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Abstract

Universal Dependencies (UD) provides a
cross-linguistically uniform syntactic rep-
resentation, with the aim of advancing mul-
tilingual applications of parsing and natu-
ral language understanding. Reddy et al.
(2016) recently developed a semantic in-
terface for (English) Stanford Dependen-
cies, based on the lambda calculus. In this
work, we introduce UDEPLAMBDA, a simi-
lar semantic interface for UD, which allows
mapping natural language to logical forms
in an almost language-independent frame-
work. We evaluate our approach on seman-
tic parsing for the task of question answer-
ing against Freebase. To facilitate multilin-
gual evaluation, we provide German and
Spanish translations of the WebQuestions
and GraphQuestions datasets. Results show
that UDEPLAMBDA outperforms strong
baselines across languages and datasets.
For English, it achieves the strongest result
to date on GraphQuestions, with competi-
tive results on WebQuestions.

1 Introduction

The Universal Dependencies (UD) initiative seeks
to develop cross-linguistically consistent annota-
tion guidelines as well as a large number of uni-
formly annotated treebanks for many languages.1

Such resources could advance multilingual applica-
tions of parsing, improve comparability of evalua-
tion results, enable cross-lingual learning, and more
generally support natural language understanding.

Seeking to exploit the benefits of UD for natu-
ral language understanding, we introduce UDEP-
LAMBDA, a semantic interface for UD that maps

1http://www.universaldependencies.org/.

natural language to logical forms, representing un-
derlying predicate-argument structures, in an al-
most language-independent manner. Our frame-
work is based on DEPLAMBDA (Reddy et al., 2016)
a recently developed method that converts English
Stanford Dependencies (SD) to logical forms. The
conversion process is illustrated in Figure 1 and dis-
cussed in more detail in Section 2. Whereas DEP-
LAMBDA works only for English, UDEPLAMBDA

applies to any language for which UD annotations
are available.2 In this paper, we describe the ra-
tionale behind UDEPLAMBDA and highlight im-
portant differences from DEPLAMBDA, some of
which stem from the different treatment of various
linguistic constructions in UD.

Our experiments focus on semantic parsing as a
testbed for evaluating the framework’s multilingual
appeal. We address the task of learning to map
natural language to machine interpretable formal
meaning representations, specifically retrieving an-
swers to questions from Freebase. To facilitate
multilingual evaluation, we provide translations
of the English WebQuestions (Berant et al., 2013)
and GraphQuestions (Su et al., 2016) datasets to
German and Spanish. We demonstrate that U-
DEPLAMBDA can be used to derive logical forms
for these languages using a minimal amount of
language-specific knowledge. Aside from devel-
oping the first multilingual semantic parsing tool
for Freebase, we also experimentally show that U-
DEPLAMBDA outperforms strong baselines across
languages and datasets. For English, it achieves
the strongest result to date on GraphQuestions,
with competitive results on WebQuestions. Be-
yond semantic parsing, we believe that the log-
ical forms produced by our framework will be
of use in various natural understanding tasks in-
cluding entailment (Beltagy et al., 2016), text-

2As of v1.3, UD annotations are available for 47 languages.
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based question answering (Lewis and Steedman,
2013), sentence simplification (Narayan and Gar-
dent, 2014), summarization (Liu et al., 2015), para-
phrasing (Pavlick et al., 2015), and relation extrac-
tion (Rocktäschel et al., 2015). Our implementa-
tion and translated datasets are publicly available
at https://github.com/sivareddyg/udeplambda.

2 DEPLAMBDA

Before describing UDEPLAMBDA, we provide an
overview of DEPLAMBDA (Reddy et al., 2016) on
which our approach is based. DEPLAMBDA con-
verts a dependency tree to its logical form in three
steps: binarization, substitution, and composition,
each of which is briefly outlined below.

Binarization A dependency tree is first mapped
to a Lisp-style s-expression indicating the order
of semantic composition. Figure 1(b) shows the
s-expression for the sentence Disney won an Os-
car for the movie Frozen, derived from the depen-
dency tree in Figure 1(a). Here, the sub-expression
(dobj won (det Oscar an)) indicates that the logi-
cal form of the phrase won an Oscar is derived by
composing the logical form of the label dobj with
the logical form of the word won and the logical
form of the phrase an Oscar, derived analogously.

An obliqueness hierarchy is employed to impose
a strict ordering on the modifiers to each head in
the dependency tree. As an example, won has
three modifiers in Figure 1(a), which according
to the obliqueness hierarchy are composed in the
order dobj> nmod> nsubj. In constructions like
coordination, this ordering is crucial to arrive at the
correct semantics (see Section 3.3).

Substitution Each symbol in the s-expressions
is substituted for a lambda expression encoding
its semantics. Words and dependency labels are
assigned different types of expressions. In general,
words have expressions of the following kind:
ENTITY ⇒ λx.word(xa); e.g. Oscar⇒ λx.Oscar(xa)
EVENT ⇒ λx.word(xe); e.g. won⇒ λx.won(xe)
FUNCTIONAL⇒ λx.TRUE; e.g. an⇒ λx.TRUE

Here, the subscripts ·a and ·e denote the types of
individuals (Ind) and events (Event), respectively,
whereas x denotes a paired variable (xa,xe) of type
Ind×Event. Roughly speaking, proper nouns and
adjectives invoke ENTITY expressions, verbs and
adverbs invoke EVENT expressions, and common
nouns invoke both ENTITY and EVENT expressions
(see Section 3.3), while remaining words invoke

Disney won an Oscar for the movie Frozen
propn verb det propn adp det noun propn

nsubj

dobj

nmod

det

case

det

compound

root

(a) The dependency tree for Disney won an Oscar for the
movie Frozen in the Universal Dependencies formalism.

