78.772 11.986 57.889 77.871 104.812 76.1

 � PACF1 for cycle (Europe) 0.052 0.094 −0.136 0.054 0.23 0.061

 � PACF2 for cycle (Europe) −0.23 0.102 −0.432 −0.227 −0.034 −0.215

 � Precision for cycle (Africa) 65.884 9.914 48.994 64.971 87.786 63.037

 � PACF1 for cycle (Africa) 0.024 0.082 −0.142 0.025 0.18 0.032

 � PACF2 for cycle (Africa) −0.03 0.074 −0.178 −0.029 0.112 −0.025

 � Precision for cycle (North America) 57.175 9.509 41.701 56.03 78.822 53.53

 � PACF1 for cycle (North America) 0.085 0.082 −0.092 0.092 0.227 0.119

 � PACF2 for cycle (North America) 0.145 0.088 −0.006 0.137 0.335 0.103

 � Precision for cycle (South America) 47.607 9.048 32.823 46.561 68.159 44.419

 � PACF1 for cycle (South America) −0.091 0.076 −0.248 −0.087 0.05 −0.073

 � PACF2 for cycle (South America) 0.344 0.069 0.2 0.347 0.469 0.357

 � Precision for cycle (Oceania) 45.551 6.951 32.586 45.403 59.724 45.408

 � PACF1 for cycle (Oceania) 0.221 0.086 0.074 0.213 0.405 0.178

 � PACF2 for cycle (Oceania) 0.005 0.08 −0.133 −0.003 0.177 −0.032

 � log τ 0.067 0.003 0.062 0.067 0.072 0.066

 � Group Φ 0.96 0.002 0.957 0.96 0.963 0.96

Spatial model with Continent-specific trend, seasonal and cycle components—air transport network (M3)

 � Precision for trend (Asia) 4225.738 229.884 3747.123 4240.222 4640.095 4301.895

 � Precision for trend (Europe) 2464.551 112.490 2249.928 2462.482 2691.357 2459.068

 � Precision for trend (Africa) 5411.900 318.028 4733.933 5439.884 5957.384 5559.366

 � Precision for trend (North America) 2287.834 110.097 2067.379 2290.439 2498.605 2303.331

 � Precision for trend (South America) 4521.493 309.205 3851.897 4554.247 5031.378 4697.282

 � Precision for trend (Oceania) 2484.957 119.962 2271.991 2476.214 2741.473 2450.545

 � Precision for seasonality (Asia) 1963.974 93.720 1769.153 1969.625 2133.869 1993.574

 � Precision for seasonality (Europe) 1356.319 63.771 1235.083 1355.026 1485.311 1352.741

 � Precision for seasonality (Africa) 2401.577 124.529 2191.461 2388.591 2676.463 2348.164

 � Precision for seasonality (North America) 2462.174 135.863 2173.940 2473.277 2698.285 2520.300

 � Precision for seasonality (South America) 2238.563 110.550 2043.071 2230.278 2475.860 2205.895

 � Precision for seasonality (Oceania) 1781.246 118.396 1526.034 1793.136 1978.952 1844.691

