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ABSTRACT

We present a new method of identifying protostellar disc fragments in a simulation based on
density derivatives, and analyse our data using this and the existing CLUMPFIND method,
which is based on an ordered search over all particles in gravitational potential energy. Using
smoothed particle hydrodynamics, we carry out 9 simulations of a 0.25 M⊙ disc around a
1 M⊙ star, all of which fragment to form at least 2 bound objects. We find that when using
all particles ordered in gravitational potential space, only fragments that survive the duration
of the simulation are detected. When we use the density derivative method, all fragments are
detected, so the two methods are complementary, as using the two methods together allows us
to identify all fragments, and to then determine those that are likely to be destroyed. We find
a tentative empirical relationship between the dominant azimuthal wavenumber in the disc m
and the maximum semi-major axis a fragment may achieve in a simulation, such that amax ∝

1/m. We find the fragment destruction rate to be around half that predicted from population
synthesis models. This is due to fragment-fragment interactions in the early gas phase of the
disc, which can cause scattering and eccentricity pumping on short timescales, and affects
the fragment’s internal structure. We therefore caution that measurements of eccentricity as a
function of semi-major axis may not necessarily constrain the formation mechanism of giant
planets and brown dwarfs.

Key words: Planetary systems: protoplanetary discs, planet-disc interactions – Planetary
Systems, planets and satellites: dynamical evolution and stability – Planetary Systems, (stars:)
: brown dwarfs, formation – Physical Data and Processes: hydrodynamics

1 INTRODUCTION

There are two distinct modes of planet formation in protostel-

lar discs. The first, and most widely accepted, is the core accre-

tion model (CA) (Pollack et al. 1996; Hubickyj et al. 2005). In this

model, growth begins with dust grains of ∼ 1µm that coagulate

rapidly into larger particles, ultimately settling into the disc mid-

plane where there is enough material for them to grow to kilometre-

sized planetesimals. These planetesimals can then grow via colli-

sions into planetary cores, and if sufficiently massive, and if the

gas disc has not dissipated, will accrete a gaseous envelope, ulti-

mately becoming a gas giant planet (Pollack et al. 1996; Lissauer

1993).

Most observational evidence favours this formation mech-

⋆ Email: cassandra.hall@le.ac.uk
† Scottish Universities Physics Alliance

anism. For example, gas giant planets are preferentially found

around metal-rich stars (Santos et al. 2004), with an empirical rela-

tionship that quantifies the probability, P , of gas giant planet for-

mation as

P = 0.03 × 102.0[Fe/H], (1)

where [Fe/H] is the metallicity of the host star relative to solar

metallicity (Fischer & Valenti 2005). Numerical work (Cai et al.

2005) has suggested that this would not be the case if the second

mode of planet formation, gravitational instability (GI), were the

dominant formation mechanism of these planets, since an increase

in metallicity responds to a decrease in cooling rate, resulting in

weaker GI activity. This ultimately decreases the likelihood of these

systems fragmenting, since weak GI corresponds to smaller stresses

in the disc. On the other hand, it has also been shown that metallic-

ity variation makes very little difference to the occurrence of frag-

mentation (Boss 2002).

c© 2016 The Authors
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In the GI scenario, gas giant planets and brown dwarfs form by

direct gravitational collapse in the gaseous protostellar disc (Kuiper

1951; Cameron 1978; Boss 1997, 1998). This happens rapidly, in a

relatively early phase of the disc’s life when it is massive enough to

be self-gravitating. The advantage of this mechanism is its rapid-

ity; gas giants are able to form on timescales shorter than typical

disc dispersion timescales (∼ 5 Myr; Haisch et al. 2001). While

CA is certainly the most widely accepted model, there are barriers

to grain growth at several length scales which seem to indicate dif-

ficulty in forming planetary mass objects within the disc lifetime.

The most famous of these is the so-called metre barrier; as grains

increase in size, so do their relative velocities, which makes grain

fragmentation, rather than coagulation, the most likely outcome.

A promising solution to this problem is the pebble accre-

tion theory (Lambrechts & Johansen 2012; Levison et al. 2015).

Pebbles are grouped together due to the streaming instability

(Youdin & Goodman 2005), whereby solid particles orbit at Keple-

rian velocity, but the gas is pressure supported from the host stellar

radiation, causing the gas to orbit at sub-Keplerian speeds. Feeling

a headwind, solids slow, losing angular momentum and migrating

inwards. As more solid particles migrate inwards, they cluster to-

gether, and if the solid-to-gas ratio is sufficiently large (order unity

Youdin & Goodman 2005), then the backreaction of the dust on

the gas will change the local gas velocity. This, in turn, alters the

local drag force, promoting the pile up of solids which may gravi-

tationally collapse if they become sufficiently large (Youdin 2011).

These groups of solid particles may begin to accrete pebbles until

they form giant planet cores (Lambrechts & Johansen 2012).

At smaller scales, the bouncing barrier prevents coagulation

of dust grains, as particles of a given size, above a certain velocity,

are more likely to bounce off each other than they are to coagulate.

This results in growth typically halting at around ∼ 1 mm in size.

However, there is evidence to suggest that this could be beneficial

to planetesimal formation, since the introduction of a few ∼ cm

sized grains (e.g, through radial drift) can act as catalyst to grain

growth, sweeping up grains, while preventing the growth of too

many larger objects which would otherwise smash each other apart

(Windmark et al. 2012).

It is generally accepted that disc fragmentation is very un-

likely in the inner regions (< 50 au) of a protostellar disc (Rafikov

2005). However, the outer regions of protostellar discs may well

be susceptible to fragmentation, offering a formation mechanism

for directly imaged planets such as those in the HR8799 system

(Marois et al. 2008; Nero & Bjorkman 2009; Kratter et al. 2010).

Core accretion models struggle to explain objects such as those

in HR8799, with four planets orbiting at 14, 24, 34 and 68 au,

with masses of ∼ 5 MJ (Marois et al. 2008, 2010), since there is

not thought to be enough material to form such massive objects

at these distances. Additionally, the growth timescales of such ob-

jects, through core accretion, typically exceed disc lifetimes by a

factor of at least ∼ 3, using conservative estimates (Pollack et al.

1996). Gravitational instability may, perhaps, offer an explanation

as to the formation mechanism of these systems.

However, it has been suggested that disc fragmentation rarely

forms planetary mass objects (Rice et al. 2015), with some hydro-

dynamics simulations (Stamatellos & Whitworth 2009) suggesting

objects formed by this mechanism quickly grow to brown dwarf

masses (M > 13 MJup), with lower limits placed on the fragment

mass of ∼ 3−5 MJ (Kratter et al. 2010; Forgan & Rice 2011). This

is compounded by the recent possible observation, for the first time,

of disc fragmentation in action (Tobin et al. 2016), which shows the

birth of three protostars that are well above the upper limit of the

planetary mass regime.

The recent reformulation of the GI scenario in to what is now

known as "tidal downsizing" (Boley et al. 2010, 2011; Nayakshin

2010, 2011a,b) does, however, have positive implications for pro-

ducing low-mass planets at low semi-major axes. The key is to

consider the subsequent evolution of fragments into planetary

embryos, through dust growth, radial migration and tidal dis-

ruption. Forgan & Rice (2013) combined the physical processes

of tidal downsizing with semi-analytic models of disc evolution

(Rice & Armitage 2009) to produce the first population synthesis

model for planets formed through GI. Given the similarities be-

tween these fragments and “first cores” (see, e.g. Masunaga et al.

1998), they were modelled as polytropic spheres, with polytropic

index n = 1.5.

They found that ∼ 40% of fragments that formed are ulti-

mately tidally destroyed by the central star, and of those that sur-

vive ∼ 40% are gas-giant planets with solid cores of 5 ∼ 10 earth

masses, and the rest are brown dwarfs with no solid core. They also

found that low mass embryos tend to remain at larger semi-major

axes due to the tidal downsizing process. Out of over 1 million

fragments, there was only one terrestrial type planet (core with no

gaseous envelope). These results are inconsistent with GI being the

dominant planet formation mechanism, but they are certainly con-

sistent with GI forming brown dwarfs and gas giant planets at large

radii.

Population synthesis models, by necessity, make simplifying

assumptions about the physics that governs the evolution of each

planetary system. In particular, interactions between forming pro-

toplanets, and the interaction of the disc with these protoplanets, are

not included in the population synthesis models of Forgan & Rice

(2013) that we discuss here. In fact, at the time of writing, these

effects are not included in any GI population synthesis models.

How important these interactions are in determining the final or-

bital configuration of a system is something that should be care-

fully considered before further developments are made to such a

model. Quantifying the importance of these interactions is difficult,

but some headway can be made by performing SPH simulations of

fragmenting protostellar discs, and carefully tracking the evolution

of fragments’ orbital and physical properties throughout the dura-

tion of the simulation.

In this work, we analyse a suite of SPH simulations of frag-

menting protostellar discs, identifying fragments using two dif-

ferent methods. The first, based on the CLUMPFIND algorithm

(Williams et al. 1994; Smith et al. 2008), is done using the gravi-

tational potential, and the second is a new method that uses density

derivatives. We do not use sink particles (Bate et al. 1995) in our

simulations, as by using only SPH particles, we are able to deter-

mine the fragment internal structure as it migrates through the disc,

and better understand the orbital evolution of the fragment, which

is sensitive to its radial mass distribution. We discuss the relative

merits of our different detection methods for our simulations, which

show a variety of fragmentation scenarios. We consider the implica-

tions of our results for current GI population synthesis models, and

finally we consider the orbital and physical properties of the frag-

ments in the simulations, comparing them to the orbital and physi-

cal properties of the population synthesis models of Forgan & Rice

(2013).

The paper is ordered as follows: In section 2, we describe our

overall method, outlining our chosen formalism of SPH in section

2.1 and detailing the simulation setup in section 2.2. We present our

algorithms in section 2.3, describing our new approach in section

MNRAS 000, 1–22 (2016)
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2.3.2 and our adaptation of an existing approach in section 2.3.1.

We describe our results in section 3, detailing the relative merits

of the different approaches in section 3.1. We compare our results

to current gravitational instability population synthesis models in

section 3.2. We outline orbital and spin properties of our fragments

in section 3.3 and 3.4 respectively. We describe density and tem-

perature profiles of fragments with the most interesting histories in

section 3.5, and discuss our findings and conclude in section 4.

