The role of membrane processes in municipal wastewater reclamation and reuse

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.desal.2004.12.014

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Desalination

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The role of membrane processes in municipal wastewater reclamation and reuse

T. Wintgens, T. Melin (Department of Chemical Engineering, RWTH Aachen University/Germany) A. Schäfer, S. Khan, M. Muston (University of Wollongong/Australia) D. Bixio, C. Thoeye (Aquafin NV/Belgium)

Contact: Thomas Wintgens, Department of Chemical Engineering, RWTH Aachen University, Turmstrasse 46, 52056 Aachen, Germany, e-mail: wintgens@ivt.rwth-aachen.de, Phone: +49-241-8092253, Fax: +49-241-8092252

Abstract

Wastewater reuse presents a promising solution to the growing pressure on water resources. However, wastewater reuse implementation faces obstacles that include insufficient public acceptance, technical, economic and hygienic risks and further uncertainties caused by a lack of awareness, accepted standards, uniform guidelines and legislation. So far, there are no supranational regulations on water reuse in Europe and further development is slowed by lack of widely accepted standards e.g. in terms of required water quality, treatment technology and distribution system design and operation.

Treatment technology encompasses a vast number of options and membrane processes are regarded as key elements of advanced wastewater reclamation and reuse schemes and are included in a number of prominent schemes world-wide, e.g. for artificial groundwater recharge, indirect potable reuse as well as for industrial process water production. For dual reticulation purposes in urban areas two types of systems have been built, a centralised type of treatment with dual membrane processes, including e.g. microfiltration (MF) and reverse osmosis (RO), and small scale systems using membrane bioreactors. This paper will provide an overview of the status of membranes processes in wastewater reclamation and reuse world-wide and will depict their potential role in promoting more sustainable water use patterns.

Keywords: wastewater reclamation, water reuse, membrane processes, microfiltration, reverse osmosis

1. Reclamation and reuse of municipal wastewater - Status

Reclamation and reuse of municipal wastewater is a very common practice worldwide [1]. By reclaiming wastewater, the circulation of water through the natural water cycle can be short-circuited, such that a contribution to human water needs is made and the environmental impact thereof limited. Furthermore, a main characteristic of reclaimed wastewater is that its “production” is relatively constant during the year, due to its source being dependent not on rainfall, but on the production of municipal sewage. Thus, reclaimed water can increase the reliability of a water supply, comprising as it does, a further source of water. Similarly, recycled water can be viewed as an independent source of water capable of increasing the reliability of a water supply [2, 3]. This opportunity has to date been used in various countries using a range of technologies for different water applications. The most common reclamation technologies and reuse applications are illustrated in Figure 1 with the number of water reuse schemes per field of application and the level of treatment – secondary, tertiary or quaternary - attached to them in different regions of the world [1]. Note that wastewater reclamation refers to the treatment or processing of water to make it fit for reuse, which is defined as any kind of beneficial use of reclaimed water [4].

A number of definitions require further details; secondary treatment – here also including nutrient removal – is characteristic of restricted agricultural irrigation (i.e. for food crops not consumed uncooked) and for some industrial applications such as industrial cooling (except for the food industry). Additional filtration/disinfection steps (tertiary treatment) are applied for unrestricted agricultural or landscape irrigation as well as for process water in some industrial applications. Quaternary treatment is defined here as a treatment producing a quality comparable to drinking water – often involving a “dual membrane” step to meet unrestricted residential uses and industrial applications requiring ultrapure water. Table 1 lists the main categories of municipal wastewater reuse applications (listed in order of decreasing projected volume of use).
of the irrigation water evaporates and the concentration of salts in the drainage can be much higher introduced to irrigated pastures and associated waterways via recycled water. In dry climates, much groundwater recharge, indirect potable reuse as well as industrial process water production. Figure schemes and are implemented in a number of prominent schemes world-wide including artificial and ecological situation of the region. 

