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A B S T R A C T

Estimates for lifetime costs of wave energy arrays are difficult to obtain due to the uncertainty surrounding
weather windows and failure rates for wave energy converters (WECs). An operations & maintenance (O &M)
simulation tool has been used to assess the sensitivity of WEC failure rates on the profitability of a wave farm,
with the Pelamis P2 device used as a case study. Two offshore wave energy sites in the UK have been
characterised and presented in terms of accessibility for marine operations and power generation. It was found
that a wave farm at one site would incur higher costs due to vessels having to wait longer for suitable weather
windows. This was balanced by higher generated revenue, showing how the tool can be used to support strategic
planning and site selection. The results identify the sensitivity to failure rate estimations for different
components, helping target future work to reduce uncertainties and costs. The results highlight the need for
WEC developers to collaborate closely with component manufacturers in order to design the best device possible
for the challenging marine environment. Collaboration enables more realistic failure rate estimates to be
obtained, leading to better understanding of the operational costs for commercial wave energy farms.

1. Introduction

The wave power sector has potential to be a major contributor to
global renewable energy generation. At a national level, the total power
capacity of wave energy projects in UK waters could potentially reach
13 GW in the future (Boud, 2012). Globally, up to 95 GW of wave
energy devices could be installed in the world's seas and oceans (Gunn
and Stock-Williams, 2012). However, the wave energy sector has not
yet seen the development of commercial-scale arrays. Several different
device concepts have been considered since the 1970s. This includes
seabed-fixed devices (e.g. ‘Oyster’, ‘Wavestar’), as well as floating
designs (e.g. ‘Edinburgh Duck’, ‘Pelamis’). Significant advances have
been made in terms of understanding the hydrodynamic behaviour of
wave energy devices in the marine environment, as well as in other
areas such as estimating power capture (Borthwick, 2016). However,
the early part of this decade has seen several of the major companies in

the sector go out of business. Interest in tackling the wave energy
challenge is still strong, with governments around the world funding
initiatives such as Wave Energy Scotland (Highlands and Islands
Enterprise, 2016) and the Wave Energy Prize (EERE, 2017). A recent
report by the European Commission (Magagna et al., 2016) states that
up to 37 MW of wave energy projects could be operational within the
European Union (including the United Kingdom) by 2020.

One of the key barriers to commercialisation of the wave energy
sector is the high cost of energy relative to other forms of renewables.
Wave energy is estimated to cost up to $500US/MWh (£380/MWh) at
present, compared to approximately $200US/MWh (£150/MWh) for
offshore wind (World Energy Council, 2013). For the developers of
wave energy converter (WEC) technology to attract private investment,
it is vital that they obtain realistic estimates for the levelised cost of
energy (LCOE) based on a holistic engineering approach.

Operations and maintenance (O &M) will account for a significant
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amount of the total costs of any offshore renewable energy develop-
ment. In the offshore wind industry, O &M costs account for approxi-
mately 20% of the total costs of wind farms (BVG Associates, 2013).
Estimates for this operational expenditure (OPEX) are difficult for
WECs due to the relatively small amount of experience gained in the
sector. However, estimates can be obtained through the use of O &M
simulation tools. These have been used widely in the offshore wind
industry over the years for both cost estimation and operations
planning (Hofmann, 2011; Pahlke, 2007). They can also provide a
clear picture of the O&M strategy considerations necessary to ensure
smooth operation of wind farms, as demonstrated by Scheu et al.
(2012) and Douard et al. (2012). Building O&M simulation tools for
wave energy has significant potential in developing wave energy
projects (Walker et al., 2013) and providing feedback into the design
of devices (Martin et al., 2016).

The limited operational experience of wave energy converters in
comparison to offshore wind turbines means that some estimates of
wave energy OPEX simply assume a percentage of capital expenditure
(CAPEX), as demonstrated by O'Connor et al. (2013). Very few
examples of simulation tools modelling detailed O&M strategies of
wave energy arrays have been published. One model presented by
Abdulla et al. (2011) takes the case study of Aquamarine Power's
‘Oyster’ WEC and uses a Monte Carlo approach to simulate the
occurrence of faults on the device. The study assesses the availability
of the WEC but does not analyse costs. Another example is the model
representing the Wavestar device, presented by Ambühl et al. (2015),
where failure rate data from the offshore wind industry is translated to
the WEC. A ‘damage model’ is included to account for fatigue of
structural components. Commercially-available simulation tools for
wave energy arrays, such as ForeCoast Marine (JBA Consulting, 2015)
and MERMaid (Mojo Maritime, 2016), are focussed on accessibility
and marine operations planning at present, rather than on obtaining
estimates of OPEX. A European funded project, DTOcean, has pro-
duced an open-source suite of tools to allow developers of WEC
technology to begin planning arrays (Weller et al., 2015). The project
includes a lifecycle logistics work package which may help assess the O
&M strategy of a wave energy farm, if adequate inputs to the tool can
be provided (Teillant et al., 2014).