(nsubj (nmod (dobj won (det Oscar an))
(case (det (comp. Frozen movie) the) for)) Disney)

(b) The binarized s-expression for the dependency tree.

λx.∃yzw.won(xe)∧Disney(ya)∧Oscar(za)
∧Frozen(wa)∧ movie(wa)
∧arg1(xe,ya)∧ arg2(xe,za)∧ nmod.for(xe,wa)

(c) The composed lambda-calculus expression.

Figure 1: The mapping of a dependency tree to its
logical form with the intermediate s-expression.

FUNCTIONAL expressions. As in DEPLAMBDA,
we enforce the constraint that every s-expression
is of the type η = Ind×Event → Bool, which
simplifies the type system considerably.

Expressions for dependency labels glue the
semantics of heads and modifiers to articulate
predicate-argument structure. These expressions in
general take one of the following forms:
COPY ⇒ λ f gx.∃y. f (x)∧g(y)∧ rel(x,y)
e.g. nsubj, dobj, nmod, advmod
INVERT ⇒ λ f gx.∃y. f (x)∧g(y)∧ reli(y,x)
e.g. amod, acl
MERGE ⇒ λ f gx. f (x)∧g(x)
e.g. compound, appos, amod, acl
HEAD ⇒ λ f gx. f (x)
e.g. case, punct, aux, mark .

As an example of COPY, consider the lambda
expression for dobj in (dobj won (det Oscar an)):
λ f gx.∃y. f (x)∧ g(y)∧ arg2(xe,ya). This expres-
sion takes two functions f and g as input, where
f represents the logical form of won and g repre-
sents the logical form of an Oscar. The predicate-
argument structure arg2(xe,ya) indicates that the
arg2 of the event xe, i.e. won, is the individual ya,
i.e. the entity Oscar. Since arg2(xe,ya) mimics the
dependency structure dobj(won, Oscar), we refer
to the expression kind evoked by dobj as COPY.

Expressions that invert the dependency direc-
tion are referred to as INVERT (e.g. amod in run-
ning horse); expressions that merge two subexpres-
sions without introducing any relation predicates
are referred to as MERGE (e.g. compound in movie
Frozen); and expressions that simply return the par-

https://github.com/sivareddyg/udeplambda


ent expression semantics are referred to as HEAD

(e.g. case in for Frozen). While this generalization
applies to most dependency labels, several labels
take a different logical form not listed here, some
of which are discussed in Section 3.3. 3 Sometimes
the mapping of dependency label to lambda expres-
sion may depend on surrounding part-of-speech
tags or dependency labels. For example, amod acts
as INVERT when the modifier is a verb (e.g. in run-
ning horse), and as MERGE when the modifier is
an adjective (e.g. in beautiful horse).4

Composition The final logical form is computed
by beta-reduction, treating expressions of the form
(f x y) as the function f applied to the arguments
x and y. For example, (dobj won (det Oscar an))
results in λx.∃z.won(xe)∧Oscar(za)∧ arg2(xe,za)
when the expression for dobj is applied to those
for won and (det Oscar an). Figure 1(c) shows the
logical form for the s-expression in Figure 1(b).

3 UDEPLAMBDA

We now introduce UDEPLAMBDA, a semantic in-
terface for Universal Dependencies.5 Whereas
DEPLAMBDA only applies to English Stanford De-
pendencies, UDEPLAMBDA takes advantage of the
cross-lingual nature of UD to facilitate an (almost)
language independent semantic interface. This is
accomplished by restricting the binarization, sub-
stitution, and composition steps described above
to rely solely on information encoded in the UD
representation. Importantly, UDEPLAMBDA is de-
signed to not rely on lexical forms in a language to
assign lambda expressions, but only on information
contained in dependency labels and postags.

However, some linguistic phenomena are lan-
guage specific (e.g. pronoun-dropping) or mean-
ing specific (e.g. every and the in English have
very different semantics, despite being both deter-
miners) and are not encoded in the UD schema.
Furthermore, some cross-linguistic phenomena,
such as long-distance dependencies, are not part of
the core UD representation. To circumvent this
limitation, a simple enhancement step enriches
the original UD representation before binariza-

3Mappings are available at https://github.com/sivareddyg/
udeplambda.

4We use Tregex (Levy and Andrew, 2006) for substitu-
tion mappings and Cornell SPF (Artzi, 2013) as the lambda-
calculus implementation. For example, in running horse, the
tregex /label:amod/=target < /postag:verb/ matches amod to
its INVERT expression λ f gx.∃y. f (x)∧g(y)∧ amodi(ye,xa).

5In what follows, all references to UD are to UD v1.3.

Anna wants to marry Kristoff

nsubj

xcomp

mark dobj

nsubj

(a) With long-distance dependency.

Anna wants to marry Kristoff

Ω Ω

nsubj

xcomp

mark dobj

bind nsubj

(b) With variable binding.