2 METHOD

We run a suite of 9 smoothed particle hydrodynamics (SPH) sim-

ulations, with the radiative cooling method of Forgan et al. (2009).

Each disc uses 4 million particles, fragments to form at least two

bound objects, and - aside from the random number seed used to

initialise each disc - has identical initial conditions. Since our aim

is to take advantage of running a fully hydrodynamic simulation

by tracing the evolution of fragment radial profiles and mass distri-

bution, we run the simulations for as long as it is computationally

feasible using hydrodynamics only (without switching to sink parti-

cles). In practice, this means running each simulation until the most

dense clump becomes too dense to calculate the next timestep. We

give a brief description of SPH, and our selected radiative trans-

fer formalism, in section 2.1. We discuss our methods of finding

fragments in section 2.3.

2.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian hydrody-

namics formalism, that evolves a fluid by means of a distribution of

pseudo-particles (Lucy 1977; Gingold & Monaghan 1977). There

are many review articles about SPH (see e.g. Monaghan 1992,

2005; Rosswog 2009), but the basic idea is that each particle has

a position, mass, internal energy and velocity, and these parame-

ters can be interpolated over to give fluid quantities at any position.

Density is calculated by interpolation over the mass distribution,

and pressure is determined using an equation of state with internal

energy. Gravitational forces are usually computed using a TREE al-

gorithm (Barnes & Hut 1989), and then the discretised energy and

momentum equations are solved. Particle velocities are updated us-

ing pressure and gravitational forces, and positions are then updated

using these velocities. Internal energy changes are computed by

calculating PdV work, viscous dissipation and radiative cooling

and heat conduction.

Cooling calculations in SPH are no simple task. Accounting

for polychromatic radiative transfer within a hydrodynamics sim-

ulation is not possible with current computational resources, and

even post-processing a single snapshot with radiative transfer is

computationally expensive (Stamatellos & Whitworth 2005). His-

torically, approximations to individual features of radiative trans-

fer were used, such as the cooling time formalism: u̇ = −u/tcool
(Rice et al. 2003a). Although this parameterisation is useful, allow-

ing us to probe the effects of different cooling timescales in pro-

toplanetary discs, it is somewhat limited, as it only allows us to

model energy lost from an SPH particle. Realistically, if energy is

lost from one SPH particle, at least some of that energy will be

gained by its surrounding neighbours - this is known as radiative

transfer.

Since our aim here is to trace the orbital and profile evolu-

tion of fragments within protostellar discs, we wish to capture the

effects of radiative transfer as far as is feasible. Therefore, the cool-

ing we implement is the hybrid method of Forgan et al. (2009).

The details of the algorithm are given in Forgan et al. (2009),

however the basic ideas merge the polytropic cooling method of

Stamatellos et al. (2007) with the flux-limited diffusion method of

Mayer et al. (2007), which builds on conduction modelling work

by Cleary & Monaghan (1999) and the flux-limiter described in

Bodenheimer et al. (1990). The biggest advantage is the comple-

mentary nature of these two methods, energy loss is handled by

polytropic cooling (which flux-limited diffusion cannot do), and

positive energy exchange between neighbouring particles is han-

dled by flux-limited diffusion (which polytropic cooling cannot

do). Since each method handles a separate process, there is no

“double counting” in any part of the system’s overall energy, and

these separate parts can simply be summed to calculate the total

energy change.

2.2 Simulation setup

We run a total of 9 simulations of 0.25 M⊙ discs, with a 1 M⊙ cen-

tral star, an inner radius of 10 au, an outer radius of 100 au, and a

radial density profile of Σ ∝ r−1. All discs are initially identical

in global properties, varying only the random number seed (the in-

teger used to set the starting point for a sequence of random num-

bers) used to initialise the disc. The SPH particles are randomly

distributed in φ, where φ is azimuthal angle, and the r position of

each particle is determined through the iterative use of an accept-

reject algorithm, accepted so long as the position of the particle

maintains the desired surface density profile.The z position of the

particle is similarly determined, accepted so long as the position

maintains hydrostatic equilibrium. The velocity of each particle is

exactly Keplerian. This technique results in discs that are identical

in their global properties, differing only through a small amount of

noise at the particle-separation level.

All discs are evolved until it is no longer computationally fea-

sible to continue, which in reality means the density of a fragment

has become so high that timesteps cannot be computed without

switching that mass to a sink particle. However, since here we wish

to examine physical and orbital properties of the fragments which

are influenced by their radial mass distribution, we do not do this.

All of the simulations fragment to form at least two bound objects,

and their ultimate configuration is shown in Figure 1, which shows

9 column density plots, in physical units, and illustrates a variety of

fragmentation scenarios as the simulation’s final configuration. We

discuss this in detail in section 3, but include images now to make

the explanation of our methods in section 2.3 clearer.

2.3 Algorithms

We present here two methods of detecting fragments in SPH

simulations, and one method of linking them together between

timesteps. Once a fragment has been identified, we then refer to

it as a "clump". The first method of detection is based on the

clump finding approach of Smith et al. (2008) (which is in turn

based on the publicly available CLUMPFIND algorithm developed

by Williams et al. 1994). The basic idea is to perform an ordered

search on SPH particles from high (physical) density to low den-

sity. The highest density particle i forms the center of a clump, and

if the next particle in the list is a neighbour (i.e. in close spatial

proximity), it is also added to this clump. If it is not a neighbour,

it forms the center of a new clump. This process is continued to

MNRAS 000, 1–22 (2016)
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Figure 1. Column density plots of the final fragment configuration for all 9 simulations. Despite almost identical initial conditions, there are a variety of ultimate

configurations, and a variety of times at which it becomes computationally unfeasible to continue the simulation using only hydrodynamics. Simulations 1 and

6 show an ejected clump at large radial separation, and the top left hand corner of simulation 9 shows a fragment forming just below the threshold detection of

our algorithm.

the next most dense particle, until a minimum density threshold is

reached.

The search in this manner, from least dense to most dense par-

ticle for our SPH simulations of protostellar discs was unsuccess-

ful in identifying clumps in our simulation. We are faced with a

different scenario to Smith et al. (2008), who used their algorithm

in molecular cloud cores. Once our discs have evolved enough to

fragment, the inner disc is so dense that many of the particles inside

∼ 20 au fulfil the criteria to become the head of their own clumps.

This results in neighbours, since this is a friends-of-friends algo-

rithm, belonging to these even if they are in the outer disc, where

fragmentation has actually occurred.

This problem was solved, to some extent, by using the gravi-

tational potential of the particles, rather than the density, for the or-

dered search. We discuss this method in section 2.3.1. The inability

of this method to identify low mass, fluffy fragments, or fragments

that are so deep in the potential well of the central star that they are

ultimately tidally destroyed, prompted the development of an ap-

proach that could correctly identify such fragments. The approach

uses a gridded derivative search of the SPH interpolated density of

the particles, and is discussed in section 2.3.2.

Finally, in both cases, the clumps are linked between timesteps

using a merger tree algorithm, typical of dark matter halo tracers in

cosmological simulations (see, for example, Srisawat et al. 2013).

This process is detailed in section 2.3.3.

2.3.1 Gravitational potential search (CLUMPFIND)

Broadly speaking, clumps are created with a unique integer identi-

fier (ID) at the local minima of the gravitational potential, so long as

there are at least a minimum number of neighbour particles above

some defined “noise” level. For our purposes, we define this criti-

MNRAS 000, 1–22 (2016)
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Figure 2. Our density derivative search method on the disc shown in Figure

1, simulation 6. The solid blue line shows the radial density profile of the

disc, and the dashed red line shows the derivative of this with respect to

r. The zoomed region demonstrates how the negative zero crossing of the

derivative identifies one of the real density peaks.

cal number as ncritical = nmean − 5nσ , where nmean is the mean

number of neighbours each particle has, and nsigma is the standard

deviation of the number of neighbour particles. We do this because

the neighbour lists of particles at low density can be sparse due to

the algorithms used to calculate the smoothing length, h.

We begin by creating a clump at the location of the central

sink particle (star). All particles are then sorted by their gravita-

tional potential energy, and we loop over the particles in order of

most negative to least negative gravitational potential energy (i.e.

most bound to least bound). We select the particle, i, with the most

negative potential energy, and as long as it does not already belong

to a clump (in which case, we exit and select the next particle), we

iterate over particle i’s neighbours, j. If the majority of the neigh-

bours j (>50%) are in a clump k, the particle is also in clump k. We

assign the particle ID of i to IDi = k and exit. If the majority of i’s
neighbours are not in a clump, then since i is the most bound par-

ticle it starts a new clump l, provided that nneighbours > ncritical.

We then loop over particle i’s neighbours j, assigning IDj = l so

long as j is not already in a clump. We then proceed to next most

bound particle, i+ 1, and repeat (Forgan et al. 2016).

2.3.2 Density Derivative Search

In this method, we compute a 2D grid in cylindrical r and φ co-

ordinates, and bin all particles into these grid cells. The maximum

density of a particle in each cell is then taken to be the peak den-

sity in that cell, ρi, which gives us a 2D sheet describing density

maxima. The number of bins required to reasonably identify all

clumps varies due to the stochastic nature of the simulations, more

fragments with low density at ∼ 100 au require a larger number of

bins to properly resolve, with our resolution criterion being that the

number of clumps ultimately detected by the search is equal to the

number of clumps that are determined “by-eye”. If fewer clumps

are detected by the search than “by-eye”, then the resolution is in-

creased until we detect these low-mass, low-density clumps. A typ-

ical resolution is 10,000 radial bins and 7200 azimuthal bins.

We next take the derivative of the peak density in that cell with

respect to r and φ. As this is noisy in density space, we smooth

these derivative, equivalent to making a new signal, where the ele-

ment is now the average of n adjacent elements, such that:

∂ρi
∂r

=
1

n

j=n−1
2

∑

j=−n−1
2

∂ρi+j

∂r
(2)

and

∂ρi
∂φ

=
1

n

j=n−1
2

∑

j=−n−1
2

∂ρi+j

∂φ
(3)

Despite its simplicity, this approach is best at removing white noise

while keeping the sharpest step response. The value of n (∼ 100

is typically sufficient), like the number of bins in which to bin the

data, must be optimised by the user to get the best compromise

between smooth data, which removes false peaks, and data which

is sensitive enough to identify small clumps.