One of the key inputs required to obtain realistic estimates and
scenarios from an O&M simulation tool is failure rate data. This is
becoming less of a problem in the offshore wind industry due to the
relatively large amount of operational data available to both academics
and industrial researchers. Carroll et al. (2015) draw on a population of
over 2000 wind turbines to undertake an analysis on reliability of
different generator types. The significant amount of available data for
offshore wind turbines has led to the creation of the SPARTA (System
Performance, Availability and Reliability Trend Analysis) project; “a
database for sharing anonymised offshore wind farm performance
and maintenance data” (ORE Catapult, 2016). SPARTA was inspired
by the OREDA handbook, first created in 1981, which has contributed
to improved safety and cost effectiveness in the oil and gas industry
(OREDA, 2015). A similar reliability database for wave energy is not
possible at present, in part due to the large variety of WEC concepts
currently being explored.

Obtaining reliability data for WECs is particularly challenging due
to the paucity of full scale testing in open sea conditions (Thies et al.,
2012). Destructive testing on generic components such as mooring
lines is an extremely useful activity for reducing the uncertainty for
failure rates (Weller et al., 2014). Any other WEC components are
device-specific, however, and therefore require testing to be under-
taken by the developer themselves. Such testing can be time consuming
and expensive, making it unattractive to WEC developers with tight
financial constraints (Wolfram, 2006). As a result, destructive testing is
usually only considered necessary for key components such as hy-
draulic ram cylinders (Rühlicke and Haag, 2013).

Many off-the-shelf components such as hydraulic seals are supplied

by the manufacturer accompanied by expected failure rates (Voith,
2016). This data may not be accurate for WECs, however, as the
components are being used in a different way and in a different
environment than their design specifications (Thies et al., 2012). In
reality, the best source of reliability information at this early stage of
the wave energy sector's development is the expert judgement of the
engineers involved. There is a significant amount of uncertainty
surrounding failure rates obtained in this manner and this needs to
be accounted for when used in O&M tools for estimating OPEX and
availability of a wave farm.

Weather data is also a key requirement of an O&M model in order
to evaluate so called ‘weather windows’; periods when the devices can
be accessed by vessels and maintenance crew. The weather conditions
defining these windows generally come through operator experience as
well as vessel specifications (O'Connor et al., 2013). O &M tasks for a
wave farm should be scheduled for periods when accessibility is highest
and expected revenue is at a minimum (Walker et al., 2013), though
this may not always be possible due to unexpected failures. Weather
data is also required for yield estimation. Higher temporal and spatial
resolution, as well as the proximity of source weather data to a
proposed site, will improve the accuracy with which an O&M tool
can represent weather conditions, resulting in a more robust estima-
tion of OPEX costs and farm availability.

This study addresses site characteristics affecting accessibility and
power performance, and uncertainty surrounding failure rate estimates
for wave energy converters. The study makes use of a Monte Carlo-
based O &M simulation tool, whereby failure rates are used to simulate
the occurrence of faults on a machine. A case study based on the
second-generation Pelamis WEC has been used due to the significant
amount of experience gained during a testing programme achieving
over 11,000 grid connected hours. The study aims to demonstrate the
model as an effective tool for budgeting and planning of a wave energy
array. It also highlights the ability of the tool to support targeting work
priorities for developing wave energy technologies.

The methodology of this study, including the model inputs and
functionality, is described in Section 2. The model's base case scenario
is detailed in Section 3, along with the characteristics of two selected
sites. The results of the sensitivity analysis are presented and discussed
in Section 4. The main conclusions of the study are highlighted in
Section 5, before further work is suggested in Section 6.

2. Methodology

The O&M tool used in this study is focused on the Pelamis P2
device (Fig. 1), rated at 750 kW. The tool was developed initially in
2007 by Pelamis Wave Power. The software has since been upgraded
over the course of a partnership with the Industrial Doctoral Centre for
Offshore Renewable Energy (IDCORE).

2.1. Pelamis O &M strategy

The operations and maintenance phase of wave energy converters
needs careful consideration for arrays of the devices to become
economically viable. Lessons can be learnt from the more advanced

Fig. 1. One of the two Pelamis P2 machines operating at EMEC in 2012 (Pelamis Wave
Power).
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offshore wind industry, as well as the recent deployments in the tidal
stream sector. Many of the WEC concepts studied in recent years
involve a floating or buoyant design with the maintenance strategy
being to undertake repairs and inspections offsite using low-cost
vessels (e.g. Carnegie Clean Energy's ‘CETO’ heaving-buoy device and
Wello Oy's rotating-mass ‘Penguin’ machine). This is widely acknowl-
edged as the best method of accessing wave energy converters, with
even previously seabed-fixed WECs changing their design to incorpo-
rate the low-cost vessel approach in an effort to reduce downtime
(Davidson, 2012).