Figure 2: The original and enhanced dependency
trees for Anna wants to marry Kristoff.

tion takes place (Section 3.1). This step adds to
the dependency tree missing syntactic information
and long-distance dependencies, thereby creating a
graph. Whereas DEPLAMBDA is not able to han-
dle graph-structured input, UDEPLAMBDA is de-
signed to work directly with dependency graphs
(Section 3.2). Finally, the representation of several
linguistic constructions differ between UD and SD,
which requires different handling in the semantic
interface (Section 3.3).

3.1 Enhancement

Both Schuster and Manning (2016) and Nivre et al.
(2016) note the necessity of an enhanced UD rep-
resentation to enable semantic applications. How-
ever, such enhancements are currently only avail-
able for a subset of languages in UD. Instead, we
rely on a small number of enhancements for our
main application—semantic parsing for question-
answering—with the hope that this step can be re-
placed by an enhanced UD representation in the fu-
ture. Specifically, we define three kinds of enhance-
ments: (1) long-distance dependencies; (2) types
of coordination; and (3) refined question word tags.

First, we identify long-distance dependencies in
relative clauses and control constructions. We fol-
low Schuster and Manning (2016) and find these
using the labels acl (relative) and xcomp (control).
Figure 2(a) shows the long-distance dependency in
the sentence Anna wants to marry Kristoff. Here,
marry is provided with its missing nsubj (dashed
arc). Second, UD conflates all coordinating con-
structions to a single dependency label, conj. To
obtain the correct coordination scope, we refine
conj to conj:verb, conj:vp, conj:sentence,

https://github.com/sivareddyg/udeplambda
https://github.com/sivareddyg/udeplambda


conj:np, and conj:adj, similar to Reddy et al.
(2016). Finally, unlike the PTB tags (Marcus et al.,
1993) used by SD, the UD part-of-speech tags do
not distinguish question words. Since these are cru-
cial to question-answering, we use a small lexicon
to refine the tags for determiners (DET), adverbs
(ADV) and pronouns (PRON) to DET:WH, ADV:WH

and PRON:WH, respectively. Specifically, we use
a list of 12 (English), 14 (Spanish) and 35 (Ger-
man) words, respectively. This is the only part
of UDEPLAMBDA that relies on language-specific
information. We hope that, as the coverage of mor-
phological features in UD improves, this refine-
ment can be replaced by relying on morphological
features, such as the interrogative feature (INT).

3.2 Graph Structures and BIND

To handle graph structures that may result from
the enhancement step, such as those in Figure 2(a),
we propose a variable-binding mechanism that dif-
fers from that of DEPLAMBDA. First, each long-
distance dependency is split into independent arcs
as shown in Figure 2(b). Here, Ω is a placeholder
for the subject of marry, which in turn corresponds
to Anna as indicated by the binding of Ω via the
pseudo-label BIND. We treat BIND like an ordinary
dependency label with semantics MERGE and pro-
cess the resulting tree as usual, via the s-expression:
(nsubj (xcomp wants (nsubj (mark

(dobj marry Kristoff) to) Ω) (BIND Anna Ω)) ,

with the lambda-expression substitutions:
wants, marry ∈ EVENT; to ∈ FUNCTIONAL;
Anna, Kristoff ∈ ENTITY;
mark ∈ HEAD; BIND ∈ MERGE;
xcomp = λ f gx.∃y. f (x)∧g(y)∧xcomp(xe,ye) .

These substitutions are based solely on unlexi-
calized context. For example, the part-of-speech
tag PROPN of Anna invokes an ENTITY expression.

The placeholder Ω has semantics λx.EQ(x,ω),
where EQ(u,ω) is true iff u and ω are equal (have
the same denotation), which unifies the subject vari-
able of wants with the subject variable of marry.

After substitution and composition, we get:
λz.∃xywv.wants(ze)∧Anna(xa)∧ arg1(ze,xa)∧ EQ(x,ω)
∧marry(ye)∧xcomp(ze,ye)∧ arg1(ye,va)∧ EQ(v,ω)
∧ Kristoff(wa)∧ arg2(ye,wa) ,

This expression may be simplified further by
replacing all occurrences of v with x and removing
the unification predicates EQ, which results in:
λz.∃xyw.wants(ze)∧Anna(xa)∧ arg1(ze,xa)
∧marry(ye)∧xcomp(ze,ye)∧ arg1(ye,xa)
∧ Kristoff(wa)∧ arg2(ye,wa) .

This expression encodes the fact that Anna is the
arg1 of the marry event, as desired. DEPLAMBDA,
in contrast, cannot handle graph-structured input,
since it lacks a principled way of generating s-
expressions from graphs. Even given the above
s-expression, BIND in DEPLAMBDA is defined in
a way such that the composition fails to unify v
and x, which is crucial for the correct semantics.
Moreover, the definition of BIND in DEPLAMBDA

does not have a formal interpretation within the
lambda calculus, unlike ours.

3.3 Linguistic Constructions
Below, we highlight the most pertinent differences
between UDEPLAMBDA and DEPLAMBDA, stem-
ming from the different treatment of various lin-
guistic constructions in UD versus SD.