3. Application of membrane processes in reclamation schemes

3.1 Overview

Membrane processes are regarded as key elements of advanced wastewater reclamation and reuse schemes and are implemented in a number of prominent schemes world-wide including artificial groundwater recharge, indirect potable reuse as well as industrial process water production. Figure
secondary and secondary effluents may (as appropriate) be considered equivalent to an oxidized, content, and exhibits favourable inorganic ratios [11, 15, 12]. The application of UF to treat filtered in nutrients (N and P practically insensitive to filtration), low micropollutant and microorganics effluent quality, permeated water might be suitable for unrestricted irrigation purposes, as it is high influent [5, 10, 11] and the absence of chemicals addition is of economic and ecological benefit.

Because the quality of wastewater influent to MF and UF processes has a high influence on final effluent quality, permeated water might be suitable for unrestricted irrigation purposes, as it is high influent [5, 10, 11] and the absence of chemicals addition is of economic and ecological benefit.

As indicated in the previous chapter membrane processes are mostly applied as effluent polishing stages of municipal wastewater treatment plants, taking a secondary or tertiary effluent as feed with rather low suspended solids content, illustrated as option 1 in Figure 3. An alternative to this “end-of-pipe” treatment is the application of MBRs as a straight combination of biological treatment processes and biomass retention by MF or UF membranes. MF and UF employed in tertiary wastewater treatment are dedicated to remove suspended solids, organic matter, and for disinfection, recovering a high quality final effluent with various possible uses. MF and UF technologies both in effluent filtration as well as in MBRs are also suitable as pre-treatment to NF or RO. Such physical barrier-processes are attractive in wastewater treatment because any contaminants (including natural disinfection by-product precursors) are adsorbed onto the activated carbon particles, which are then separated from water by either UF or MF, explicable due to bacterial sizes being higher than pore sizes. However, as typically designed and operated in the field of wastewater treatment, UF cannot be considered a complete barrier to bacteria. Positive coliform results were obtained when membrane systems were operating. The passage of bacteria across membranes may be attributable to the following; imperfections in the membrane surface; degradation of the membrane by bacterial enzymes or other materials; or inferior packing of membrane modules or elements. Another possible reason for the detection of bacteria in membrane filtrate is the introduction of bacteria from exterior sources such as contamination of the permeate tank.

The map pictured in Figure 2 is destined to become outdated quickly. Many more projects are in an advanced planning phase. There is a clear trend for new larger scale plants to use dual membrane processes and MBRs.

As indicated in the previous chapter membrane processes are mostly applied as effluent polishing stages of municipal wastewater treatment plants, taking a secondary or tertiary effluent as feed with rather low suspended solids content, illustrated as option 1 in Figure 3. An alternative to this “end-of-pipe” treatment is the application of MBRs as a straight combination of biological treatment processes and biomass retention by MF or UF membranes. MF and UF employed in tertiary wastewater treatment are dedicated to remove suspended solids, organic matter, and for disinfection, recovering a high quality final effluent with various possible uses. MF and UF technologies both in effluent filtration as well as in MBRs are also suitable as pre-treatment to NF or RO. Such physical barrier-processes are attractive in wastewater treatment because any technology employed must be able to produce reused water of uniform quality, regardless of the normally wide variation in the concentrations or physicochemical properties of the wastewater influent [5, 10, 11] and the absence of chemicals addition is of economic and ecological benefit.

Figure 2 illustrates identifiable water reuse schemes using membrane technology worldwide (to date 27 full scale installations have been recorded). The schemes are divided per size and type of beneficial use. Note that data on schemes “in planning or construction” and community facilities using membrane bioreactors (MBRs) are also available, but not reported in the Figure.

Figure 2: Existing water reclamation schemes using membrane systems worldwide

Figure 3: Application options for membranes in municipal wastewater treatment

Conductivity and dissolved oxygen content remain unaffected by both MF and UF treatment. The decolouration due to UF is more noticeable than that due to MF. Elimination of detergent and phenol concentrations of 40% were achieved by filtration. Fe, Zn, Al, Cr, Cu and Mn can also be significantly eliminated by filtration, not only by direct precipitation as hydroxides or phosphates, but also through association of metals to suspended matter and macromolecules.