The P2 device was designed with a ‘plug in and play’ system,
whereby the machine could be installed and removed from its electrical
and moorings connection point remotely using controllers on board the
installation vessel. The maintenance strategy was to remove the WEC
from its offshore location to the safety of a sheltered harbour where
spare parts could be readily available and the persistence of weather
conditions is not a concern. No maintenance was to be carried out
whilst the device was offshore, regardless of weather conditions. A P2
installation operation could be carried out in less than an hour once the
machine was on site, using two small, low cost, multi-purpose work-
boats as shown in Fig. 2. A removal operation could be carried out ‘in a
matter of minutes’ (Yemm et al., 2012) and in rougher seas using only
one workboat.

2.2. Model overview

The model replicates the O &M strategy of the Pelamis device by
taking inputs of failure rate estimates, repair parameters and weather
data in order to simulate operations and maintenance over the lifetime
of a wave energy farm. The inputs to the O&M tool have come from the
expert judgement of the engineers involved in the Pelamis endeavour.
Outputs, including availability, revenue and operational expenditure,
are produced for each year and for every WEC in the wave farm. Fig. 3
summarises the inputs and outputs of the O &M tool. The ‘main-
tenance manager’ in Fig. 3 represents the programming element of the
O &M tool, where the lifetime of the wave energy array is simulated
using a Monte Carlo approach at each time step. This is explained
further in Section 2.4.

2.3. Model inputs

2.3.1. Failure rates
Failure rate data is one of the key inputs required to run an O&M

simulation tool. Between 2008 and 2014, the two P2 machines
achieved over 11,000 h of grid connection at the European Marine
Energy Centre (EMEC) in Orkney. Initial estimates for the P2 device
(prior to their deployment) came from four main sources; i) manu-
facturers’ specifications for off-the-shelf components, ii) a US military
handbook on reliability prediction (US Department of Defense, 1991),
iii) destructive testing on several components (Pelamis Wave Power,
2013), and iv) the limited operational experience with the Pelamis
prototype and P1 devices. These estimates were updated over the
course of the P2 testing programme, as staff at Pelamis Wave Power
learnt more about their device through operational experience. The

failure rate inputs to the O&M tool were last reviewed and updated in
October 2014. It should be noted that these failure rate inputs are fixed
values, and therefore do not take into account early ‘infant mortality’
failures or degradation of components over time. A more complex and
realistic representation of failure rates can be incorporated into future
O &M tools by adopting a Weibull curve approach, as described by
Thies et al. (2012).

2.3.2. Maintenance parameters
The components and subsystems of the P2 device are represented

in the O&M tool by placing every potential failure into one of sixteen
different fault categories, shown in Table A.1 (section 9). This alloca-
tion was undertaken using a Failure Modes and Effects Analysis
(FMEA) to identify the overall consequence of every failure. Each
category has a failure rate and associated maintenance parameters,
such as power loss, parts cost and time to repair. The fault categories
are classified as either major, intermediate or minor faults, depending
on the severity of these associated parameters. A fault category may be
made up of several failures that have a similar consequence, but may
require different levels of repair. Therefore, the values for the failure
rates and maintenance parameters provided to each fault category are
the mean values when all the different failures represented in that
category are considered.

2.3.3. Weather data
A time series of weather conditions containing significant wave

height (Hs), wave energy period (Te) and wind speed is supplied to the
tool. A time series of any length can be generated by a Markov-based
weather model which has been developed for the O&M tool. It takes an
input of hindcast data in order to generate a synthetic time series that
displays enough variance to replicate both ‘good’ years and ‘bad’ years,
yet shows the same seasonal trends as the input data. To achieve this,
the three parameters in the hindcast dataset are placed into ‘bins’ and
combined as ‘sea states’. The ‘bins’ range from 0.25 to 9.75 m in steps
of 0.5 m for Hs, from 3 s to 15 s in steps of 2 s for Te, and from 2.5 kts
to 47.5 kts in steps of 5 kts for wind speed. The hindcast dataset is then
separated by month in order to ensure seasonal variability. At each
time step, the next ‘sea state’ is recorded, enabling a probability
transition matrix to be created for each monthly dataset. It is then
possible to generate a new time series using the fundamental Markov
property that the weather conditions at the present time step depend
solely on the conditions at the previous time step. Validation and
further details about the functionality of the Markov Chain Model can
be found in (Gray et al., 2015). This method has been developed to
enable the O &M tool to incorporate the learning gained during real sea
testing of the Pelamis P2 device with regards to weather windows. It
was found that although significant wave height was the primary factor

Fig. 2. A Pelamis P2 device being towed for installation at EMEC in 2012 (Pelamis Wave
Power).