We then use this smoothed derivative to identify clumps,

which will be a “real” peak in the density. A real peak is identi-

fied by a sustained zero-crossing of the derivative with a negative

gradient. Peaks due to noise will also have zero-crossings, but they

are sustained for fewer bins than real peaks. These false peaks can

be eliminated by requiring that the zero-crossing is sustained for m
bins, with m optimised by the user to remove most (if not all) false

detections while still detecting less dense clumps.

The radial search is shown in Figure 2, which shows the ra-

dial density profile (blue solid line) and the derivative of the radial

density profile (dashed red line) for the disc shown in simulation 6

of Figure 1. The zoomed section shows the peak of a clump, with

the negative gradient zero-crossing of the derivative identifying the

peak.

Once the particle marking the center of a clump (i) has been

identified, we add all of i’s neighbour particles j to that clump.

We now loop over all particles which form that clump, adding their

neighbours to this clump as well. We repeat this until we reach

some density threshold. We found that adding neighbour particles

until more than half the particles in the neighbour sphere are less

dense than the inner 1 au of the disc produced good results. Once

we have identified the bulk of the clump, we then proceed with

a potential search described in section 2.3.1, which determines to

which clumps the rest of the unidentified particles in the simulation

belong.

2.3.3 Merger Tree

At this point, we have a set of clumps in each timestep, and we

need to track them over the duration of the simulation. To do this,

we use a standard algorithm from halo tracking in cosmological

simulations (see, e.g., Springel et al. 2001). Each clump, in each

timestep, is given an integer ID by our algorithm. So that we can

trace the evolution of this clump throughout the simulation, these

IDs must be linked. Since we are modelling fluid through the use of

pseudo-particles, the particles, that make any given clump, change

between dumps, sometimes substantially. To link clumps, the cru-

cial factors are the most-bound particle MBP, and shared member

fraction (SMF). In our density-derivative search, we actually trace

the most-dense particle, rather than the most-bound particle, but

we use the term interchangeably to avoid the introduction of un-

necessary acronyms. To be identified as the same clump between

timesteps, they must share the MBP and have an SMF of > 50%.

In some particularly volatile simulations, when using the density
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Figure 3. Plots showing total change in semi-major axis, for all clumps in all 9 simulations, plotted against the time between initial identification, and the

either the end of the simulation, or the last timestep in which they are identified, if they are destroyed or merged. Larger markers correspond to more massive

clumps. The left hand panel shows clumps as they are identified by our density derivative search method, and the right hand panel shows clumps as they are

identified using our ordered potential search method. Circular markers indicate the clump survived the duration of the simulation, square markers indicate

tidally destroyed clumps, and triangle markers indicate the clump was subsumed by another clump. The right hand panel shows that clumps that are ultimately

destroyed are not detected by the ordered potential search. The left hand panel shows that ∼ 20% of fragments are ultimately tidally destroyed. There are no

identical markers in both plots because the clumps are detected at different times in the simulation, and thus migrate different distances.

derivative method, the MBP may change, and the SMF may be <

50%. In this case, some of the clumps need to be manually linked

during post processing by tracing a group of particles in each clump

in each timestep. The basic algorithm is as follows:

1. Loop over clumps i in previous timestep lastdump.

2. Find clump j, in this timestep thisdump, which contains the

MBP from clump i in lastdump.

2.i. If MBPi does not belong to any clump in thisdump,

clump i is not present in thisdump.

2.ii. If MBPi belongs to clump j in thisdump, and clump

i and j share at least 50% of particles, then IDj = IDi,

and the clumps are linked between the two timesteps.

2.iii. If MBPi belongs to clump j in thisdump, but clumps i
and j do not have SMF > 50% of particles, then clump

j keeps its present ID.

3. End loop over previous timestep.

4. Loop over clumps in thisdump, checking for clumps with no

progenitors in lastdump. Increment the maximum number of

distinct IDs by the number of new clumps, and assign each

clump the correct ID.

3 RESULTS

We ran a total of 9 SPH simulations with almost identical initial

conditions, differing only in the random number seed used to ini-

tialise the disc. Column density plots of the 9 simulations are shown

in Figure 1. Despite the almost identical initial conditions, there is

a large variation in final configurations and number of clumps in

the system.

Our results sections fall into three broad categories- first, the

relative merits of the two methods and the difference in clump

detection between them. We show that, interestingly, our density

derivative search detects all clumps that are detectable by eye,

whereas our ordered potential search does not. In fact, generally

speaking, the potential search does not detect any clump that is

eventually destroyed, giving a good indicator of the likelihood of a

clump’s survival.

We next discuss the implications of our results for current pop-

ulation synthesis models, comparing our clump mass and semi-

major axis functions to existing population synthesis models. We

show the clump interaction needs to be included in GI population

synthesis models as early as during the gas phase, as scattering

plays an important role.

Finally, we discuss interesting events in the simulations them-

selves. We introduce a piece of nomenclature now, to avoid con-

fusion, that SaCb means simulation a, clump b. This abbreviation

is given in the title of any plot of a specific clump. Note that our

clump numbering begins at 2, since clump 1 is the star+disc sys-

tem. We also state now, for clarity, that any mass stated for our

clumps includes unbound material. This is deliberate, in order to

track more of the mass of the clump. Furthermore, what is currently

unbound material around the clump, at these very early times, may

eventually lose spin angular momentum through interactions with

material in the disc, ultimately becoming part of the clump. By in-

cluding the unbound material, we trace more of this process from

earlier times. For high mass clumps (> 20 MJ), the amount of un-

bound material is small, typically around 10% or so. This is larger

for lower mass clumps, up to ∼ 25% of material identified may be

unbound, rising to 40% in clumps ocurring in particularly volatile

simulations that have many clumps, as their formation is often dis-

rupted by interactions with other.

We look at the orbital properties of the clumps, and discuss

clump mergers and tidal destructions by the central star. We show

that: (1) destruction and merging are fairly common, (2) interac-

tions between clumps can result in a clump changing its direction

of spin from prograde rotation to retrograde rotation, and (3) retro-
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Figure 4. Mass accretion history for all clumps in all simulations, using only the ordered gravitational potential energy search. Fewer clumps are detected by

this method than by using the density derivative, but those that are detected are likely to survive for a long time. Clumps are generally detected later in their

evolution using this method, when their gravitational potential energy is negative enough to have neighbour particles assigned to them before they are assigned

to the main body of the disc.

rotating clumps typically have more dramatic changes in their ra-

dial temperature profiles than prograde clumps.

3.1 Relative merits of gravitational potential energy search

and density derivative search

We identified clumps in our simulation using two different search

methods, an ordered potential energy search (OPS) based on

Smith et al. (2008), and a novel approach based on a 2D density

derivative search (DDS). Our first conclusion is that searching us-

ing the ordered potential of the particles only detects clumps that

survive the duration of the simulation. However, using the DDS

method, destroyed clumps are also detected. This is shown in Fig-

ure 3, which shows the total change in semi major axis, from when

the clump is first detected to when the clump is last detected (or

destroyed), against the total time for which the clump exists, i.e.

from initial identification to the end of the simulation, or the last

timestep in which it is identified, if it is destroyed. Larger mark-

ers indicate more massive clumps. The left hand panel shows the

DDS results, the right hand panel shows the OPS results. Circu-

lar markers indicate clumps that have survived until the end of the

simulation, square markers indicate clumps that are destroyed, and

triangle markers indicate a clump that merged into another clump.

There are no identical markers in both plots because the different

algorithms detect the clumps at different times, therefore they mi-

grate different distances.

In addition to containing no destroyed clumps, the OPS sam-

ple also has a relative insensitivity to clumps which will have a final

mass of less than ∼ 5 MJ, and detects most of the clumps later in

the simulation. This is shown in Figure 4, which shows mass accre-

tion histories for clumps in each of the 9 simulations, as is detected

the OPS. By comparison, Figure 5 shows the same 9 simulations,

but with the mass accretion histories of the clumps determined by

using the DDS method. As can be seen, many low mass clumps

evade detection entirely under the OPS method; for example, sim-

ulation 6 has an additional 3 clumps that are not detected by the

OPS, and those that are detected are generally detected later, such

as clump 2 in simulation 2, which is detected ∼ 400 years later in

the OPS than in the DDS.

This is due to the nature of the potential search. Figure 6 shows

the radial gravitational potential energy profile of the disc in Figure

1, simulation 6. Since the OPS proceeds from the particle with the

MNRAS 000, 1–22 (2016)



8 Cassandra Hall, Duncan Forgan, Ken Rice

Density derivative search

2800 3050 3300 3550 3800 4050 4300

Time (years)

5

10

15

20

25

30

35

M
a

s
s

(M
J
)

Simulation 1

Clump 2

Clump 3

2800 3050 3300 3550 3800 4050 4300

Time (years)

5

10

15

20

25

30

35

M
a

s
s

(M
J
)

destroyed

Simulation 2

Clump 2

Clump 3

Clump 4

Clump 5

2500 2600 2700 2800 2900 3000 3100

Time (years)

5

10

15

20

25

30

35

M
a

s
s

(M
J
)

merged

Simulation 3
Clump 2

Clump 3

Clump 4

2400 2650 2900 3150 3400 3650 3900 4150

Time (years)

5

10

15

20

25

30

35

M
a

s
s

(M
J
)

destroyed

Simulation 4

Clump 2

Clump 3

Clump 4

Clump 5

Clump 6

2400 2550 2700 2850 3000 3150

Time (years)

5

10

15

20

25

30

35

M
a

s
s

(M
J
)

Simulation 5

Clump 2

Clump 3

Clump 4

2000 2250 2500 2750 3000

Time (years)

5

10

15

20

25

30

35

M
a

s
s

(M
J
)

destroyed

Simulation 6
Clump 2

Clump 3

Clump 4

Clump 5

Clump 6

Clump 7

2400 2650 2900 3150 3400 3650 3900

Time (years)

5

10

15

20

25

30

35

M
a

s
s

(M
J
) destroyed

Simulation 7
Clump 2

Clump 3

Clump 4

Clump 5

Clump 6

Clump 7

Clump 8

2400 2650 2900 3150 3400 3650

Time (years)

5

10

15

20

25

30

35

M
a

s
s

(M
J
)

destroyed

Simulation 8
Clump 2

Clump 3

Clump 4

Clump 5

Clump 6

Clump 7

2500 2900 3300 3700 4100 4500 4900

Time (years)

0

5

10

15

20

25

30

35
M

a
s
s

(M
J
)

merged(C2, C4)

destroyed(C3)

Simulation 9
Clump 2

Clump 3

Clump 4

Clump 5

Clump 6

Figure 5. Mass accretion history for all clumps in all simulations, found using the density derivative search method. More clumps are detected this way than

by using the ordered potential search, as clumps buried in the potential well of the disc are identified early by their density peak. As can be seen by comparison

with Figure 4, this search method is sensitive to low mass clumps, is sensitive to all clumps earlier in their evolution, and by comparison with Figure 3 we can

see this method is also able to detect clumps which are ultimately tidally destroyed.

most negative gravitational energy to the most positive, the OPS

detects the clump at ∼ 80 au in Figure 6 first, and then detects the

clump at ∼ 375 au second. However, it fails to detect the clumps

at ∼ 50 au, ∼ 125 au and ∼ 200 au. This is because particles at

the potential energy of the main body of the disc are identified as

belonging to the clumps with the most negative potential energy

during the neighbour check described in section 2.3.1. Then, when

the particles belonging to clumps at 50, 125 and 200 au are checked,

they are found to already belong to either the main body of the disc

(i.e. the central sink) or one of the clumps with the deepest potential

well.