Prepositional Phrases UD uses a content-head
analysis, in contrast to SD, which treats function
words as heads of prepositional phrases, Accord-
ingly, the s-expression for the phrase president
in 2009 is (nmod president (case 2009 in)) in U-
DEPLAMBDA and (prep president (pobj in 2009))
in DEPLAMBDA. To achieve the desired semantics,
λx.∃y.president(xa)∧president event(xe)∧

arg1(xe,xa)∧2009(ya)∧prep.in(xe,ya) ,

DEPLAMBDA relies on an intermediate logical
form that requires some post-processing, whereas
UDEPLAMBDA obtains the desired logical form
directly through the following entries:
in ∈ FUNCTIONAL; 2009 ∈ ENTITY; case ∈ HEAD;
president = λx.president(xa)∧president event(xe)

∧arg1(xe,xa) ;
nmod = λ f gx.∃y. f (x)∧g(y)∧nmod.in(xe,ya) .

Other nmod constructions, such as possessives
(nmod:poss), temporal modifiers (nmod:tmod)
and adverbial modifiers (nmod:npmod), are han-
dled similarly. Note how the common noun presi-
dent, evokes both entity and event predicates above.

Passives DEPLAMBDA gives special treatment
to passive verbs, identified by the fine-grained part-
of-speech tags in the PTB tag together with de-
pendency context. For example, An Oscar was
won is analyzed as λx.won.pass(xe)∧Oscar(ya)∧
arg1(xe,ya), where won.pass represents a passive
event. However, UD does not distinguish be-
tween active and passive forms.6 While the labels
nsubjpass or auxpass indicate passive construc-
tions, such clues are sometimes missing, such as in

6UD encodes voice as a morphological feature, but most
syntactic analyzers do not produce this information yet.
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(a) English
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(b) German
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x e1 Ghana
lengua
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(c) Spanish

language
.human language

target

x m Ghana
location.country

.official language.2
location.country

.official language.1

typ
e

(d) Freebase

Figure 3: The ungrounded graphs for What language do the people in Ghana speak?, Welche Sprache
wird in Ghana gesprochen? and Cuál es la lengua de Ghana?, and the corresponding grounded graph.

reduced relatives. We therefore opt to not have sep-
arate entries for passives, but aim to produce identi-
cal logical forms for active and passive forms when
possible (for example, by treating nsubjpass as
direct object). With the following entries,

won ∈ EVENT; an, was ∈ FUNCTIONAL; auxpass ∈ HEAD;
nsubjpass = λ f gx.∃y. f (x)∧g(y)∧ arg2(xe,ya) ,

the lambda expression for An Oscar was won be-
comes λx.won(xe)∧Oscar(ya)∧arg2(xe,ya), iden-
tical to that of its active form. However, not having
a special entry for passive verbs may have unde-
sirable side-effects. For example, in the reduced-
relative construction Pixar claimed the Oscar won
for Frozen, the phrase the Oscar won ... will
receive the semantics λx.Oscar(ya)∧won(xe)∧
arg1(xe,ya), which differs from that of an Oscar
was won. We leave it to the target application to
disambiguate the interpretation in such cases.

Long-Distance Dependencies As discussed in
Section 3.2, we handle long-distance dependen-
cies evoked by clausal modifiers (acl) and con-
trol verbs (xcomp) with the BIND mechanism,
whereas DEPLAMBDA cannot handle control con-
structions. For xcomp, as seen earlier, we use the
mapping λ f gx.∃y. f (x)∧g(y)∧xcomp(xe,ye). For
acl we use λ f gx.∃y. f (x)∧ g(y), to conjoin the
main clause and the modifier clause. However, not
all acl clauses evoke long-distance dependencies,
e.g. in the news that Disney won an Oscar, the
clause that Disney won an Oscar is a subordinating
conjunction of news. In such cases, we instead
assign acl the INVERT semantics.

Questions Question words are marked with the
enhanced part-of-speech tags DET:WH, ADV:WH

and PRON:WH, which are all assigned the seman-
tics λx.${word}(xa)∧ TARGET(xa). The predicate
TARGET indicates that xa represents the variable of
interest, that is the answer to the question.

3.4 Limitations

In order to achieve language independence, UDEP-
LAMBDA has to sacrifice semantic specificity, since
in many cases the semantics is carried by lexical
information. Consider the sentences John broke the
window and The window broke. Although it is the
window that broke in both cases, our inferred logi-
cal forms do not canonicalize the relation between
broke and window. To achieve this, we would have
to make the substitution of nsubj depend on lexical
context, such that when window occurs as nsubj
with broke, the predicate arg2 is invoked rather than
arg1. We do not address this problem, and leave it
to the target application to infer that arg2 and arg1
have the same semantic function in these cases. We
anticipate that the ability to make such lexicalized
semantic inferences in a task-agnostic cross-lingual
framework would be highly useful and a crucial
avenue for future work on universal semantics.

Other constructions that require lexical infor-
mation are quantifiers like every, some and most,
negation markers like no and not, and intentional
verbs like believe and said. UD does not have spe-
cial labels to indicate these. Although not currently
implemented, we discuss how to handle quantifiers
in this framework in the supplementary material.
Fancellu et al. (2017) is a first step in this direction.

4 Cross-lingual Semantic Parsing

To study the multilingual nature of UDEPLAMBDA,
we conduct an empirical evaluation on question
answering against Freebase in three different lan-
guages: English, Spanish, and German. Before
discussing the details of this experiment, we briefly
outline the semantic parsing framework employed.

4.1 Semantic Parsing as Graph Matching

UDEPLAMBDA generates ungrounded logical
forms that are independent of any knowledge base,
such as Freebase. We use GRAPHPARSER (Reddy
et al., 2016) to map these logical forms to their



WebQuestions

en What language do the people in Ghana speak?
de Welche Sprache wird in Ghana gesprochen?
es ¿Cuál es la lengua de Ghana?

en Who was Vincent van Gogh inspired by?
de Von wem wurde Vincent van Gogh inspiriert?
es ¿Qué inspiró a Van Gogh?