 � Precision for cycle (Asia) 136.511 5.603 126.185 136.254 148.163 135.540

 � PACF1 for cycle (Asia) 0.209 0.022 0.167 0.209 0.252 0.208

 � PACF2 for cycle (Asia) 0.076 0.024 0.031 0.075 0.125 0.072

 � Precision for cycle (Europe) 124.948 5.534 114.676 124.719 136.403 124.114

 � PACF1 for cycle (Europe) 0.013 0.023 −0.034 0.014 0.056 0.017

 � PACF2 for cycle (Europe) −0.064 0.024 −0.112 −0.064 −0.020 −0.060

 � Precision for cycle (Africa) 104.274 4.748 94.815 104.360 113.409 104.815

 � PACF1 for cycle (Africa) 0.091 0.024 0.048 0.090 0.140 0.084

 � PACF2 for cycle (Africa) 0.031 0.025 −0.014 0.030 0.083 0.025

 � Precision for cycle (North America) 95.808 4.498 86.843 95.899 104.456 96.369

 � PACF1 for cycle (North America) 0.304 0.026 0.248 0.307 0.347 0.317

 � PACF2 for cycle (North America) 0.023 0.024 −0.029 0.024 0.066 0.030

 � Precision for cycle (South America) 73.152 3.728 65.438 73.359 79.950 74.245

Table 1  Continued

Continued
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correlation coefficients, which have some advantages in 
terms of computational representation, especially for the 
imposition of the stationarity of the component that is 
important in the definition of the cyclic component. The 
cycle components can be interpreted as the correlation 
between component in the period ‍t‍ and ‍t1‍ (PACF1) and 
‍t2‍ (PACF2), controlling for the other correlation placed 
in this specification. We emphasise that the cycle compo-
nent serves to capture the structures of transient depen-
dence in the series of deaths, which are generated by the 
component of measurement error or by the composition 

of other non-permanent patterns in the series of observed 
deaths.

The results of the estimation of models M1, M2 and M3 
are shown in table 1. To provide a better interpretation of 
the results, we plotted the estimated trend (see figure 1), 
seasonality (see figure 2) and cycle (see figure 3) compo-
nents for all six considered continents, individually, 
considering the model M2. For reason of space only 
the estimated components obtained with model M2 are 
shown in this paper, and the other results are available on 
request from the authors.

Mean SD 0.025quant 0.5quant 0.975quant Mode

 � PACF1 for cycle (South America) 0.129 0.023 0.085 0.129 0.176 0.127

 � PACF2 for cycle (South America) 0.188 0.025 0.144 0.187 0.241 0.180

 � Precision for cycle (Oceania) 48.144 2.449 43.900 47.928 53.471 47.276

 � PACF1 for cycle (Oceania) 0.192 0.023 0.148 0.191 0.238 0.189

 � PACF2 for cycle (Oceania) −0.066 0.023 −0.113 −0.066 −0.022 −0.064

 � log τ 0.014 0.000 0.014 0.014 0.015 0.014

 � Group Φ 0.961 0.001 0.959 0.961 0.963 0.961

PACF, Partial Autocorrelation Function.

Table 1  Continued

Figure 1  Estimated trends—spatiotemporal model with region specific trends, seasonal and cycle components (model M2).
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To provide goodness-of-fit measures to compare how 
well the models fit the data, we calculate the fit statis-
tics of all the models, such as the mean error (ME), 
root mean squared error (RMSE) and mean absolute 
error (MAE), reported in table 2. These measures serve 
as general parameters of model adequacy. The ME is 
important to verify the presence of relevant biases in 
the model’s predictions. In the presence of high MEs, 
the model may be underestimating or overestimating 
the number of deaths observed. The RMSEs and MAEs 
are measures of dispersion of the model’s predictions in 
relation to the observed cases, and serve as a measure of 
the model’s accuracy, using different weighting metrics 
(squared error for the RMSE and absolute error in the 
MAE). Quadratic loss is a traditional measure of predic-
tive accuracy, linked, for example, to estimation by ordi-
nary least squares, penalising squared error and avoiding 
the cancellation of errors with distinct signs. The MAE 
has a similar interpretation, since absolute errors also 
avoid cancellation of positive and negative errors but 
has the advantage of being less sensitive to some deviant 
observation. In general, the results indicate an adequate 
adjustment for the models estimated in the article, such 
as almost zero MEs indicating the absence of predictive 

bias, and very low RMSE and MAE measures indicating 
great precision in fitting the observed deaths.