Although this could be fixed by adopting a gridded approach

to the potential search (thereby eliminating the dominating effect

from the clumps with the largest potential well), OPS has a desir-

able feature, namely demarcating clumps that are likely to survive

the simulation, and those that are not.

The OPS method’s insensitivity to small clumps, and reliance

on deep potential wells for identifying the body of the clump, mean

that fewer clumps are detected by the OPS method, and those

that are identified are often initially identified at artificially small

masses (∼ 10−3 MJ), as there is only a small amount of mass with

a potential well deep enough to be identified. This can be seen in

Figure 4, which shows mass accretion histories for all 9 simulations

using the OPS method. In every simulation, what ultimately grows

to be the largest clump is initially identified with a mass well below

the Jeans mass. The DDS search method, however, does a better job

of correctly identifying the mass associated with the young clumps,

typically identifying between 5 MJ and 10 MJ of mass. This is

shown in Figure 5, which shows the mass accretion histories for all

9 simulations, as identified using the DDS method.

In addition to the difference in measured initial clump mass,

both methods differ in the final mass attributed to clumps. Typi-

cally, the growth is smoother for the OPS method, since once mass

is deep in the potential well it is unlikely to change. However, if

the gravitational potential energy profile of the disc changes then

so too will the attributed mass of the clumps.

Another feature of the DDS method is its ability to identify

low mass, low density clumps that do not have a strong signal in

their potential. This can be seen in Figure 5, simulation 6, which

identifies an additional three clumps compared to Figure 4, simu-
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Figure 6. Radial profile of gravitational potential energy for the disc shown

in Figure 1, simulation 6. Only two clumps, at r ∼ 80 au and r ∼ 375
au have a sufficiently deep potential well to be identified by our ordered

potential search. The other three clumps, at r ∼ 50 au, r ∼ 125 au and

r ∼ 210 au are identified as belonging to the main body of the disc. Their

detection in the density derivative search, but not in the ordered potential

search, indicates that they would likely be tidally destroyed.

lation 6. Comparing Figure 6 and Figure 2, we can see that these

clumps have much stronger signals in their radial density profiles

compared to their radial potential energy profiles. This is a useful

predictive feature, since the left hand panel of Figure 3 and all of

Figure 5 show that ∼ 20% of the fragments in our simulations are

tidally destroyed (we discuss the implications of this for popula-

tion synthesis in section 3.2), none of which are detected in the

OPS method.

Therefore, if a clump is detected in the DDS and not in the

OPS, it is indicative that either the clump will stay relatively low

mass and not accrete further, or that it will be tidally destroyed.

3.2 Comparison to gravitational instability population

synthesis models

We ran the Forgan & Rice (2013) GI population synthesis (GIPS)

models for 4000 years, which is comparable to the timescale for

which our SPH simulations are able to run until no longer com-

putationally feasible. We dictated that the opacity power law be

pk = 1, and that the disc is not truncated after fragmentation. Fig-

ure 7 shows initial and final mass and semi-major axis distributions

for the GI population synthesis model and for the clumps in our

SPH simulation. The red, hatched histogram is the population syn-

thesis, blue outline is the SPH clumps. The left hand panel of Figure

7 shows the initial and final semi-major axis distributions for both

samples, and the right hand panel shows initial and final mass dis-

tribution for both samples. We cut off the tail of the initial and final

masses beyond > 35 MJ, since we cannot feasibly simulate masses

above this without switching to sink particles.

Comparing the initial mass and semi-major axis distributions

in the GIPS models to our SPH clumps, it would initially appear

that clumps in SPH simulations form much further out, and at much

lower masses, than in the population synthesis models. In reality,

this is somewhat a limitation of our identification algorithms, as at

very early times, the clumps can escape detection because of their

low density/less negative gravitational potential energy, such that

they have already undergone some radial migration before they are

detected. If they have undergone sufficient radial migration, they

may be far enough out in the disc to not accrete much material,

hence remaining low mass.

Having established that the initial mass and semi-major axis

distributions for our SPH clumps are subject to some limitations of

our detection algorithm, we now compare the final mass and final

semi-major axis distributions of our SPH clumps to those in the

GI population synthesis model. First, the bottom left hand panel of

Figure 7 shows a dearth of clumps at R < 25 au, when compared

to the GIPS model - this is simply due to the last measured value

of a before the fragment is destroyed. This figure also shows that

the distribution of semi-major axes is different to what is expected,

given the GIPS model data, and therefore the mechanism that al-

lows these separations to exist at early times (i.e. clump-clump in-

teractions) plays an important role in the ultimate orbital distribu-

tion function of the sample.

Second, the bottom right hand panel of Figure 7 shows that our

final mass distribution is bimodal, with peaks at ∼ 5 MJ and ∼ 30
MJ. This is somewhat consistent with previous measurements of

mass distributions of fragmenting discs by Vorobyov et al. (2013),

who find that there are two maxima in their mass distribution, at

∼ 5 MJ and ∼ 60 MJ. Unlike Vorobyov et al. (2013), we find a

gap at ∼ 15 MJ, whereas they find a minima at ∼ 25 MJ, and

our second maxima is at ∼ 30 MJ rather than ∼ 60 MJ. Given

our small N statistics, we would probably expect our distribution

to converge on a minima at ∼ 15 MJ, rather than the gap that is

currently present. Additionally, our second peak is capped at ∼ 30

MJ in our simulations since this is typically when the density in

a fragment becomes so high that it is computationally unfeasible

to continue the simulation. With increased computation time, the

mass of our largest clumps would probably increase.

Since our algorithm is quite robust at later times, detecting to

within a factor of 2 the "by eye" clump mass in low-mass clumps

(considered only in the bound region of the clump), we can see,

in the final mass distribution shown in the bottom right panel of

Figure 7, that the GI population synthesis model is significantly

underestimating the fraction of planets at < 5 MJ, even accounting

for under-estimating low mass clumps by a factor of 2.

This can be explained by Figure 8, which shows the mass

semi-major axis distribution for the final values of the SPH clumps

and the population synthesis fragments. The SPH clumps are the

dark circles, and the population synthesis fragments are the light

squares. As can be seen, low mass clumps in our simulations are

scattered out to large semi-major axis at these early times, and

fragment-fragment interactions are likely to play an important role

in the ultimate fate of a fragment. If it is scattered out to large a,

it is much less likely to be tidally destroyed and far more likely to

survive the duration of the simulation. This would suggest that GI

population synthesis models need to include fragment-fragment in-

teractions in this early gas phase, since current models suggest that

∼ 40% of initial fragments are tidally destroyed. If a significant

fraction of these are scattered out to large radii, their survival rate

could potentially be much higher.

3.3 Orbital properties

We carry out analysis of the orbital properties of our clumps only

using the sample as detected by the density derivative search, as

this method is sensitive to most clump masses and semi-major

axes. The total semi-major axis evolution of all clumps is shown

in the left hand panel of Figure 3, which we have already dis-

cussed, and refer the reader back to. Circles mark surviving clumps
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Figure 7. Left column shows initial (top) and final (bottom) semi-major axis distribution for our SPH clumps and the population synthesis model of

Forgan & Rice (2013). Right column shows the initial (top) and final (bottom) mass distribution for the same. Population synthesis data is shown in hatched

red, while blue outline shows SPH clumps. Our initial mass and semi-major axis distributions are not strictly accurate, due to limitations of the algorithm

requiring a threshold to be met before identification. However, our algorithm is quite robust at later times, and our final semi-major axis distribution shows the

importance of clump-clump interactions in the final configuration of a system, with many clumps at large separations due to interactions with each other. Our

final masses below 5 MJ are typically underestimated by a factor of 2 what would be identified as mass belonging to the clump "by-eye", and accounting for

this shows a final mass distribution not unreasonably dissimilar to what we should expect from GI population synthesis models, given the small N statistics

we are considering.

(including clumps that subsume another clump), squares mark de-

stroyed clumps, and triangles mark merged clumps. Larger mark-

ers correspond to more massive clumps. For destroyed clumps, we

take the last measured mass. Roughly half of our most massive

clumps migrate radially inwards, which is consistent with migra-

tion in locally isothermal discs, as objects exchange angular mo-

mentum with the surrounding gas and move inwards. However,

about half of our most massive clumps migrate radially outwards.

This is known to be possible in radiative discs (Kley & Nelson

2012), but requires either large torques or steep surface density gra-

dients (D’Angelo & Lubow 2010). Large torques can have many

sources, but in massive, self-gravitating discs they are likely to be

in the form of global spiral arms. We carried out a Fourier analysis

on the density structure of our discs, to determine the Fourier am-

plitude of each m-mode (where m is the number of spiral arms).

The amplitude, Am, of each mode, m, is calculated by

Am =

∣

∣

∣

∣

∣

Nregion
∑

i=1

e−imφi

Nregion

∣

∣

∣

∣

∣

, (4)

where Nregion is the number of particles in the region we are con-

sidering (for our case, R = 20 to R = 100 au), and φi is the

azimuthal angle of the ith particle. Some example amplitudes are

shown in Figure 10, which shows the first 10 Fourier components

of the density structure of 2 discs in their initial state (i.e. when they

have just begun to fragment), marked in red, and the same 2 discs

in their final state, marked in black. The discs are from simulation

1 and simulation 5, and their final state can be seen in their column

density plots, shown in Figure 1. These discs were selected because

they ran for the same length of time, and they have contrasting final
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population synthesis models.
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of exerting global torques. There appears to be a rough empirical relation-
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Figure 11. Disc mass enclosed as a function of radius for the final timesteps

of simulation 1 (red dashed line) and simulation 5 (blue solid line). Since

more mass is enclosed at shorter radii for simulation 1, more mass has been

transported inwards in the disc, giving it a slightly steeper density profile.

m-modes states, simulation 1 ultimately peaks in the m = 2 mode,

and simulation 5 ultimately peaks in the m = 6 mode.