It has been reported that microbial pollution is totally eliminated by MF and UF, explicable due to bacterial sizes being higher than pore sizes. However, as typically designed and operated in the field of wastewater treatment, UF cannot be considered a complete barrier to bacteria. Positive coliform results were obtained when membrane systems were operating. The passage of bacteria across membranes may be attributable to the following: imperfections in the membrane surface; degradation of the membrane by bacterial enzymes or other materials; or inferior packing of membrane modules or elements. Another possible reason for the detection of bacteria in membrane filtrate is the introduction of bacteria from exterior sources such as contamination of the permeate tank.

Also, because nutrients are not eliminated from the water, re-emergence is best avoided through a disinfection process [12].

MF and UF are effective in eliminating many wastewater contaminants associated with suspended matter. Elimination of viruses and nematodes accompanies to some extent removal of suspended matter. It has been demonstrated that viruses (28 nm) can be effectively retained by a (0.2 µm nominal pore size) MF membrane. Virus retention is enhanced at lower (trans-membrane) pressures, in the presence of shear and in the presence of biomass/turbidity. The latter both provides extra surface area for adsorptive removal and forms a secondary filter-cake layer on the membrane.

Coupled with powdered activated carbon (PAC), UF can be used to treat water contaminated by dissolved organic matter and micro-pollutants. In PAC-membrane processes, PAC is added to the recirculation loop of the membrane systems. Contaminants (including natural disinfection by-product precursors) are adsorbed onto the activated carbon particles, which are then separated from water by either UF or MF [13, 14].

Because the quality of wastewater influent to MF and UF processes has a high influence on final effluent quality, permeated water might be suitable for unrestricted irrigation purposes, as it is high in nutrients (N and P practically insensitive to filtration), low micropollutant and microorganisms content, and exhibits favourable inorganic ratios [11, 15, 12]. The application of UF to treat filtered secondary and secondary effluents may (as appropriate) be considered equivalent to an oxidized,
coagulated, clarified, and filtered wastewater as per the Title 22 California Wastewater Reclamation Criteria [12]. Dense membrane processes (NF/RO) are capable of separating ions (and dissolved solids) from water. Separation relies to some extent on physico-chemical interactions between the permeating components and the membrane material. To an even greater extent than in the cases of MF and UF, the effective operation of NF and RO systems is dependent upon avoiding conditions leading to fouling, scaling or chemical interaction, hence affording extensive pre-treatment. In wastewater treatment and reclamation, RO systems are typically used as polishing processes having a significant impact on bulk parameters like 65-80% and 85-99% total organic carbon (TOC) removal with NF and RO, respectively. RO systems have been demonstrated to be effective in removing various contaminants of concern, including base neutral compounds, dissolved metals and pathogens [16,17,18,19].

Pre-treatment of RO influent may involve combinations of some of the following [20]:

- flocculation / coagulation
- lime clarification
- sand filtration
- MF/UF
- UV and sodium hypochlorite disinfection
- anti-salant addition
- pH adjustment

MF may provide significant cost savings and water quality improvement when replacing conventional lime pre-treatment for RO [21]. Also, MF can reduce microbial contamination and thereby reduce the rate at which fouling and biofilm formation occurs in subsequent RO. Although viruses are unlikely to pass through an RO membrane, leakage is possible (via glue strips or permeate seals) in spiral-wound elements. Thus, there is an incentive for virus removal at the pre-treatment stage [15]. Use of capillary membranes as a pre-treatment for RO feed has enabled operation of cellulose acetate membranes at lower feed pressure and the production of water of lower salinity [22]. Anti-salant addition is intended to minimise chemical precipitation on the RO membrane surface. It has also been reported as deemed necessary that MF effluent be dosed with sulphuric acid for pH adjustment to minimize hydrolysis of cellulose acetate RO membranes [19]. It is not uncommon for RO membranes in water reclamation applications to experience an average annual flux decline of 25-30%, even with frequent membrane cleanings. It should be noted that membrane rejection properties are susceptible to change after cleaning [23].

3.2 Case studies

Water Reclamation and Management Scheme (WRAMS) at Sydney Olympic Park, Australia

The Water Reclamation and Management Scheme (WRAMS) at Sydney Olympic Park in Australia is an integrated water management project in an urban area. WRAMS includes use of treated sewage collected from within the site, supplemented where necessary by stormwater and with sewage pumped from outside the area, for non-potable reuse in and around Sydney Olympic Park. Included in the 760 ha supply area (including 425 ha of parkland) with a total permanent population of 7,000 are large sporting and recreation facilities, hotels and commercial premises and the residential village of Newington.