In summary, we present the results of analysing data 
for COVID-19 in 205 countries from 29 February 2020 to 
17 February 2021, divided according to the following six 
continents: Asia, Europe, North America, South America, 
Africa and Oceania. It is worth noting that we did not 
consider the Antarctica continent since the continent was 
only affected by the coronavirus pandemic in December 
2020. The results show that our model was able to capture 
the long-term movements in cases that resulted in death 
cases for the six continents, showing an accelerated growth 
pattern until mid-April in Asia, and a second wave driven 
by the spread of the disease in the Middle East, South 
Asia and Southeast Asia. The estimated trend component 
for Europe shows that the continent has experienced the 
peak of the first wave at the end of April, and a new accel-
erated growth phase at the end of the analysed sample, 
mostly due to the relaxation of the isolation measures 
taken by the governments. For North and South America, 
the trend shows that the former presents a sustainable 
high peak plateau since mid-May, whereas the latter still 
shows a pattern of rising. For Africa, the results show 
that the acceleration phase is over after a relatively low 

Figure 2  Estimated seasonality—spatiotemporal model with region specific trend, seasonal and cycle components (model 
M2).

copyright.
 on S

eptem
ber 24, 2024 at U

niversity of E
dinburgh. P

rotected by
http://bm

jopen.bm
j.com

/
B

M
J O

pen: first published as 10.1136/bm
jopen-2020-047002 on 11 A

ugust 2021. D
ow

nloaded from
 

http://bmjopen.bmj.com/


8 Valente F, Laurini MP. BMJ Open 2021;11:e047002. doi:10.1136/bmjopen-2020-047002

Open access�

number of reported deaths, despite the experts’ predic-
tion of millions of COVID-19 deaths in the continent. For 
Oceania, the results show that the number of deaths by 
COVID-19 was small and well controlled by the measures 
taken by the local governments. Additionally, our results 
were able to show the importance of the use of spatial 
information in the task of estimating the trend and mean-
reverting components, which are related to the spatial 
transmission dynamics in an epidemic process.

DISCUSSION
The first epicentre of the disease was in East Asia, mostly 
in China and South Korea, which reached the epidemic 
peak around mid-April. The observed second peak of the 
COVID-19 in Asia was mostly due to the spread of the 
disease in the Middle East, South Asia and South East 
Asia. As of December 2020, deaths by COVID-19 have 
risen in Iraq, Indonesia and India, which the latter has 
the world’s third-most deaths per 100 000 people and are 
driving the numbers in Asia. After reaching the peak of 
the second wave in December, the number of deaths by 
COVID-19 in the continent has slowly decreased.

The second outbreak epicentre was in Western Europe, 
especially in Spain, Italy, France and the UK. The conti-
nent has experienced the peak of the first wave in the 

end of April. However, after consistent drops in the 
number of daily recorded deaths, the trend in Europe 
has presented a pattern of rising since the beginning of 
September, mostly due to the loosening of lockdown and 
social distance measures. Due to the increased number of 
deaths, most European countries induced new restriction 
measures to control the new peak in deaths. As of the end 
of February, daily deaths by COVID-19 has been failing in 
most European countries, but in some others, like France, 
Italy and the Czech Republic, highest numbers of deaths 
have been recorded in February, helping to maintain the 
European trend in a high level.

The last epicentre occurred in South and North 
America, mostly driven by Brazil and the USA, which have, 
up to 5 October, the second and first highest numbers of 
recorded deaths by 100 000 people in the world, respec-
tively. While North America presents a sustainable high 
peak plateau since around mid-May, the South America 
still shows a pattern of rising. Between October and 
December 2020, the trend for North America showed 
a slight decrease, however, returning to the previous 
level in January 2021, when the USA has recorded the 
highest levels of daily deaths, and Canada has experi-
enced a winter surge. In the of the analysed sample, the 
trend component for North America gives signals that the 

Figure 3  Estimated cycles—spatiotemporal model with region specific trends, seasonal and cycle components (model M2).
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component has fallen, which may be associated with the 
advancement of vaccination campaigns. The estimated 
trend component for South America reached the peak 
in early January, and gives signals of decreasing at low 
rates. In this continent, there is a particular concern with 
Brazil, which has recorded more than 265 000 deaths, the 
world’s second highest number of death by COVID-19, 
and due to the circulation of the new Brazilian variant of 
the virus (known as P.1 or VOC202101/02).