In this fashion, we determine the dominant final m-mode in

each disc, and plot the final semi-major axis of our clumps as a

function of this m-mode, in Figure 9. We note that our decision to

name a dominant mode, based on a relatively low amplitude differ-

ence, may be questioned. However, these discs are not in a quasi-

steady state, having undergone fragmentation, so persistent spiral

modes may be unlikely to form due to tidal disruption from these

clumps. Despite the transient nature of the spiral modes, global,

low m-mode spiral arms can exert considerable torque, and this is

clearly important for the final orbital configuration of our clumps,

as shown in Figure 9, which displays a rough empirical relationship

between the maximum semi-major axis of a clump, amax, and m,

such that

amax ∝
1

m
. (5)

Of course, this relationship is preliminary, since we only consider 9

discs, all of the same mass, and it has been shown that more massive

discs are dominated by low m spirals (Lodato & Rice 2004, 2005).

Indeed, since it has been shown that in discs without fragmentation

we expect the number of spiral modes to be related to the disc-to-

star mass ratio, q, such that m ∝ 1/q (Dong et al. 2015), to exam-

ine the full parameter space of spiral modes requires a range of q
values. Since we consider discs with identical q values, why these
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Figure 12. Final semi-major axis and eccentricity relation for our SPH

clumps. Larger markers represent more massive clumps. The population

synthesis model does not contain eccentricity data. We can see, for the most

part, our clumps have a roughly linear relationship between eccentricity and

semi-major axis, although there is a large amount of scatter.

discs have different dominant m-modes is a valid question. Again,

this may be explained by these discs having fragmented into bound

clumps. Bound objects in a gaseous disc produce stronger, more

persistent torques than spiral density fluctuations alone. If one of

our clumps is scattered out of the main body of the disc, say, by in-

teraction with another clump, it may exert a tidal torque on the ma-

terial in the disc (and by Newton’s third law, the material in the disc

will also exert a force on the clump). Larger torques are associated

with lower m-modes, and if these tidal responses from the discs to

the clumps is responsible for the low m-mode domination in the

disc, then we expect to see steeper surface density profiles in discs

with low m-modes, since more mass will have been redistributed

inwards as a result of this torque. This is difficult to unequivocally

demonstrate in our set of simulations, since each simulation was

run for a different length of time, and the amount of mass redis-

tributed increases with time.

However, Figure 11 shows the mass enclosed as a function of

radius for the two discs plotted in Figure 10, that ran for the same

length of time. Although by no means conclusive, the slight in-

crease in mass for a given radius between 40 au and 160 au for the

m = 2 disc in simulation 1 is consistent with tidal forces being re-

sponsible for the low m-mode becoming more dominant. To prop-

erly establish the nature of the preliminary relationship detailed in

equation 5 therefore requires a range of disc masses and fragmen-

tation scenarios, and we leave this to future work. Figure 12 shows

the relationship between eccentricity, e, and semi-major axis for

our SPH clumps. Larger markers indicate more massive clumps.

For the most part, the more massive clumps are located on close

in (a ∼ 50 au), low eccentricity (e ∼ 0.1) orbits, while lower

mass clumps are at larger separations and with higher eccentricity.

Since disc fragmentation forms objects on low eccentricity orbits

(e < 0.1), we can see the importance of clump-clump interactions

in determining the final orbital properties of a clump. Very large

eccentricities (e ∼ 0.7) at large a indicate that a clump is close to

ejection, as excitations beyond unity ensure a clump is ejected from

the disc. The top two panels of Figure 13 show the initial eccentric-

ity distribution (left) and initial inclination distribution (right) of

our SPH clumps. The bottom two panels of Figure 13 show the fi-

Plot µ σ A k

Initial ecc. 0.094 0.095 0.070 0.006

Final ecc. 0.107 0.071 0.079 0.006

Initial inc. (no outlier) 0.052 0.029 0.173 0.003

Initial inc. (with outlier) 0.053 0.028 0.051 0.006

Final inc. (no outlier) 0.001 0.001 0.119 0.005

Final inc. (with outlier) 0.001 0.001 0.063 0.007

Table 1. Parameter values of the Gaussian fits applied to the histograms in

Figure 13. From left to right, the columns are plot, mean, standard deviation,

amplitude (without offset) and offset constant.

nal eccentricity distribution (left) and final inclination distribution

of the same. Inclination is calculated relative to the orbital plane of

the central star, such that

i = arccos

(

Lz

|~L|

)

, (6)

where i is the orbital inclination of the clump, ~L is the orbital angu-

lar momentum vector of the clump (calculated relative to the centre

of mass and centre of velocity of the central star), and Lz is the z
component of ~L. Using least-squares regression, each plot has been

fitted with a Gaussian of the form

Fp = Ae−
1
2
( x−µ

σ
)2 + k, (7)

where Fp is the fraction of planets, A is the amplitude of the curve

(without offset), x is either eccentricity or inclination, µ is the mean

of the fitted distribution, σ is the standard deviation of the fitted

distribution and k is the fitted offset constant. The fitted values are

given in Table 1, and in the legend of each plot. The initial and

final inclinations have been fitted with two distributions, the dot-

ted blue line includes all points, and the solid red line does not

include the most inclined point in each distribution, since there is

a large gap between that point and the rest of the clumps, and a

small sample size, it is unclear if this point is actually an outlier.

We have provided these fits since current GI population synthe-

sis models do not include orbital eccentricity or inclination, and,

despite our small sample size, this information may be useful in

the future development of these models. Aside from a small de-

crease in standard deviation, there is little change between our ini-

tial and final eccentricity distribution; both peak at e ∼ 0.1 and

share an offset constant of k = 0.006. However, the orbital in-

clination of our clumps is reduced by a factor of ∼ 100 between

the initial and final states, showing that clump orbital inclination,

in our SPH simulations, is rapidly reduced after formation. Con-

sidering that many of our clumps undergo dynamical interactions

that cause scattering and eccentricity pumping on short timescales,

this high degree of coplanarity may be surprising, especially when

considering that most exoplanets have mutual inclinations of a few

degrees (Figueira et al. 2012; Fang & Margot 2013). However, it is

consistent with our current understanding of highly inclined planet

orbits relying on dynamical perturbations such as the Lidov-Kozai

mechanism (Naoz et al. 2013). Our results may indicate that devel-

oping inclined orbits is difficult while a gas disc is present, even

if substantial dynamical interactions between clumps take place in

this time.

3.4 Spin properties

We analysed all of the fragments in our simulations, and found that

several of them survive to the end of the simulation whilst undergo-
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Figure 13. Left column shows initial (top) and final (bottom) eccentricity distribution for our SPH clumps. Right column shows the initial (top) and final

(bottom) inclination distribution for the same. Inclination is calculated relative to the orbital plane of the central star. Since the population synthesis models

of Forgan & Rice (2013) do not contain eccentricity or inclination information, we do not plot them here. Using least-squares regression, we have fitted our

distributions with a Gaussian of the form Fp = A exp[−0.5(x−µ
σ

)2] + k, where Fp is the fraction of planets, A is the amplitude of the curve (without

offset), x is eccentricity or inclination, µ is the mean of the distribution, σ is the standard deviation and k is the offset constant. The fitted values are given in

Table 1 and in each plot legend. We have included these fits since we consider they may be useful in developing future GI population synthesis models, but

caution that our sample size is small. Our inclination histograms have been fitted with two distributions. The dotted blue line includes all data points, and the

solid red line does not include the most inclined point in each distribution, since with a small sample size, and an apparent gap between the rest of the clumps,

it is unclear whether or not this is an outlier. There is little change between our initial and final eccentricity distribution, both peaking at e ∼ 0.1, and a slightly

smaller standard deviation for the final configuration. The inclinations of our clumps are decreased by a factor of ∼ 100 between their initial and final states,

showing that clump orbital inclination is rapidly adjusted after formation, until it orbits almost entirely in the plane of motion of the central star.

ing retrograde rotation. This is shown in Figure 14, which shows the

relative alignments between the orbital angular momentum vector

and the rotational angular momentum vector of the clumps. Both

the top and bottom panel is split into two parts, showing significant

disalignment at the top, marked in red crosses, and good-alignment

at the bottom. The top panel shows the alignment as a function of

mass, and the bottom panel shows the alignment as a function of

semi-major axis.

This prompts the question - how did they get to be retro-

rotating? Did they form like this, or were they perturbed in some

way? Having checked all of the clumps with significant disalign-

ment, we can see that all of them were perturbed by a close en-

counter with another fragment, which typically flung them rapidly

further out into the disc. We give the most extreme example in Fig-

ure 15, which shows the retrorotating clump 4 in simulation 4. In

the leftmost panel, we see in the bottom left corner two clumps

undergoing a close encounter. One of them then decreases its semi-

major axis, whilst the other one is flung further out into the disc, to

become retrorotating. Figure 16 shows the specific angular momen-

tum profiles of a retro-rotating clump (top) and a prograde rotating

clump (bottom). The blue line, at T = 2788 years, is as soon is the

clump is detected by our algorithm. We can see that the majority

of the clump is in prograde rotation, with only the outer ∼ 1 au

in retrograde rotation. However, as time progresses and the clump

continues to accrete material that is retro-rotating due to the en-

counter, this ultimately changes the rotation of the whole clump.
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Figure 14. All plots show alignment, on the y-axis, defined as the angle

between the orbital angular momentum vector and the rotational angular

momentum vector. Top two panels show alignment as a function of mass,

bottom two panels show alignment as a function of semi-major axis. The

plots are split, for clarity, into two different regions, between 0o and 40o

and between 155o and 190o. Well aligned clumps are marked by blue cir-

cles, clumps with a significant degree of disalignment are marked with red

crosses. Both plots show that four low-mass, high-separation clumps are

retro-rotators, given that all of them or orbiting in prograde motion.