Fig. 3. O&M tool flowchart of key inputs and outputs (Gray et al., 2014).

A. Gray et al. Ocean Engineering 141 (2017) 493–511

495



in accessibility, operational limits of Hs were also dependent on wave
energy period. In addition to Hs and Te, wind speed has also been
included because multicat vessels and tug boats are typically con-
strained to working in wind speeds of 20 kts or less. Therefore, a wind
speed limit of 20 kts has been applied for all marine operations in this
study, as well as the Hs and Te limits shown in Fig. 4.

2.3.4. Yield estimation
In order to estimate the annual yield and energy loss associated

with faults and maintenance, this study also includes an assessment of
energy generation. A time series of Hs and Te enables the O &M tool to
calculate the estimated power generated by each machine in the wave
farm. To achieve this, the weather conditions are matched up with
values in a power matrix which has been inferred from the contracted
targets that Pelamis Wave Power had during the P2 testing programme
(Fig. 5). It should be noted that this power matrix is not intended to be
indicative of the true potential of a commercial attenuator WEC.
Revenue is then calculated using this energy production multiplied
by the unit sell price of electricity. The sell price is assumed to be £305/
MWh, in line with the UK's ‘Contracts for Difference’ model (DECC,
2013)

2.4. Decision making

The O&M tool models a reactive maintenance strategy by using a
Monte Carlo analysis at every 6 h time interval. At each time step, a
new random number between 0 and 1 is generated for every failure
category and compared to the probability of failure for that category
(shown in Table A.1, section 9) to determine whether a fault has
occurred. The probabilities shown in Table A.1 are adjusted to account
for the 6 h resolution using Eq. (1).

P P= 1–( ) *fail in hrs not fail in year6
1/(365 4) (1)

where 365×4 is the total number of 6 h time steps in a year. The
decision making process of when to remove and repair a device is
represented graphically in Fig. 6. If a device suffers either one major
fault or two intermediate ones, then it is retrieved for repair as soon as
weather permits. If the device has exceeded the maximum allowable
time between two scheduled maintenance events then it is also
retrieved. If none if these conditions are met, then the tool runs
through a cost-benefit analysis (CBA) to decide whether or not to send
a vessel to remove that machine from site (provided the weather
window is open). Groups of an increasing number of machines are
assessed in turn to enable multiple devices to be removed in the same
window if logistics allow. This analysis weighs up the cost of retrieving
and repairing the device/s against leaving it/them to operate at a
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3 5 7 9 11 13 15
0.25 0 0 0 0 0 - -
0.75 3 11 21 18 9 1 -
1.25 - 14 39 32 12 8 -
1.75 - 42 85 68 36 12 -
2.25 - 57 152 115 69 35 -
2.75 - 91 227 178 111 69 25
3.25 - 123 314 253 159 102 37
3.75 - - 198 304 217 150 88
4.25 - - 159 367 280 198 68
4.75 - - 131 359 318 209 82
5.25 - - 121 418 367 271 101
5.75 - - 94 246 413 342 155
6.25 - - 64 204 413 397 258
6.75 - - - 180 388 414 200
7.25 - - - 113 201 378 179
7.75 - - - 94 215 199 146
8.25 - - - 75 208 167 100
8.75 - - - 18 164 150 71
9.25 - - - - 150 141 -
9.75 - - - - 113 - -

Hs (m)
Te (s)

Fig. 5. Pelamis P2 power matrix (in kW) inferred from contracted targets during testing programme 2008–2014.
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reduced power output. This becomes quantifiable due to the proactive
maintenance strategy of undertaking a routine inspection on each
device every summer. Estimates for potential revenue and time spent
waiting for a weather window in a given month are provided as an
input to enable the cost-benefit calculations to take place.

The results are presented for each machine, for every year of
operation, as well as average values given for the entire array. Outputs
such as labour costs, vessel fees, availability, total OPEX and revenue
are generated. The sixteen failure categories are assigned portions of
the OPEX costs based on the downtime due to the associated faults.