It is possible to note that the initial acceleration phases 
of the Africa and Oceania COVID-19 outbreak grew at a 
lower rate than those observed in Asia, Europe and Amer-
icas. Africa and the most affected by COVID-19 countries 
have significant differences in reliable reporting, demog-
raphy and sociocultural aspects. However, despite the 
experts’ prediction of millions of COVID-19 deaths in 
Africa,17 the prevalence and mortality are low after two 
peaks of the disease, in mid-August 2020 and December 
2020. The reason for this outcome is still unclear, however, 
it may be related to the limited number of tests available 

and the lack of high-quality data.18 However, it is worth 
noting that in the end of the analysed sample, the trend 
component shows a slight growth pattern. The Oceania 
has a natural geographical advantage, associated with 
effective measures, making the cumulative number of 
cases and deaths small and controllable.19 In particular, 
Australia and New Zealand have been praised for the 
effective lockdown measures taken in both countries, and 
their relative low number of deaths by COVID-19.

Additionally, the estimated seasonal components (see 
figure  2) are significantly different among continents, 
reflecting different patterns of the spreading of the 
COVID-19, and the government’s strategy to reduce the 
transmission of the disease, which varies from country to 
country. In particular, it is possible to see the estimated 
seasonality components for Asia, Europe, South America 
and Africa with an increasing amplitude over time, while 
in North America, the increasing amplitude in the season-
ality component was followed by a decrease in the end 
of the analysed sample. For the Oceania, the estimated 
seasonality component is roughly constant over time. 
Regarding the cycle components, for the Oceania, it was 
significantly less noisy than the estimated components for 
the other continents.

It is worth noting that the latent components of our 
proposed model are formulated in terms of the expo-
sure offset for the number of populations observed in 
each region, allowing the counts of COVID-19 death to 
be comparable. However, it is not an easy task to directly 
interpret the estimated trend component. Therefore, 
to provide better understandable results, we carried 
out a transformation of the estimated trend component 
towards the number of daily deaths per million inhabi-
tants per region (see online supplemental figure S2), 
where it is possible to note that Europe reached the peak 
faster than the other continents until the end of April 
2020, where the death trend reveals a turning point to a 
decreasing pattern, followed by a new acceleration phase 
in September. Also, it is possible to see that the trend in 
South America reached the relative highest peak in early 
January 2021, followed by a decreasing pattern. Despite 
the Asia has been the first epicentre of the COVID-19 
outbreaks in early 2020, Europe and South America have 
had more deadly COVID-19 outbreaks. For the North 
America continent, the trend remains stable with a slight 
decrease in the end of the analysed sample, whereas for 
the Asia, Oceania and Africa not too much details can be 
discerned, given the scale of the graph.

Regarding on the fit of the three different formulations, 
it is possible to observe that M2 and M3 models presented 
a similar adjustment result, with few gains in the use of air 
transport information in defining the model’s neighbour-
hood structure. Also, it is important to note that the simi-
larity in model fit of models M2 and M3 can be related to 
massive travel restrictions and border control to mitigate 
the outbreak of the COVID-19 pandemic. As discussed 
in the literature, a larger reduction in the passenger air 
flow led to a gradual decrease the spread of COVID-19,20 

Table 2  Model fit statistics

ME RMSE MAE

Model without spatial component (model M1)

 � World −6.7495e−07 90.4915 28.1972

 � Asia −3.1729e−08 86.3027 29.1699

 � Europe −6.8675e−07 97.3253 34.6779

 � South America −1.3301e−06 156.1249 55.9166

 � North America −3.2541e−06 126.8047 47.4272

 � Africa −9.1082e−08 32.2776 8.7439

 � Oceania −6.9796e−08 1.6949 0.6356

Spatiotemporal model (model M2)