For comparison, the bottom panel contains a prograde rotator of

similar mass from simulation 5.

Figure 17 shows the rotation velocity profiles of two clumps.

Top shows the ultimately retro-rotating clump 4 in simulation 4,

and the bottom, for comparison, is a clump of comparable mass

that is always undergoing prograde rotation. Negative velocity is

determined by the orbital angular momentum vector of the whole

clump and the rotational angular momentum vector of the material

being anti-aligned. Both panels show the clumps at four different

times, and the dashed lines indicate the breakup velocity profile of

each clump. Both clumps are rotating under their breakup velocity

for radii below 1 au, and their velocity profiles are consistent with

solid body rotation (i.e. v ∝ R) at these radii. Much further out, the

clumps become nebulous, but we have included information out as

far as possible to show the interesting angular momentum exchange

between material at T = 2788 years and T = 3377 years for the

retro-rotator. For the prograde rotator, the ultimate configuration is

a good approximation to a solid body rotation curve out to extended

radii (∼ 3 au). Interestingly, for the retro-rotator, the velocity pro-

file at the outer part of the fragment (∼ 2.2 au to ∼ 4 au) is con-

sistent with Keplerian rotation (i.e. v ∝ 1/
√

R). This suggests the

presence of a disc, or a disc-like structure, around the clump. Un-

fortunately, it is not (at the time of writing) currently possible to

self-consistently re-resolve such regions in SPH simulations, so we

are unable to investigate this further.

3.5 Density and temperature properties

Maximum density and temperature for all clumps in our simulation

is shown in Figure 18, open circles show prograde rotating clumps

and dark triangles show retrograde rotating clumps. The maximum

temperature we identify in a clump is 2081 K, which implies that

none of our fragments have started to dissociate molecular hydro-

gen and can therefore be considered as the first hydrostatic cores.

Additionally, a further 9 clumps have internal maximum tempera-

tures above ∼ 1000 K, which means they would begin to evaporate

dust. Both of these results are in good agreement with previous

studies of fragments, such as Vorobyov et al. (2013), who found

similar results. Our measurements of clump maximum temperature

are limited by our resolution, since running simulations at higher

resolution would allow higher densities to be reached before be-

coming computationally infeasible to continue.

As discussed in our introduction, the advantage of using a

purely hydrodynamical simulation with no sink particles is that

we can examine fragment internal structure during the simulation.

With this in mind, we show the radial temperature and density pro-

files of 7 fragments, one of which ultimately becomes the hottest

fragment in our simulations, shown in Figure 19, and the remaining

6 are three retro-rotators and three prograde rotators, of comparable

mass and with similar simulation histories, shown in Figure 20. In

both figures, each image is split into two panels, radial temperature

profile on the top and radial density profile on the bottom. The ini-

tial clump profile is shown in solid red, and the final clump profile

is shown in solid blue. For comparison, a polytrope is also plotted

in each panel.

Figure 19 shows the radial density and temperature profile of

the hottest clump identified out of our 9 simulations. We can see

that although the radial temperature profile is well described by a

polytrope of index n = 1.6, for the initial state, and n = 1.8 for

the final state, in both cases the actual density deviates from the

polytropic density significantly. This is also true for the rest of the

clumps, shown in Figure 20, where the left-hand column shows

prograde rotators, and the right-hand column shows retrograde ro-

tators. In all cases in Figure 20, we have plotted a polytrope of

index n = 1.5, which is appropriate for a fully convective star such

as a brown dwarf. Since in a polytrope, pressure P and density ρ
are related by

P = Kρ
n+1
n , (8)

where K is a constant and n is the polytropic index, it implicitly as-

sumes that pressure is a power law function of density which is con-

stant throughout the star. For our clumps, it appears to be the case

that a polytropic approximation may be too simplistic when esti-

mating the internal structure of the clump. This may have some im-

plications again for current GI population synthesis models, since

orbital parameters are sensitive to the radial distribution of mass

in the forming fragments. It is probably best to exercise caution

when constructing clumps in GI population synthesis models, and

it may be the case that a "follow the adiabats" approach, as used in

Nayakshin & Fletcher (2015), is more appropriate.
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Figure 15. Column density plots of simulation 4, increasing in time from left to right, showing clump 4 (marked by green square), an initially prograde-rotating

clump, undergoing an encounter with another clump to become a retro-rotating clump.

When we compare the final states of the retro-rotating clumps

with their prograde rotating counterparts, there is not much that

would mark them as retro-rotating, final density and final temper-

ature profiles for both directions of rotation are similar, and are

consistent with other simulations of fragmenting protostellar discs

(see, e.g. Vorobyov et al. 2013). There is one clump that is an ex-

ception when compared to the rest of the clumps, and is shown in

the top right hand panel of Figure 20. This is S4C4. In its final

state, the surface temperature of the clump is a factor of ∼ 3 higher

than we see in the rest of the clumps, and its central temperature is

∼ 425 K, a factor of ∼ 2 larger when compared to the rest of the

clumps in Figure 20. This high temperature could possibly be ex-

plained by an encounter with another clump. Figure 15 shows this

interaction, (clump 4 is marked by a green square). It is scattered

by the more massive clump into the outer part of the disc, becoming

shocked as it passes through a spiral arm. The encounter with the

other clump causes the direction of rotation of clump 4 to change,

but the large increase in temperature could be due to this motion

through a region of increased density, entering perpendicular to the

spiral arm where the density gradient is at its largest.

We suggest, therefore, that clump-clump interactions may pro-

vide a mechanism for dramatic increase in temperature of form-

ing clumps, either directly through the interaction, or their subse-

quent scattering through dense regions in the disc. This mechanism

could present a problem for terrestrial planet formation through

tidal downsizing. For a terrestrial planet to form in the tidal down-

sizing scenario, a clump must not accrete too much mass, and then

become tidally disrupted after migrating too close to the host star

(Nayakshin 2010; Boley et al. 2010). It then leaves behind a solid

core, if dust grain sedimentation was sufficiently rapid to form a

core. Since we have tentatively shown that clump-clump interac-

tions are common (given our small sample size), then it may be

possible that clump temperatures are frequently too high, at too

young an age, for dust sedimentation to have taken place inside

clumps. For a solid core to form, clumps need to exist at a temper-

ature below the dust sublimation temperature (∼ 1200 K) for the

duration of the sedimentation process.

3.6 Tidal disruption and mergers

Of the 41 clumps detected by the DDS method in our simulations,

7 were tidally destroyed by the central star, and 4 clumps under-

went mergers. Despite our small sample size, these results suggest

that both tidal destruction and mergers are common amongst pro-

tostellar disc fragments. An example merger is shown in Figure 21,

which shows simulation 3, clumps 2 and 4, merging together. An

example tidal disruption is shown in Figure 22, which shows simu-

lation 7, clump 4 undergoing tidal disruption. Such tidal disruptions

could potentially be an explanation for outburst type behaviour in

young protostars, due to the rapid increase in accretion rate onto

the central star (see, e.g.,Vorobyov & Basu 2005; Boley et al. 2010;

Nayakshin & Lodato 2012). We leave observational signatures of

our tidal disruptions to future work.

4 DISCUSSION AND CONCLUSION

In this paper, we have presented one original method for identi-

fying fragments in a simulation, the density derivative search, and

one method adapted from the CLUMPFIND (Williams et al. 1994;

Smith et al. 2008; Forgan et al. 2016) algorithm. We ran 9 SPH

simulations of a 0.25 M⊙ disc around a 1 M⊙ star, each with a

surface density profile of Σ ∝ r−1, an inner radius of 10 au and

an outer radius of 100 au. Each simulation was run for as long as

computationally feasible without converting dense regions to sink

particles, since we wished to calculate orbital properties for our

fragments, which are sensitive to their radial mass distribution.

Each disc fragmented to form at least 2 bound objects, and

we analysed the fragments (which we call clumps, once they have

been detected) using the density derivative search and the adapted

CLUMPFIND method. We have shown that these two methods are

complementary, as the density derivative search is able to detect

low mass clumps, and clumps that are ultimately tidally destroyed,

while the search using the adapted CLUMPFIND method filters out

clumps which are unlikely to survive the simulation, but also has a

relative insensitivity to low mass clumps.

We compare our sample of fragments to the population syn-

thesis model of Forgan & Rice (2013), and find that our algorithm

has some limitations at early times (i.e., during the initial period of

fragment formation), which means that some radial migration has

already happened before the algorithm detects the fragment. De-

spite this, it is fairly robust at late times (i.e., a few orbital periods

after formation), and so our final mass and final semi-major axis

functions, and the mass semi-major axis relationship, are represen-

tative of the final configurations (i.e., at T ∼ 4000 years) of our

systems. Of course, the final mass and final semi-major axis distri-

butions that we present here will differ from the ultimate distribu-

tions of the systems. These will only be determined some ∼ 106

years after formation, long after the disc has dispersed. What hap-

pens after disc dispersal is not considered in this work, but we refer

the interested reader to Forgan et al. (2015) and Li et al. (2016).

We examine the internal temperature and density structure of

MNRAS 000, 1–22 (2016)
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Figure 16. Top: radial profile of specific angular momentum for an example

retro-rotating clump (clump 4, simulation 4), at four different times. Hori-

zontal lines indicate the last bound point of the clump at times indicate in the

legend. The final bound mass is marked on the plot, and in this case, all of

the mass that is identified as belonging to the clump is ultimately bound to

the clump. Positive values for ~Lspecific indicate that the rotational angular

momentum vector of the material and the orbital angular momentum vector

of the whole clump are aligned (or at least inclined at less than 90◦), and

negative values indicate that the two vectors are anti-aligned. The blue line

is when the clump is first detected, and we can see that the majority of the

clump is in prograde rotation, and the outer ∼ 1 au is in retrograde rotation.

The material came to be retro-rotating due to a close encounter with another

clump, which is shown in Figure 15. As the clump continues to accrete ma-

terial, we can see that angular momentum is exchanged between the inner

material and the outer material (green line, T = 3377 years). As the clump

contracts, this positive angular momentum material is no longer considered

part of the clump. Bottom: for comparison, the specific angular momentum

profile of a clump of comparable mass undergoing prograde rotation (clump

4, simulation 5). The horizontal line indicates the last bound radius in the

clump for the four clumps, only one line is plotted here as the four are so

close together. The final bound mass of the clump is stated on the plot.
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Figure 17. Top: rotation velocity curve for an example retro-rotating clump

(clump 4, simulation 4), at four different times. Horizontal lines mark the

last bound radius in the clump at times given in the legend. In this case, the

total bound final mass is equal to the total mass ultimately identified for the

clump. Dashed lines correspond to breakup velocities at these times. Nega-

tive velocities indicate that the rotational angular momentum vector of the

material and the orbital angular momentum vector of the whole clump are

anti-aligned (or at least inclined at more than 90◦) relative to each other.