The sewage is treated in a 2.5 ML/day capacity Sequencing Batch Reactor (SBR) process followed by UV. It is then treated in an advanced treatment plant with a maximum capacity of 7.5 ML/day using MF. Normally about 30% of the reclaimed water is then treated using RO to maintain the TDS at below 500 mg/L (mostly when supplemented with stormwater). The reclaimed water is chlorinated before distribution.

The reclaimed water is supplied by a separate “third pipe” distribution system with separate meters and colour coding of pipes and taps. A key management issue is the potential for cross connections and extensive checking was undertaken which lead to the detection and corrective action taken on two cross connections prior to the commissioning of pipe systems. The reclaimed water system operates at a lower pressure than the potable water supply to minimise the risk of polluting the potable supply if any cross connection occurs [24].

Illawarra Waste Water Strategy in Wollongong, Australia

The Illawarra Waste Water Strategy in Wollongong, Australia, due to be commissioned in early 2005, includes a MF and RO advanced treatment plant with a capacity of 20 ML/day treating low nutrient tertiary effluent from the Wollongong Sewage Treatment Plant. The reclaimed water from this advanced treatment plant will largely replace non-potable water requirements of the nearby Port Kembla integrated steel mill that are currently sourced from potable supplies. To minimise the impact on the industrial processes from blending or top up, the water quality from the advance water treatment plant is designed to match the (soft) water that is currently supplied from the nearby Avon Dam [25].

Indirect potable reuse in Wulpen, Belgium

In order to reduce the extraction of natural groundwater for potable water production and hold back the saline intrusion at the Flemish coast of Belgium, 2,500,000 m³ wastewater treatment plant effluent per year is infiltrated in the dunes after treatment with MF, RO and UV. The produced RO filtrate is reconditioned to match the natural salt content in the dune water. The recharged water is recaptured after a minimum residence time of 40 days in the dune aquifer. The drinking water quality standards are met; the recharge system performs as expected and resulted already in softer water adding to the comfort of the customers. The construction cost amounted to € 2.5 million for the civil works and to € 3.5 million for the electromechanical equipment [26].

Groundwater Replenishment Scheme in Orange County, USA

In order to supplement sources of water in Orange County, California clarified secondary effluent is reclaimed to produce water for a seawater intrusion barrier and for groundwater recharge. The Advanced Water Treatment (AWT) Facility has been commissioned in 2004 and consists of three major treatment processes; MF, RO, and an advanced oxidation process (AOP), which consists of UV light and hydrogen peroxide (UV/H₂O₂). This multi-barrier approach produces water with quality higher than other conventional water sources available to the Orange County area. The AWT facility will reclaim 70 million gallons per day (MGD) of OCSD clarified secondary effluent, normally disposed to the ocean. The plant may be expanded in the future to produce 130 MGD of product [27].
The full-scale demonstration facility proved that removal of all standard drinking water contaminants below regulated levels is possible with an advanced treatment process combining MF, RO, and AOP. UV/H2O2 treatment is used for NDMA and other low molecular weight organic removal. After RO treatment, the product water is so low in mineral content that it is corrosive. This could be mitigated with the addition of lime.

Membrane bioreactors for in-house water recycling in Japan

According to Stephenson et al. [28] membrane bioreactor technology was proven to be very relevant in water reclamation and reuse, particularly in small-scale, decentralised applications e.g. in the densely populated urban centres in Japan. The Japanese Government joined in 1989 with a number of the large companies to promote the development of a low footprint, high product quality treatment that would be suitable for wastewater reclamation and reuse. City legislation, such as in Fukuoka, required large buildings to adopt water saving measures including rainwater harvesting and in-building greywater treatment and reuse systems. This was partly demonstrated through the Aqua Renaissance program ’90 [29] that led to development of systems such as the Kubota flat-sheet submerged MBR and the Mitsubishi Rayon hollow fibre submerged MBR.