GraphQuestions

en NASA has how many launch sites?
de Wie viele Abschussbasen besitzt NASA?
es ¿Cuántos sitios de despegue tiene NASA?

en Which loudspeakers are heavier than 82.0 kg?
de Welche Lautsprecher sind schwerer als 82.0 kg?
es ¿Qué altavoces pesan más de 82.0 kg?

Table 1: Example questions and their translations.

grounded Freebase graphs, via corresponding un-
grounded graphs. Figures 3(a) to 3(c) show the
ungrounded graphs corresponding to logical forms
from UDEPLAMBDA, each grounded to the same
Freebase graph in Figure 3(d). Here, rectangles de-
note entities, circles denote events, rounded rectan-
gles denote entity types, and edges between events
and entities denote predicates or Freebase relations.
Finally, the TARGET node represents the set of val-
ues of x that are consistent with the Freebase graph,
that is the answer to the question.

GRAPHPARSER treats semantic parsing as a
graph-matching problem with the goal of finding
the Freebase graphs that are structurally isomorphic
to an ungrounded graph and rank them according
to a model. To account for structural mismatches,
GRAPHPARSER uses two graph transformations:
CONTRACT and EXPAND. In Figure 3(a) there are
two edges between x and Ghana. CONTRACT col-
lapses one of these edges to create a graph isomor-
phic to Freebase. EXPAND, in contrast, adds edges
to connect the graph in the case of disconnected
components. The search space is explored by beam
search and model parameters are estimated with
the averaged structured perceptron (Collins, 2002)
from training data consisting of question-answer
pairs, using answer F1-score as the objective.

4.2 Datasets

We evaluate our approach on two public bench-
marks of question answering against Freebase:
WebQuestions (Berant et al., 2013), a widely used
benchmark consisting of English questions and
their answers, and GraphQuestions (Su et al., 2016),
a recently released dataset of English questions

with both their answers and grounded logical forms.
While WebQuestions is dominated by simple entity-
attribute questions, GraphQuestions contains a
large number of compositional questions involving
aggregation (e.g. How many children of Eddard
Stark were born in Winterfell? ) and comparison
(e.g. In which month does the average rainfall of
New York City exceed 86 mm? ). The number of
training, development and test questions is 2644,
1134, and 2032, respectively, for WebQuestions
and 1794, 764, and 2608 for GraphQuestions.

To support multilingual evaluation, we created
translations of WebQuestions and GraphQuestions
to German and Spanish.7 For WebQuestions two
professional annotators were hired per language,
while for GraphQuestions we used a trusted pool of
20 annotators per language (with a single annotator
per question). Examples of the original questions
and their translations are provided in Table 1.

4.3 Implementation Details

Here we provide details on the syntactic analyzers
employed, our entity resolution algorithm, and the
features used by the grounding model.

Dependency Parsing The English, Spanish, and
German Universal Dependencies (UD) treebanks
(v1.3; Nivre et al 2016) were used to train part of
speech taggers and dependency parsers. We used a
bidirectional LSTM tagger (Plank et al., 2016) and
a bidirectional LSTM shift-reduce parser (Kiper-
wasser and Goldberg, 2016). Both the tagger and
parser require word embeddings. For English, we
used GloVe embeddings (Pennington et al., 2014)
trained on Wikipedia and the Gigaword corpus.8

For German and Spanish, we used SENNA em-
beddings (Collobert et al., 2011; Al-Rfou et al.,
2013) trained on Wikipedia corpora (589M words
German; 397M words Spanish).9 Measured on the
UD test sets, the tagger accuracies are 94.5 (En-
glish), 92.2 (German), and 95.7 (Spanish), with
corresponding labeled attachment parser scores of
81.8, 74.7, and 82.2.

Entity Resolution We follow Reddy et al. (2016)
and resolve entities in three steps: (1) potential en-
tity spans are identified using seven handcrafted
part-of-speech patterns; (2) each span is associated
with potential Freebase entities according to the

7Translations will be publicly released upon publication.
8http://nlp.stanford.edu/projects/glove/.
9https://sites.google.com/site/rmyeid/projects/polyglot.

http://nlp.stanford.edu/projects/glove/
https://sites.google.com/site/rmyeid/projects/polyglot


k WebQuestions GraphQuestions
en de es en de es

1 89.6 82.8 86.7 47.2 39.9 39.5
10 95.7 91.2 94.0 56.9 48.4 51.6

Table 2: Structured perceptron k-best entity linking
accuracies on the development sets.

WebQuestions GraphQuestions
Method en de es en de es

SINGLEEVENT 47.6 43.9 45.0 15.9 8.3 11.2
DEPTREE 47.8 43.9 44.5 15.8 7.9 11.0
CCGGRAPH 48.4 – – 15.9 – –
UDEPLAMBDA 48.3 44.2 45.7 17.6 9.0 12.4

Table 3: F1-scores on the test for models trained
on the training set (excluding the development set).