2.5. Sensitivity analysis

There is a degree of variability between different model simulations
with the same inputs due to the Monte Carlo nature of the O&M tool.
To ensure repeatability of results, the seed values of the random
numbers for the Monte Carlo analysis could be fixed, thereby simulat-
ing the same failures at the same time steps throughout the lifetime of
the array. However, this method does not capture the uncertainties
which would occur in a real wave energy array. Therefore, for each new
inputs scenario presented in this study, the O&M model was run ten
times to obtain the mean values. For each series of sensitivity analyses,
a base case was simulated with all fault categories set at the original
failure rates (see Table A.1, section 9). Martin et al. (2016) undertook a
sensitivity analysis on offshore wind farms using the O&M model
developed by Douard et al. (2012) and state that an uncertainty
envelope of at least 20% should be applied. Therefore, for each
subsequent analysis, the failure rate of one fault category was either
decreased or increased by a factor of 10 in order to provide clear
differences between the results. The failure rate information in the
model is provided as a probability of failure per year. Therefore,
increasing the rate by a factor of 10 requires the use of Eq. (2).

P P= 1–( )fail increased not fail original: :
0.1 (2)

When a failure rate is decreased by a factor of 10, a modified
version of Eq. (2) is used, with 10 as the exponent. To assess the true
statistical mean of the ten simulations for each analysis, 95% con-
fidence intervals have been applied to the results using the z-value of
1.96, as shown in Eq. (3).

x σ n= 1.96*( /( ))0.5 (3)

where x = mean, σ = standard deviation and n = number of
simulations.

3. Case study

3.1. O &M tool base case

In order to carry out a sensitivity analysis on the failure rate inputs
to the O &M tool, it is vital that a base case is established. This study
will model a wave farm containing ten Pelamis P2 devices, operating
for a lifespan of twenty years. As previously stated, two multipurpose
workboats were required for the installation of a P2 device during the
testing programme. However, this is an area where additional experi-
ence would yield improved operational procedures in future commer-
cial wave farms. Therefore, the O&M tool assumes that only one
multipurpose workboat is required for both installation and removal
operations. One workboat is available for the wave farm and is paid for
on a ‘hire when required’ basis. The probability of the boat being
available at any given time has been set at 0.9. This accounts for factors
such as the vessel being used by the contractor for another job, or
undergoing its own maintenance. A mobilisation fee is incurred when
the boat is first hired for a period. The vessel stays on hire until all ten
devices are back operating in the wave farm. These vessel costs,
detailed in Table 1, were the typical market rates during the P2 testing

Fig. 6. O&M model decision flowchart for marine operations.
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programme (2008–2014). The day rate vessel fees are not adjusted for
inflation over time in this study. A fuel cost for each operation is also
added and is dependent on the distance from the quayside to the wave
farm site (discussed in Section 3.2). Quayside fees similar to those
incurred by Pelamis Wave Power when testing at EMEC are applied.
This includes a daily base rate to cover items such as shed rent and
insurance, plus an additional fee for each machine that is at the
quayside to cover layage costs. An assumption has been made that
marine operations could be carried out at night, as Gray and Johanning
(2016) suggested that this arrangement would be beneficial for the
profitability of the wave farm. It is also assumed that the quayside
could be arranged in such a manner that all ten machines could be
stored simultaneously if necessary, and that there are no logistical
constraints surrounding which machine can be accessed by the vessel
at either the base or the farm.

In addition to the fault categories detailed in Table A.1, there are
two scheduled maintenance events built into the O&Mmodel (detailed
in Table A.2, section 9). A routine service is scheduled to be carried out
once every summer, when accessibility is high and lost revenue is
minimised. This event includes tasks such as checking bolt tensions
and torque, non-destructive testing (NDT) on welded joints, checking
oil cleanliness, removing biofouling and carrying out minor repainting.
One specialist technician from each of the hydraulic, structural and
electrical departments, as well as one other team member, are required
for this event. A specialist moorings technician is not required as no
servicing is scheduled to be undertaken on the moorings. The second
scheduled maintenance event is a refit of the major components in each

P2 device, to be carried out in the summer of year ten (the half-life of
the wave farm). This event was identified as necessary during the
design phase of the P2 device because the manufacturers of certain
components specified a design life of 10 years. This particularly
affected rubber components such as the bellows seals. Therefore, these
components would need to be replaced after 10 years in order for the
wave farm to achieve its 20 year design lifetime. The half-life refit event
also involves tasks such as changing all hydraulic oil, structural
surveying, corrosion analysis and a complete repainting of each WEC.

Another input to the O&M tool is the labour details at the
operations base. As shown in Table 1, this study assumes a total of
twelve personnel permanently employed at the base. A multiplier of 1.3
is applied to account for overheads such as travel expenses and laptops.
The O &M tool can constrain repairs and maintenance tasks depending
on which technicians are available at any given time. However, for this
study, it has been assumed that contractors can be hired on a short
term basis at a rate of £200 per day to ensure maintenance is not
delayed by a lack of technicians. A study by Gray and Johanning (2016)
has shown that this has a significant impact on the operability of the
array and therefore could be a realistic scenario once wave energy
becomes a commercial industry.