Two generic types of MBR have been used for in-building greywater treatment: initially these were sidestream systems, but more recently submerged systems have been introduced following their development by Japanese companies. Of the 500 operational MBRs identified by Stephenson et al. [30], almost 25% were used for in-building wastewater treatment, mostly in Japan. It was found that MBR generally provide significant advantages over alternative biological treatment processes in water recycling, particularly in terms of pathogen removal and process robustness [31, 32].

Direct potable reuse in Windhoek, Namibia

The only direct potable reuse project worldwide is operating to date in Windhoek/Namibia, one of the driest regions in Southern Africa. Having a several decades of experience in potable reuse the scheme underwent a significant refurbishment and the new Goreangab Water Reclamation project displaying a multi-barrier concept is in operation since 2002 [33]. Within this scheme secondary effluent (21,000m³/d) from a municipal wastewater treatment plant is reclaimed and treated to drinking water quality level by a complex treatment train including pre-ozonation, coagulation, dual media filtration, main ozonation, biological activated carbon adsorption and a two-stage granular activated carbon adsorption as well as UF prior to chlorine disinfection (see Figure 4). This treatment not only provides high quality water, it possesses multiple barriers for most microbial and chemical contaminants of concern and reduces the potential for disinfection by-product formation. The total operation cost of the water reclamation scheme are given at 0.76 US$/m³ [34]. Capillary UF membranes supplied by NORIT are used in the scheme and operated in dead-end mode (inside-out) with an average permeate flux of 107 L/m² h at a transmembrane pressure of 0.4-0.7 bar [35].

Indirect potable reuse – the NEWater Project, Singapore

As part of the sustainable water supply programme the NEWater Project was implemented in Singapore to supplement freshwater resources used for drinking water production from reclaimed water. Since January 2004 the third water reclamation plant is in operation increasing the overall NEWater capacity to 91,000 m³/d. The reclamation process involves a double-membrane treatment of secondary effluent with MF and RO and final disinfection by UV. Chlorine is dosed before and after the MF to control biofouling. The RO units provide an excellent product quality with TOC and TDS removal >97% making the reclaimed water also suitable for use in the semiconductor industry [36]. The MF consists of a submerged hollow fibre system supplied by ZENON [37]. The RO units are supplied by Hydranautics and based on thin film aromatic polyamide composite membranes [38].

4. Summary, conclusions and future trends

Membranes have been assigned a key role in water reclamation schemes that are aimed at higher water quality reuse applications. Typically, these applications include aquifer recharge, indirect potable reuse, dual water systems in households and industrial process water. UF and MF are employed as preferred processes for microbial retention and as pretreatment for NF or RO, which then are able to generate drinking water or process water quality. Based on seven examples from five continents, we have tried to describe some of the most important concepts that are in operation around the globe. Up to now, almost all large schemes have been designed as add-on technology to conventional secondary treatment schemes.

It is expected, however, that in the future more often membranes will be integrated into secondary treatment, as has been done routinely in decentralized systems in buildings (Japan) and on ships using membrane bioreactors (MBRs).
Consequently and as an example, “membrane bioreactors” are also a topic designated by the European Commission as priority research target in a 2004 call of the 6th Framework Programme. The rapid growth of membrane technology in the field of water reclamation is expected to continue, leading to a significant decline in infrastructure and operating costs for such reclamation systems. Future development will also have to include on-line quality control of membrane processes. As long as integrity failures can go undetected for longer times, relatively expensive dual or multiple barrier systems will be required for all those applications that require guaranteed drinking water quality at all times.

Acknowledgements

The authors acknowledge the European Commission for funding this work within the AQUAREC project on "Integrated Concepts for Reuse of Upgraded Wastewater" (EVK1-CT-2002-00130) under the Fifth Framework Programme contributing to the implementation of the Key Action "Sustainable Management and Quality of Water" within Energy, Environment and Sustainable Development thematic programme. This work is also strongly supported by the International Science Linkages programme established under the Australian Government’s innovation statement Backing Australia’s Ability. It is funded by the Commonwealth Department of Education Science and Training for the project OzAquarec: Integrated Concepts for Reuse of Upgraded Wastewater in Australia (CG030025).

References