Freebase/KG API;10 and (3) the 10-best entity link-
ing lattices, scored by a structured perceptron, are
input to GRAPHPARSER, leaving the final disam-
biguation to the semantic parsing problem. Table 2
shows the 1-best and 10-best entity disambiguation
F1-scores for each language and dataset.11

Features We use features similar to Reddy et al.
(2016): basic features of words and Freebase re-
lations, and graph features crossing ungrounded
events with grounded relations, ungrounded types
with grounded relations, and ungrounded answer
type crossed with a binary feature indicating if the
answer is a number. In addition, we add features
encoding the semantic similarity of ungrounded
events and Freebase relations. Specifically, we used
the cosine similarity of the translation-invariant em-
beddings of Huang et al. (2015).12

4.4 Comparison Systems

We compared UDEPLAMBDA to prior work and
three versions of GRAPHPARSER that operate on
different representations: entity cliques, depen-
dency trees, and CCG-based semantic derivations.

SINGLEEVENT This model resembles the
learning-to-rank model of Bast and Haussmann
(2015). An ungrounded graph is generated by con-
necting all entities in the question with the TARGET

node, representing a single event. Note that this

10http://developers.google.com/freebase/.
11Due to the recent Freebase API shutdown, we used the

KG API for GraphQuestions. We observed that this leads to
inferior entity linking results compared to those of Freebase.

12http://128.2.220.95/multilingual/data/.

Method GraphQ. WebQ.

SEMPRE (Berant et al., 2013) 10.8 35.7
JACANA (Yao and Van Durme, 2014) 5.1 33.0
PARASEMPRE (Berant and Liang, 2014) 12.8 39.9
QA (Yao, 2015) – 44.3
AQQU (Bast and Haussmann, 2015) – 49.4
AGENDAIL (Berant and Liang, 2015) – 49.7
DEPLAMBDA (Reddy et al., 2016) – 50.3

STAGG (Yih et al., 2015) – 48.4 (52.5)
BILSTM (Türe and Jojic, 2016) – 24.9 (52.2)
MCNN (Xu et al., 2016) – 47.0 (53.3)
AGENDAIL-RANK (Yavuz et al., 2016) – 51.6 (52.6)

UDEPLAMBDA 17.6 49.5

Table 4: F1-scores on the English GraphQuestions
and WebQuestions test sets (results with additional
task-specific resources in parentheses). Following
prior work, for WebQuestions the union of the train-
ing and development sets were used for training.

baseline cannot handle compositional questions, or
those with aggregation or comparison.

DEPTREE An ungrounded graph is obtained di-
rectly from the original dependency tree. An event
is created for each parent and its dependents in the
tree. Each dependent is linked to this event with an
edge labeled with its dependency relation, while the
parent is linked to the event with an edge labeled
arg0. If a word is a question word, an additional
TARGET predicate is attached to its entity node.

CCGGRAPH This is the CCG-based semantic
representation of Reddy et al. (2014). Note that
this baseline exists only for English.

4.5 Results
Table 3 shows the performance of GRAPHPARSER

with these different representations. Here and in
what follows, we use average F1-score of predicted
answers (Berant et al., 2013) as the evaluation met-
ric. We first observe that UDEPLAMBDA consis-
tently outperforms the SINGLEEVENT and DEP-
TREE representations in all languages.13

For English, performance is almost on par with
CCGGRAPH, which suggests that UDEPLAMBDA

does not sacrifice too much specificity for univer-
sality. With both datasets, results are lower for
German compared to Spanish. This agrees with
the lower performance of the syntactic parser on

13For the DEPTREE model, we CONTRACT each multi-
hop path between the question word and an entity to a single
edge. Without this constraint, DEPTREE F1 results are 45.5
(en), 42.9 (de), and 44.2 (es) on WebQuestions, and 11.0 (en),
6.6 (de), and 2.6 (es) on GraphQuestions.

http://developers.google.com/freebase/
http://128.2.220.95/multilingual/data/


the German portion of the UD treebank. Finally,
while these results confirm that GraphQuestions is
much harder compared to WebQuestions, we note
that both datasets predominantly contain single-hop
questions, as indicated by the competitive perfor-
mance of SINGLEEVENT on both datasets.

Table 4 compares UDEPLAMBDA with previ-
ously published models which exist only for En-
glish and have been mainly evaluated on Web-
Questions. These are either symbolic like ours (first
block) or employ neural networks (second block).
Results for models using additional task-specific
training resources, such as ClueWeb09, Wikipedia,
or SimpleQuestions (Bordes et al., 2015) are shown
in parentheses. On GraphQuestions, we achieve
a new state-of-the-art result with a gain of 4.8 F1-
points over the previously reported best result. On
WebQuestions we are 2.1 points below the best
model using comparable resources, and 3.8 points
below the state of the art. Most related to our
work is the English-specific system of Reddy et al.
(2016). We attribute the 0.8 point difference in F1-
score to their use of the more fine-grained PTB tag
set and Stanford Dependencies.

5 Related Work

Our work continues the long tradition of building
logical forms from syntactic representations initi-
ated by Montague (1973). The literature is rife with
attempts to develop semantic interfaces for HPSG
(Copestake et al., 2005), LFG (Kaplan and Bresnan,
1982; Dalrymple et al., 1995; Crouch and King,
2006), TAG (Kallmeyer and Joshi, 2003; Gardent
and Kallmeyer, 2003; Nesson and Shieber, 2006),
and CCG (Steedman, 2000; Baldridge and Kruijff,
2002; Bos et al., 2004; Artzi et al., 2015). Unlike
existing semantic interfaces, UDEPLAMBDA (like
DEPLAMBDA) uses dependency syntax, taking ad-
vantage of recent advances in multilingual parsing
(McDonald et al., 2013; Nivre et al, 2016).