3.2. Site characterisation

This study will look at two specific wave energy sites (see Fig. 7)
using the weather simulation model developed for the O &M tool by
Gray et al. (2015). Site A is located off the North coast of Scotland and
represents Farr Point; a site previously being developed by Pelamis
Wave Power as a potential wave array. Site B is found off the North
coast of Cornwall and represents Wave Hub; a test facility for offshore
renewable energy technologies (Wave Hub Limited, 2015). These sites
have been chosen for their significance to the development of the wave
energy sector.

3.2.1. Tow times and marine operations
Port selection is required for both sites in order to define the

number of P2 installations and/or removals that can be carried out in a
12 h weather window. As shown in Fig. 8, the O&M base for site A
would have most likely been located in the natural shelter of Loch
Eribol, approximately 30 km from the wave energy array.

Site B is representative of the Wave Hub commercial scale test site
off the North coast of Cornwall. A study by Walker et al. (2013)
investigated ports in this area suitable for mobilisation of a WEC. Fig. 9
shows the locations of three of the ports considered suitable for access
to the Wave Hub site. Hayle port has been assumed as the O&M base
for a wave farm located at site B for this study.

Table 2 summarises the key timings to consider when defining the
length of a weather window required for the installation or removal of a
Pelamis P2 WEC. From this information, it is clear that an installation
operation at either site would need a weather window of at least 6 h in
length. Therefore, as the resolution of the O&M model used in this

Table 1:
Cost assumptions in O&M tool.

Vessel Costs Quayside costs Labour costs

Item Costs (£) Item Costs (£) Technician Number Total annual salary (£k)

Mobilisation fee 5000 Base rate (shed rent, insurance etc.) 100 per day O&M base manager 1 45
Day hire rate 4000 Layage 50 per day Moorings 2 60
Fuel (per operation) 1000 Hydraulic 3 90

Structural 3 90
Electrical 2 60
Apprentice 1 10
Contractor fee = £200/day
Overheads multiplier = 1.3

Fig. 7. Annual UK wave resource map (ABP Marine Environmental Research Ltd, 2016)
showing approximate locations of the two sites analysed in this study.
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study is 6 h, a weather window of 12 h has been selected. However,
vessel logistics can be applied to the O &M model to account for the
fact that a retrieval operation would take significant less time than an
install. As a result, the O &M model used in this study assumes that, in
a 12 h window, the vessel can do one of:

• remove a maximum of two P2 devices and bring them both to the
quayside

• install one P2 device at the farm

• install one P2 device at the farm, then remove another one and bring
it to harbour

3.2.2. Weather conditions
The hindcast data for Site A (Farr Point) is for an 18 year period

from 1992 to 2010. It contains all three parameters required to define a
weather window for the P2 device (Hs, Te and wind speed). Wave
Energy Scotland have provided this dataset for the purposes of this

study.
For site B, a 23 year hindcast dataset (1989–2011) for the Cornish

coast has been provided by the University of Exeter, as part of the
PRIMaRE project (PRIMaRE, 2015). This has been validated against
buoy measurements by van Nieuwkoop et al. (2013). However, it is
only possible to obtain values for significant wave height and wave
energy period from this dataset. In order to match wind speeds to the
Hs-Te combinations, data from the Channel Coastal Observatory (CCO)
at Perranporth was used (see Fig. 10). This information is readily
available from their website (Channel Coastal Observatory, 2015).
Real-time data was chosen for the period 12/3/2014 to 10/11/2015
with values obtained for Hs, Te and wind speed in half hourly intervals.
After applying the same resolution found in the weather simulation
model to these values, it was possible to calculate a probability for every
wind speed matching each combination of Hs and Te. This allowed the
completion of the 23 year hindcast dataset with the addition of
appropriate wind speeds using a Markov-based approach, similar to
the method used in the weather simulation model itself (Gray et al.,
2015). It should be noted that this method is limited by the fact that
extreme waves (i.e. 1 in 100 year storms) will not be accounted for,
unless such waves occur in the hindcast dataset. However, the method
was deemed suitable for this study as the focus is on the comparison of
different simulations.

A comparison between the hindcast data for the two sites in terms
of the annual mean values of each of the three parameters can be seen
in Figs. 11–13. These graphs show that, overall, the significant wave
height and wave energy period are lower at site B than at site A.
Conversely, the wind speed is lower on average at site A than at site B.

As stated in Section 2.1, significant wave height and wave energy
period are placed into ‘bins’ with the resolutions 0.5 m and 2 s
respectively. As a result, the hindcast data used for input to the
Markov-based weather model can be represented graphically by

Fig. 8. Map (Google.co.uk) showing distance between Loch Eribol O&M base and site
A.