We can see that beyond ∼ 1.5 au, the material is rotating at faster than

its breakup velocity, which would perhaps suggest that material is spread-

ing outwards from the clump, in a disc-like, or toroidal, manner. Bottom:

for comparison, a clump of comparable mass undergoing prograde rotation

(clump 4, simulation 5). Again, beyond ∼ 1 au, rotation velocity exceeds

breakup velocity, and so we may expect to see a considerable spread of ma-

terial around such an object, morphologically similar to a toroid.

our fragments, and compare them with appropriately indexed poly-

tropes. We find that the central density of our fragments are typi-

cally an order of magnitude denser than their polytropic equivalent,

and since orbital parameters of a body are sensitive to its internal

mass distribution, we recommend caution when using polytropes

in GI population synthesis models to calculate orbital parameters.

Furthermore, that the interiors of the clumps may not be well

described by polytropes may raise concerns about the validity of the

Forgan et al. (2009) hybrid radiative transfer method, which uses

the polytropic cooling formalism of Stamatellos et al. (2007) to ap-

proximate radiative cooling. Essentially, the assumption is that each

SPH particle is embedded in its own polytropic pseudo-cloud, of

polytropic index n. Therefore, the cooling of any morphology that

is not a polytrope of index n may not be exactly described by the
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ulations. Open circles are prograde rotating clumps, closed triangles are

retrograde rotating clumps.
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Figure 19. Radial temperature and density profile of the hottest clump we

identified in our simulations, clump 2 in simulation 1. Red solid lines show

initial temperature and density, blue solid lines show final temperature and

density. For comparison, an n = 1.6 polytrope is plotted for the initial

clump, and an n = 1.8 polytrope is plotted for the final clump. In both

cases, the polytrope is a good fit to the temperature profile of the clump,

however it is a poor fit to the density, particularly in the final state, where it

underestimates central density by almost two orders of magnitude.

polytropic cooling formalism. However, so long as the geometry is

approximately spherical, which gravitationally bound clumps tend

to be, then the polytropic cooling approximation is valid to within

an order of unity for a variety of opacity laws (Wilkins & Clarke

2012).

More generally, the polytropic cooling method of

Stamatellos et al. (2007) has been criticised when employed

in planar geometry, such as in self-gravitating protostellar discs.

The most alarming of these is the systematic under-estimation of

cooling rates by a factor of ∼ 100 (Wilkins & Clarke 2012), due to

the use of local variables only in optical depth determination. This

ignores the decreasing column density normal to the midplane of

the disc, which may offer an easier escape path for photons.

However, this criticism is specific to the polytropic cooling

method of Stamatellos et al. (2007), rather than the hybrid method

of Forgan et al. (2009). By including flux limited diffusion, the

problems outlined in Wilkins & Clarke (2012) are addressed.

More recently, the polytropic cooling approximation of

Stamatellos et al. (2007) has been updated to include radiative

feedback from sink particles (Stamatellos 2015), which is not cap-

tured by the Forgan et al. (2009) hybrid scheme. However, we do

not use sink particles in this work, since we aim to characterise the

radial properties of our fragments. By using only SPH particles, the

flux limited diffuser in the Forgan et al. (2009) algorithm naturally

provides radiative feedback from the fragments, as heat is diffused

from hotter to cooler regions.

Ultimately, the hybrid method of Forgan et al. (2009) is an ap-

proximation to a computationally much more expensive task, a full

radiation hydrodynamical treatment of disc evolution. Therefore,

results obtained using this approximation should be adopted with

knowledge of its limitations in mind.

The radiative cooling of real protoplanetary discs depends

strongly on opacity, which is not examined in this work. Dust opac-

ities have a large degree of uncertainty; for temperatures below

∼ 1000 K, dust grains dominate absorption, so this uncertainty

is likely to matter in the region of parameter space considered in

this work. For example, Semenov et al. (2003) have shown that for

temperatures 100K < T < 1000 K, opacity may differ by a fac-

tor of ∼ 10. Since it is known that initial fragment mass depends

on opacity (Masunaga & Inutsuka 1999), our initial fragment mass

distribution may differ from what we state here.

However, it is widely accepted that dust opacity is pro-

portional to metallicity, and it has been shown that while low-

metallicity fragments may be a factor of ∼ 3 more massive than

solar metallicity fragments, the initial mass distribution of the frag-

ments is, apart from the shift at low mass, very similar between

the two metallicities (Bate 2005). We conclude, in light of this, that

our fragment mass distributions are probably reasonable, but cau-

tion that the lower mass fragments may be larger if opacity is de-

creased. It is possible to estimate the mass dependence on opacity

by appealing to the opacity limit for fragmentation, as follows.

Usual derivations of the opacity limit for fragmentation in-

clude an efficicency factor, e, which subsumes, amongst other un-

knowns, the opacity of the gas. Adjusting this efficiency factor al-

lows us to examine a range of potential fragment masses. We be-

gin with an expression for the power of a ball of gas collapsing in

freefall:

|B|

tff
=

(

3

5π

G3M5

R5

) 1
2

, (9)

where B is the gravitational binding energy of the gas, given by

B = −
3

5

GM2

R
, (10)

and tff is the free-fall time of the gas, given by

tff =

√

3π

32Gρ
. (11)

For the collapse to continue isothermally, then

|B|

tff
. L, (12)

where L is the luminosity describing the radiation of the ball of gas,

as a blackbody, given by

L = e4πR2σT 4, (13)
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Figure 20. Radial density and temperature profiles for the initial and final state of 6 clumps. Red solid lines show initial clump profile, blue solid lines show

final clump profile. For comparison, all clumps have initial and final n = 1.5 polytropic profiles plotted in initial and final states. The left column contains 3

clumps undergoing prograde rotation, and the right column shows 3 clumps undergoing retrograde rotation. In each row, the clumps are of comparable mass,

and are intended to be compared, although bearing in mind that the clumps have had different evolutionary histories and their final masses are not identical.

For most of the clumps, there is not much in their profiles that would mark them as a retro-rotating clump. The final inner and surface temperatures are similar,

as is the shape of the density profile. Clump 4 in simulation 4 (top right panel) is somewhat the exception, with a large increase in both final inner density,

inner temperature and surface temperature. Given the violent encounter it endured early in its history (shown in Figure 15), this may be unsurprising, but it is

interesting to note that high surface temperatures may indicate a violent encounter in the past. In all cases, a polytrope of index n = 1.5 is a reasonable fit to

the temperature profile, but consistently underestimates the inner density by around an order of magnitude.
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Figure 21. Column density plots of simulation 3, where clumps 2 and 4 (highlighted in green) undergo a merger.
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Figure 22. Column density plots of simulation 7, increasing in time, showing the tidal disruption of clump 4, marked in green in the top three images before

it begins to be tidally destroyed.

where T is temperature, σ is the Stefan-Boltzmann constant, and e
is the efficiency factor of the radiation. Substituting our expression

for power, |B|/tff , and luminosity, L into equation 12, we can re-

arrange equation 12 to arrive at an expression for the critical mass:

Mcrit =

(

400

9

e2π4σ4T 8R9

G

) 1
5

(14)

above which the collapse proceeds adiabatically. However, this

mass must be above the local Jeans mass, MJ, for the collapse to

continue, so we now have a condition

MJ . M . Mcrit, (15)

which must be satisfied. If MJ and Mcrit are equal, we then arrive

at the opacity limit for fragmentation, which describes the mini-

mum mass of a fragment that may form. Inserting constants, we

now have an expression for the minimum fragment mass,

Mfrag ≈ 6
T

1
4

e
1
2

MJ. (16)

From this, we can see that for a fixed temperature, minimum frag-

ment mass increases with a decrease in efficiency. If the efficiency

of the radiation is 100%, i.e., the gas has a sufficiently low opac-

ity such that it is effectively completely optically thin to escaping

radiation, then for a temperature of T ∼ 10 K a fragment mass of

∼ 10 MJ is expected. For an efficiency of 20%, then this rises to

∼ 23 MJ. Clearly, how strongly this efficiency depends on opac-

ity will determine the relationship of proportionality, however, it

is clear that opacity plays an important, if not dominant, role in

determining initial fragment mass. In addition to determining ini-
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tial fragment mass, the opacity will also play an important role in

determining the final fragment mass through accretion rate onto

the fragments, since the thermodynamics of the gas inside the Hill

sphere of the fragment depends on this opacity (Stamatellos 2015).

We find that fragment-fragment interactions play a substan-

tial role in the ultimate fate of our systems. Low-mass fragments

can be scattered out to large radii, (and therefore remain low mass,

since there is less material to accrete), and are therefore unlikely

to be tidally destroyed by the central star. Since current GI pop-

ulation synthesis models suggest that ∼ 40% of initial fragments

are ultimately tidally destroyed (Forgan & Rice 2013), if a signifi-

cant number of these fragments are actually scattered out to large

separations by interactions with other fragments, this figure could

potentially be much lower. We therefore recommend that fragment-

fragment interactions in the gas phase of the disc be included in any

new GI population synthesis models.

During their lifetime, we find that our fragments may be

shocked as they pass through spiral arms, rapidly increasing the

internal energy of the fragment. This could have implications for

terrestrial planet formation through the tidal downsizing hypothe-

sis, since solid core formation requires rapid dust sedimentation. If

the interior of these fragments are hot enough to sublimate dust at

very early stages in their lifetime, it may not be possible for them to

form solid cores, a key assumption in the core-assisted gas-capture

hypothesis of Nayakshin et al. (2014).