A common trend in previous work on semantic
interfaces is the reliance on rich typed feature struc-
tures or semantic types coupled with strong type
constraints, which can be very informative but un-
avoidably language specific. Creating rich seman-
tic types from dependency trees which lack a typing
system would be labor intensive and brittle in the
face of parsing errors. Instead, UDEPLAMBDA

relies on generic unlexicalized information present
in dependency treebanks and uses a simple type
system (one type for dependency labels, and one

for words) along with a combinatory mechanism,
which avoids type collisions. Earlier attempts at
extracting semantic representations from depen-
dencies have mainly focused on language-specific
dependency representations (Spreyer and Frank,
2005; Simov and Osenova, 2011; Hahn and Meur-
ers, 2011; Reddy et al., 2016; Falke et al., 2016;
Beltagy, 2016), and multi-layered dependency an-
notations (Jakob et al., 2010; Bédaride and Gar-
dent, 2011). In contrast, UDEPLAMBDA derives
semantic representations for multiple languages in
a common schema directly from Universal Depen-
dencies. This work parallels a growing interest in
creating other forms of multilingual semantic repre-
sentations (Akbik et al., 2015; Vanderwende et al.,
2015; White et al., 2016; Evang and Bos, 2016).

We evaluate UDEPLAMBDA on semantic pars-
ing for question answering against a knowledge
base. Here, the literature offers two main model-
ing paradigms: (1) learning of task-specific gram-
mars that directly parse language to a grounded
representation (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Wong and Mooney, 2007;
Kwiatkowksi et al., 2010; Liang et al., 2011; Be-
rant et al., 2013; Flanigan et al., 2014; Pasupat and
Liang, 2015; Groschwitz et al., 2015); and (2) con-
verting language to a linguistically motivated task-
independent representation that is then mapped to a
grounded representation (Kwiatkowski et al., 2013;
Reddy et al., 2014; Krishnamurthy and Mitchell,
2015; Gardner and Krishnamurthy, 2017). Our
work belongs to the latter paradigm, as we map
natural language to Freebase indirectly via logi-
cal forms. Capitalizing on natural-language syn-
tax affords interpretability, scalability, and reduced
duplication of effort across applications (Bender
et al., 2015). Our work also relates to literature
on parsing multiple languages to a common exe-
cutable representation (Cimiano et al., 2013; Haas
and Riezler, 2016). However, existing approaches
(Kwiatkowksi et al., 2010; Jones et al., 2012; Jie
and Lu, 2014) still map to the target meaning rep-
resentations (more or less) directly.

6 Conclusions

We introduced UDEPLAMBDA, a semantic inter-
face for Universal Dependencies, and showed that
the resulting semantic representation can be used
for question-answering against a knowledge base
in multiple languages. We provided translations of
benchmark datasets in German and Spanish, in the



hope to stimulate further multilingual research on
semantic parsing and question answering in general.
We have only scratched the surface when it comes
to applying UDEPLAMBDA to natural language
understanding tasks. In the future, we would like to
explore how this framework can benefit other tasks
such as summarization and machine translation.
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Abstract

This supplementary material to Universal
Semantic Parsing, provides and outline of
how quantification can be incorporated in
the UDEPLAMBDA framework.

1 Universal Quantification

Consider the sentence Everybody wants to buy a
house,1 whose dependency tree in the Universal
Dependencies (UD) formalism is shown in Fig-
ure 1(a). This sentence has two possible readings:
either (1) every person wants to buy a different
house; or (2) every person wants to buy the same
house. The two interpretations correspond to the
following logical forms:
(1) ∀x.person(xa)→

[∃zyw.wants(ze)∧ arg1(ze,xa)∧buy(ye)∧xcomp(ze,ye)∧
house(wa)∧ arg1(ze,xa)∧ arg2(ze,wa)] ;

(2) ∃w.house(wa)∧ (∀x.person(xa)→
[∃zy.wants(ze)∧ arg1(ze,xa)∧buy(ye)∧xcomp(ze,ye)∧

arg1(ze,xa)∧ arg2(ze,wa)]) .

In (1), the existential variable w is in the scope of
the universal variable x (i.e. the house is dependent
on the person). This reading is commonly referred
to as the surface reading. Conversely, in (2) the
universal variable x is in the scope of the existential
variable w (i.e. the house is independent of the
person). This reading is also called inverse reading.
Our goal is to obtain the surface reading logical
form in (1) with UDEPLAMBDA. We do not aim to
obtain the inverse reading, although this is possible
with the use of Skolemization (Steedman, 2012).

In UDEPLAMBDA, lambda expressions for
words, phrases and sentences are all of the
form λx. . . .. But from (1), it is clear that we need
to express variables bound by quantifiers, e.g. ∀x,
while still providing access to x for composition.
This demands a change in the type system since the

1Example borrowed from Schuster and Manning (2016).
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Figure 1: The dependency tree for Everybody
wants to buy a house and its enhanced variants.

same variable cannot be lambda bound and quanti-
fier bound—that is we cannot have formulas of the
form λx . . .∀x . . .. In this material, we first derive
the logical form for the example sentence using
the type system from our main paper (Section 1.1)
and show that it fails to handle universal quantifi-
cation. We then modify the type system slightly
to allow derivation of the desired surface reading
logical form (Section 1.2). This modified type sys-
tem is a strict generalization of the original type
system.2 Fancellu et al. (2017) present an elaborate
discussion on the modified type system, and how it
can handle negation scope and its interaction with
universal quantifiers.