Fig. 9. Map of Cornwall showing three ports suitable for access to Wave Hub (Walker
et al., 2013).

Table 2:
Breakdown of timings to calculate weather window length.

Description Notes Time

Tow time (5kts vessel speed) 30 km to site A
25 km to site B

3hrs 20 mins for site A
2hrs 50 mins for site B

Vessel travel time (15kts assumed vessel speed) 30 km to site A
25 km to site B

1hr 10 mins for site A
1hr for site B

Installation time once at site Conservative estimate from Yemm et al. (2012) 1hr
Pre-ops required for installation Yemm et al. (2012) 1.5hrs
Total time required for installation 7hrs 0 min for site A

6hrs 20 min for site B
Retrieval time once at site Conservative estimate from Yemm et al. (2012) 15 mins
Vessel pre-ops required for retrieval Yemm et al. (2012) 1hr
Total time required for retrieval 4hrs 45 min for site A

4hrs 5 min for site B

Fig. 10. Map of Cornwall showing the approximate locations of data buoys and
Perranporth (Walker et al., 2013).

A. Gray et al. Ocean Engineering 141 (2017) 493–511

499



occurrence tables (see Figs. 14 and 15). It can be seen that site A has a
much higher proportion of occurrences in areas of high power capture
(when matched to the power matrix, Fig. 5), such as in the 9 s Te, >
1.25 m Hs region.

The O&M tool has the ability to use different 20 year time series’
during the sensitivity analysis. However, this would alter the base case
for each simulation and therefore only one time series has been used
for each site. The cost-benefit analysis part of the O&M tool requires
estimates for wait times (i.e. the number of days to wait for a weather
window in any given month) and power output. These are obtained by
generating a 100 year time series for each site. Therefore, the 20 year
time series used for each site in the study was selected based on its
similarity to the respective 100 year time series providing estimates to
the cost-benefit analysis. The selection process was undertaken by
assessing a database of 50 time series’ using the criteria of mean annual
power, percentage of open weather windows, mean annual wait times,
and mean monthly wait times.

Cumulative probability distribution graphs can be plotted to
provide further characterisation of the two sites (Figs. 16–19). These
graphs have been created by analysing the Markov-generated 100 year
time series for each site. Firstly, the persistence of non-accessible
weather conditions at each 6 h interval is calculated. The number of
occurrences of each persistence time in every month of the year is then
recorded, along with the total number of 6 h intervals in that month.
This enables the probability of the non-accessible weather conditions
not exceeding each cumulative period of time, up to a maximum of 30
days, to be calculated.

4. Results and discussion

4.1. Site characteristics

The site characteristics charts (Figs. 11–13) show that site A has a
greater significant wave height and greater wave energy period on
average than site B. The implication from this is that site A will have a
higher yield in terms of power output of a wave energy farm. However,
this may result in weather conditions suitable for marine operations

being more abundant at site B. This effect may be balanced by the wind
speed at site A being lower on average than at site B. Figs. 16–19 show
the cumulative probability distribution functions of the weather con-
straints for installation and removal of a P2 device for each season of
the year, providing a graphical comparison of wait times for the two
sites. This information can be quantified by calculating the average
number of days required to wait for a weather window of a certain
length in each month (see Fig. 20). A year in the O&M model starts in
December, as this makes it easier to assess differences between
meteorological seasons.

The cumulative probability distribution functions shown in
Figs. 16–19 match up closely for sites A and B. This implies that the
time spent waiting for a 12 h weather window would be approximately
equal for the two sites. However, from Fig. 20 it can be seen that the
estimated average number of 6 h intervals to wait for an open weather
window is higher for site A in every month of the year except June. On
average, a vessel would need to wait 1.48 days for weather conditions
suitable for a 12 h WEC installation in any given month when the wave
farm is located at site A, compared to 1.23 days for site B. This
information implies that there may be a slightly higher OPEX cost at
site A due to the vessel being kept on hire after its first marine
operation if another device is to be installed. This difference between
the two sites is demonstrated by the base case results from the O &M
tool (see Table A.3, section 9). The average OPEX at site A was
calculated to be £1.12 m compared to £1.09 m for site B, equating to a
2.6% increase.

4.2. Power estimation and base case results

The Pelamis P2 power matrix (Fig. 5) is matched with the
occurrence tables for the two sites (Figs. 14 and 15) to provide the O
&M model with estimates of power generation, thereby enabling the
cost-benefit calculations to take place. Fig. 21 represents these inputs
graphically by comparing the average estimated power generated
across a 6 h period for the two sites in each season of the year, as
well as providing the average values for the full dataset. This estimation
comes from the 100 year dataset used to provide inputs to the cost-
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benefit analysis part of the O&M tool, and assumes wave farm
availability to be 100%.