 � World −2.0870e−08 1.9503 0.8978

 � Asia −2.1111e−07 1.3780 0.6438

 � Europe −6.1200e−07 2.3485 1.2610

 � South America −3.5786e−06 4.0655 2.0413

 � North America 4.8557e−06 1.2455 0.6629

 � Africa −2.9075e−07 1.3234 0.6380

 � Oceania −9.7523e−08 0.07023 0.01209

Spatiotemporal model—air transport network (model M3)

 � World −1.8349e−06 1.8429 0.8790

 � Asia −1.2525e−06 1.5854 0.7988

 � Europe −1.8629e−06 2.7506 1.4923

 � South America −3.8558e−06 2.4099 1.2811

 � North America −6.1345e−06 0.9105 0.4961

 � Africa −2.5206e−07 0.9226 0.4686

 � Oceania −7.8468e−08 0.4489 0.1707

Measures are calculated in relation to the observed number of 
deaths. The model fit is constructed using the median of the 
posterior distribution for the predicted deaths.
MAE, mean absolute error; ME, mean error; RMSE, root mean 
squared error.
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which makes this transmission channel less important. 
In addition, it is worth noting that both models with 
spatial component (M2 and M3) are clearly superior to 
the univariate model (M1) in terms of RMSE and MAE, 
showing the importance of spatial transmission patterns 
in the COVID-19 dynamics.

Within the limitations of this study, there are some 
concerns on the reliability of the data used. It is well 
known that the reporting number of the COVID-19 cases 
and deaths do not reflect the reality, varying these under-
reporting rates from country to country, depending on 
the number of available tests and the measures taken by 
the authorities. In particular, the number of available 
tests has changed over time and space. Despite the limita-
tions, this study provides evidence of the effectiveness of 
public health measures taken and vaccines and may be 
used as a tool to guide the authorities to propose new 
restrictions to control the transmission and to assess the 
effects of the restrictions loosening. Previous methods to 
estimate the trend of COVID-19 have been useful in this 
context, for example, Yang et al21 who found evidence of 
the effectiveness of the control measures on January 2020 
to reduce the COVID-19 epidemic size in China, and Post 
et al22 who developed dynamic metrics to inform public 
health surveillance and to identify where and when 
corrective measures are necessary to cope with the spread 
of the COVID-19. Based on our outlined spatiotemporal 
analysis methodology, it is possible to estimate the trends 
related to COVID-19 in a more reliable way since the 
proposed model can control for the measurement errors 
induced by the case accounting processes, making it a 
useful tool to design strategy for preventing the spread 
of the disease, targeting vaccines and for the planning of 
measures of economic reopening.

CONCLUSION
Based on hierarchical formulations using Bayesian infer-
ence methods for spatiotemporal processes, we estimated 
the trend component of deaths by COVID-19 in 205 
considered countries, divided by six continents, namely 
Asia, Europe, North America, South America, Africa and 
Oceania. The model was able to capture the observed 
general patterns in the occurrence of deaths related to 
COVID-19, overcoming the common problems observed 
in COVID-19 data, such as spatial heterogeneity, and a 
delay between onset of symptoms and accurate diagnosis 
or death, which creates measurement error problem. The 
proposed model also provided evidence that spatiotem-
poral models are more accurate than univariate models 
to estimate the general patterns of the occurrence of 
deaths related to COVID-19, showing the importance of 
the spatial transmission dynamics in an epidemic process.

The article’s contribution to the formulation of public 
health policies lies in the development of a spatiotem-
poral estimation methodology of the global trend of 
deaths related to COVID-19, controlling for the measure-
ment errors induced by the case accounting processes, 

and a more general definition of spatial neighbourhood 
using the air passenger transport network. Solid measures 
of these trends are fundamental for the construction of 
measures of social distancing, targeting of vaccines and 
other preventive control measures for the reduction of 
new cases and for the planning of measures of economic 
reopening in the affected regions.
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