2Note that this treatment has yet to be added to our
implementation, which can be found at https://github.com/
sivareddyg/udeplambda.
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1.1 With Original Type System

We will first attempt to derive the logical form in (1)
using the default type system of UDEPLAMBDA.
Figure 1(b) shows the enhanced dependency tree
for the sentence, where BIND has been introduced
to connect the implied nsubj of buy (BIND is ex-
plained in the main paper in Section 3.2). The
s-expression corresponding to the enhanced tree is:
(nsubj (xcomp wants (mark

(nsubj (dobj buy (det house a)) Ω) to))
(BIND everybody Ω)) .

With the following substitution entries,
wants, buy ∈ EVENT;
everybody, house ∈ ENTITY;
a, to ∈ FUNCTIONAL;
Ω = λx.EQ(x,ω);
nsubj= λ f gx.∃y. f (x)∧g(y)∧ arg1(xe,ya);
dobj= λ f gx.∃y. f (x)∧g(y)∧ arg2(xe,ya);
xcomp= λ f gx.∃y. f (x)∧g(y)∧xcomp(xe,ya);
mark ∈ HEAD;
BIND ∈ MERGE,

the lambda expression after composition becomes:
λz. ∃xywv.wants(ze)∧ everybody(xa)∧ arg1(ze,xa)
∧ EQ(x,ω)∧buy(ye)∧xcomp(ze,ye)∧ arg1(ye,va)
∧ EQ(v,ω)∧ arg1(xe,ya)∧house(wa)∧ arg2(ye,wa) .

This expression encodes the fact that x and v are
in unification, and can thus be further simplified to:
(3) λz.∃xyw.wants(ze)∧ everybody(xa)∧ arg1(ze,xa)

∧ buy(ye)∧xcomp(ze,ye)∧ arg1(ye,xa)
∧ arg1(xe,ya)∧house(wa)∧ arg2(ye,wa) .

However, the logical form (3) differs from the
desired form (1). As noted above, UDEPLAMBDA

with its default type, where each s-expression must
have the type η = Ind×Event→ Bool, cannot
handle quantifier scoping.

1.2 With Higher-order Type System

Following Champollion (2010), we make a slight
modification to the type system. Instead of using
expressions of the form λx. . . . for words, we use
either λ f .∃x. . . . or λ f .∀x. . . ., where f has type η.
As argued by Champollion, this higher-order form
makes quantification and negation handling sound
and simpler in Neo-Davidsonian event semantics.
Following this change, we assign the following
lambda expressions to the words in our example
sentence:
everybody = λ f .∀x.person(x)→ f (x) ;
wants = λ f .∃x.wants(xe)∧ f (x) ;
to = λ f .TRUE ;
buy = λ f .∃x.buy(xe)∧ f (x) ;
a = λ f .TRUE ;
house = λ f .∃x.house(xa)∧ f (x) ;
Ω = λ f . f (ω) .

Here everybody is assigned universal quantifier
semantics. Since the UD representation does not
distinguish quantifiers, we need to rely on a small
(language-specific) lexicon to identify these. To
encode quantification scope, we enhance the la-
bel nsubj to nsubj:univ, which indicates that
the subject argument of wants contains a universal
quantifier, as shown in Figure 1(c).

This change of semantic type for words and s-
expressions forces us to also modify the seman-
tic type of dependency labels, in order to obey
the single-type constraint of DEPLAMBDA (Reddy
et al., 2016). Thus, dependency labels will now
take the form λPQ f . . . ., where P is the parent ex-
pression, Q is the child expression, and the return
expression is of the form λ f . . . .. Following this
change, we assign the following lambda expres-
sions to dependency labels:
nsubj:univ= λPQ f .Q(λy.P(λx. f (x)∧ arg1(xe,ya))) ;
nsubj= λPQ f .P(λx. f (x)∧Q(λy.arg1(xe,ya))) ;
dobj= λPQ f .P(λx. f (x)∧Q(λy.arg2(xe,ya))) ;
xcomp= λPQ f .P(λx. f (x)∧Q(λy.xcomp(xe,ya))) ;
det, mark= λPQ f .P( f ) ;
BIND = λPQ f .P(λx. f (x)∧Q(λy.EQ(y,x))) .

Notice that the lambda expression of
nsubj:univ differs from nsubj. In the for-
mer, the lambda variables inside Q have wider
scope over the variables in P (i.e. the universal
quantifier variable of everybody has scope over the
event variable of wants) contrary to the latter.

The new s-expression for Figure 1(c) is
(nsubj:univ (xcomp wants (mark

(nsubj (dobj buy (det house a)) Ω) to))
(BIND everybody Ω)) .

Substituting with the modified expressions, and
performing composition and simplification leads to
the expression:
(6) λ f .∀x .person(xa)→

[∃zyw. f (z)∧wants(ze)∧ arg1(ze,xa)∧buy(ye)
∧ xcomp(ze,ye)∧ house(wa)
∧ arg1(ze,xa)∧ arg2(ze,wa)] .

This expression is identical to (1) except for the
outermost term λ f . By applying (6) to λx.TRUE,
we obtain (1), which completes the treatment of
universal quantification in UDEPLAMBDA.
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