In addition to encounters scattering fragments out to large

radii, we also find a tentative relationship between the dominant az-

imuthal wavenumber in the disc, and the maximum semi-major axis

of a clump in that disc, such that amax ∝ 1/m. This seems to sug-

gest that the spiral arms of protoplanetary discs play as large a role

in the dynamical fate of the clumps as do the clump-clump scatter-

ings. Although this relationship is preliminary, and requires more

simulations in a range of disc-to-star mass ratios to confirm it (since

m ∼ 1/q (Dong et al. 2015), where q is disc-to-star mass ratio), it is

unsurprising that such a relationship may exist, and we suspect that

the relationship is one of inverse proportionality, rather than one of

negative proportionality, due to the relationship between gravita-

tional torque ΓG and azimuthal wavenumber as follows (for a full

derivation and comprehensive explanation, we refer the reader to

Binney & Tremaine 2008). The gravitational torque ΓG exerted on

material outside a radius R0 in a disk is given by

ΓG = sgn(k)
π2mR0GΣ2

1

k2
, (17)

where Σ1 is a gentle function of radius, k is the radial wavenumber

defined as

k ≡
∂(mf(R))

∂R
, (18)

mf(R) is the radial shape function of the spiral (for a simple ex-

ample, see Hall et al. 2016), and sgn(k) = +1 for trailing spirals

(i.e, positive torque exerted outwards). At a given value of R0, and

the same function for Σ1, we can see that

ΓG ∝
1

m
. (19)

To establish the relationship amax ∝ 1/m, we have assumed that

the amount of torque is directly proportional to the change in radial

distance. Whilst this is almost certainly an over-simplification of

matters, we can see from

ΓG =
d|~L|

dt

=
d

dt

(

m|~v × ~r|

)

=
d

dt

(

m|~v||~r|sin[θ]

)

, (20)

that if we assume mass, velocity, and the angle between ~v and ~r
stay fairly constant, then ΓG ∝ dr/dt, i.e. the distance we wish to

move our fragment. Assuming that all fragments form at roughly

the same r in a given disc, (i.e. where that particular disc becomes

susceptible to fragmentation), then we recover amax ∝ 1/m.

Varying the surface density profile in a protostellar disc

will alter disc torques and migration rates of planets (see, for

example,Baruteau et al. 2011). Since we simulated 9 protostellar

discs that had initially identical surface density profiles, this is not

something we have investigated, but it could potentially alter our

results. For example, steeper surface density profiles correspond to

more rapid migration rates. It is therefore feasible that a sharp cut-

off at the disc outer edge, as we use in our initial conditions, may

exacerbate migration torques in the disc. However, since the major-

ity of the disc mass is contained well within the disc’s numerical

outer edge, it is probably reasonable to assume it is not the domi-

nant effect when considering the radial migration of fragments.

Despite the relatively short timescales of our simulations

(since we did not make use of sink particles), we can see that or-

bital properties of fragments are drastically altered by interactions

with each other. Since disc fragmentation forms objects with ini-

tially low eccentricities (e < 0.1), it is generally accepted that mea-

surements of eccentricity as a function of orbital distance will con-

strain the formation mechanism of giant planets and brown dwarfs

(Vorobyov 2013), with high eccentricity being caused by dynami-

cal scattering.

However, our results in Figure 12 possibly suggest that these

high eccentricity orbits could be formed at very early times, during

the gas phase of the disc, and as such eccentricity measurements of

brown dwarfs and giant planets may not, necessarily, constrain their

formation mechanism. We have shown that the intial orbital incli-

nation of our fragments is reduced by a factor of ∼ 100 over the du-

ration of the simulation (Figure 13), despite the significant dynam-

ical interactions many of the fragments experience. This suggests

that although dynamical interactions certainly can create highly in-

clined orbits, doing so while the gas disc is present may be much

more difficult.

On the other hand, our simulations are of discs in isolation.

Inclination and eccentricity may be excited by environment, such

as a stellar companion, or location within a cluster environment

(Forgan et al. 2015). Since current GI population synthesis models

do not include eccentricity or inclination information, we have pro-

vided several Gaussian fits in Figure 13 from our SPH simulation

data. Despite our small sample size, we hope these plots will be

useful in further development of GI population synthesis models.

In this work, we do not consider how solid particles will ef-

fect the formation, evolution, and survival of the clumps, nor their

effects on the behaviour of the gas. This is, quite possibly, the

most important limitation of our work. As we have already dis-

cussed, opacity could heavily influence the initial mass distribution

of our clumps. It is also feasible that altering the opacity in the

clumps, due to movement of solids, could result in clumps cool-

ing more (or less) rapidly, resulting in more (or fewer) clumps sur-

viving (Nayakshin 2010). More clumps surviving because of local
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opacity changes could present a partial solution to the rapid in-

ward migration and subsequent disruption of GI fragments found

in so many other works (see, for example, Vorobyov & Basu 2005;

Baruteau et al. 2011; Zhu et al. 2012).

To date, no global 3D SPH simulations of dusty, self-

gravitating, fragmenting protostellar discs have been conducted.

This is a computationally expensive task, with complicated physics.

Almost certainly, a full treatment of radiation hydrodynamics

would be necessary to correctly capture the cooling of the system,

and the spatial evolution of the dust within the gas. High resolution

is needed in the core of these fragments to trace their compositional

change. However, if we are considering the global evolution of the

system, we must be able to capture the full dynamical range. This

is probably not possible with current computational abilities, and

is one of many multiphysics problems present in protostellar disc

modelling (Haworth et al. 2016).

How fragmentation proceeds when solid grains are included in

the simulation is clearly an interesting question. Although not con-

sidered in 3D hydrodynamics simulations, this idea has recently

been explored by Nayakshin et al. (2014), in their so-called "core-

assisted gas capture" (CAGC) paradigm. In this scenario, grain sed-

imentation inside a fragment forms a core of heavy elements. Upon

reaching a critical core mass, the surrounding gaseous envelope

collapses onto the core, analogous to the core accretion paradigm.

The assumption in the work of CAGC is, of course, that these cores

do form. Gravitational instability tends to occur beyond ∼ 50 au

in protostellar discs (Rafikov 2005). For a significant core to form

in GI clumps due to grain sedimentation, there must be a substan-

tial local dust-to-gas ratio at the site of clump formation. Since dust

grains tend to migrate rapidly inwards (Weidenschilling 1977), it

may well be difficult to maintain a significant dust-to-gas ratio at

the site of fragmentation, making core formation from grain sedi-

mentation inside a fragment difficult. However, GI is also a rapid

process, so as long as the fragmentation takes place rapidly, then

the local change in pressure gradient may be sufficient to prevent

inward migration of these grains.

If massive cores in GI clumps do form, as assumed by CAGC,

then we should probably expect differences in the final clump dis-

tributions to what we have presented here. An interesting feature of

the (CAGC) paradigm is that if planets are formed by this method,

then we should expect a positive metallicity correlation.

Assuming, for now, that the collapse proceeds with no core

mediation, then it is probably reasonable to expect no metallic-

ity corellation; indeed, there is at least some numerical evidence

that we may expect a negative metallicity corellation (Cai et al.

2005), since low metallicity corresponds to faster cooling (and

therefore stronger spiral amplitudes, increasing the effective gravi-

tational stress) which may result in fragmentation. This is because

higher metallicity results in better cooling only in the optically thin

regime, for example, at the tenuous surface of the disc.

Conversely, higher metallicity results in slower cooling in the

optically thick regime, i.e. at the disc midplane, which is the loca-

tion of fragmentation. Therefore, gas-giant planets formed through

GI should be preferentially found around low metallicity stars. It

seems to now be fairly clear that gravitational instability rarely

forms planetary mass objects (Rice et al. 2015), but if it does, these

objects will be much larger than Jupiter. We should, then, find that

planets more massive than Jupiter are more frequent around low-

metal stars. However, it has been suggested that this is not the case,

since planets more massive than ∼ 3 MJ seem to be found less

often around low-metallicity stars (Thorngren et al. 2016).

Overall, the picture is unclear. While CAGC may result in a

positive metallicity correlation, there seems to be enough evidence

to suggest that fragmentation should preferentially occur in discs

around low-metallicity stars, which, in turn, suggests that GI plan-

ets would be preferentially found around low-metallicity stars. In

the CAGC paradigm, fragmentation must first take place, before

the core can form through subsequent grain sedimentation. If this

fragmentation happens less often around high-metallicity stars, this

could still result in an over negative metallicity corellation. Ul-

timately, the ambiguity of what happens at low-metallicity does

not remove the strong high-metallicity correlation with planet fre-

quency. This is mostly suspected to be the work of core accretion,

and is difficult to explain with any GI theory alone.

The work we have presented here outlines the first direct com-

parison between a GI population synthesis model and a suite of

3D, global hydrodynamics simulations of fragmenting protostellar

discs. While the work of Forgan & Rice (2013) presents the first

attempt at a GI population synthesis model, it is not the only one

(see, for example, Galvagni & Mayer 2014; Nayakshin & Fletcher

2015, and a recent extension to the Forgan & Rice 2013 model in

Forgan et al. 2015). As mentioned in the introduction to this work,

our simulations are run for as long as is computationally feasible

without the use of sink particles, since part of our aim was to char-

acterise the internal density and temperature profile of these frag-

ments. However, doing so limits us to very early times in the disc,

typically around ∼ 4000 years or so after the disc has initially

formed. For this reason, we did not compare our results to the mod-

els of Forgan et al. (2015), which consider the ultimate dynamical

fate of the fragments after disc dispersal.

Similarly, the work of Forgan & Rice (2013) considers the

fragmentation phase of a disc, unlike Galvagni & Mayer (2014).

Since our hydrodynamical simulations are analysed around the

fragmentation phase, we wished to use a model that did not

assume already that clumps exist in the disc, ruling out the

Galvagni & Mayer (2014) models. Finally, we considered the

Nayakshin & Fletcher (2015) models unsuitable for direct com-

parison to our hydrodynamics simulations because only one frag-

ment per disc is simulated, unlike the population synthesis mod-

els of Forgan & Rice (2013), which places multiple fragments in a

disc susceptible to fragmentation at separations of a few Hill radii.

We stress here that we are not suggesting the superiority of the

Forgan & Rice (2013) models, simply that those particular models

were best suited for direct comparison to our hydrodynamics sim-

ulations.

Of the 41 clumps that are detected in these simulations, 7

were tidally destroyed (∼ 20%), and 2 have orbits with eccentric-

ity approaching unity (e ∼ 0.75), which suggests that they are

on their way to being ejected (∼ 5%). If these clumps are ulti-

mately ejected, then gravitational instability could, perhaps, also

contribute to the population of free-floating planets (Rice et al.

2003b; Forgan et al. 2015). We have demonstrated that the orbital

and structural evolution of neighbouring fragments are linked; we

recommend, therefore, that any future population synthesis models

are able to account for this.
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