Fig. 21 shows that a wave farm located at site A is estimated to
generate more power than at site B. The estimated 6 hourly average
power output for a single P2 device at Site A is 122.3 kW, compared to
111.2 kW at Site B.

The implication that a Pelamis P2 wave farm located at site A would
generate a higher revenue is confirmed by the results of the O&M tool,
where the base case annual revenue at site B is £2.57 m compared to
£2.85 m at site A (see Table A.3, section 9). This equates to a 9.8%
decrease in revenue if the wave farm was located at site B rather than at
site A. The base case results also show that there is a negligible 1%
difference between the two sites in availability. This is most likely due
to the slightly different inputs in terms of estimated wait times and
potential revenue, thereby affecting the cost-benefit calculations within
the model.

Using the base case results it is also possible to compare the two
sites in terms of Levelised Cost of Energy (LCOE). Eq. (4) has been
used for these calculations.

LCOE
CAPEX

=
+ ∑

∑
t
n OPEX

r

t
n AEP

r

=1 (1 + )

=1 (1 + )

t
t

t
t (4)

where;

LCOE – Levelised Cost of Energy
CAPEX – Capital expenditures
OPEXt - Operational expenditures (at year t)
AEPt – Annual electricity production (at year t)
r – Discount rate
n – Lifetime of the system
t – year from start of project

The base case results from the O&M model are used for the OPEX
and AEP input parameters in this calculation. The annual revenue is
divided by the assumed unit sell price of electricity (£305/MWh) to
give an estimate of AEP. Applying an assumed transmission efficiency
of 98% leads to the AEP being calculated as 9.15 GWh for site A and
8.26 GWh for site B. A discount rate of 10% has been selected. The total
CAPEX of the 10 machine wave farm of £86 m, not including
decommissioning fees, has been calculated using the assumptions seen
in Table 3.

Using these input parameters, the LCOE is calculated to be £1245/
MWh for site A and £1376/MWh for site B. This shows that the greater
OPEX incurred by a wave farm located at site A is outweighed by the
higher revenue generated. It should be noted that these calculated
LCOE values are in no way indicative of the commercial potential of
wave energy devices. Offshore wind turbines can be installed at a
CAPEX of around £1 m per MW, and achieve capacity factors of up to
40% of rated power. In comparison, the CAPEX assumptions made for
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3 5 7 9 11 13 15
0.25 0.00% 0.07% 0.43% 0.44% 0.08% 0.00% 0.00%
0.75 0.00% 0.89% 6.75% 4.72% 0.56% 0.06% 0.00%
1.25 0.00% 1.33% 10.09% 7.21% 1.29% 0.05% 0.00%
1.75 0.00% 1.09% 7.48% 8.13% 1.64% 0.07% 0.00%
2.25 0.00% 0.56% 4.94% 7.53% 1.71% 0.05% 0.00%
2.75 0.00% 0.06% 3.14% 6.17% 1.68% 0.02% 0.00%
3.25 0.00% 0.00% 1.63% 4.69% 1.58% 0.02% 0.00%
3.75 0.00% 0.00% 0.83% 3.27% 1.40% 0.02% 0.00%
4.25 0.00% 0.00% 0.28% 1.92% 1.25% 0.02% 0.00%
4.75 0.00% 0.00% 0.09% 1.05% 0.89% 0.03% 0.00%
5.25 0.00% 0.00% 0.01% 0.63% 0.63% 0.02% 0.00%
5.75 0.00% 0.00% 0.00% 0.22% 0.45% 0.01% 0.00%
6.25 0.00% 0.00% 0.00% 0.10% 0.33% 0.02% 0.00%
6.75 0.00% 0.00% 0.00% 0.04% 0.14% 0.01% 0.00%
7.25 0.00% 0.00% 0.00% 0.03% 0.07% 0.00% 0.00%
7.75 0.00% 0.00% 0.00% 0.01% 0.05% 0.00% 0.00%
8.25 0.00% 0.00% 0.00% 0.01% 0.01% 0.00% 0.00%
8.75 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
9.25 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
9.75 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Hs (m)
Te (s)

Fig. 14. Occurrence table for site A.
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the P2 device have come from pre-commercial devices, and are
therefore significantly higher (at approximately £8 m per MW) than
would be expected for commercially manufactured WECs. The £20
million allocated to O &M base development is also extremely con-
servative. In addition, the power matrix input to the O&M model has
been inferred from the contracted targets that Pelamis Wave Power had
during the P2 testing programme. A commercial WEC would achieve a
far greater AEP than has been used for these LCOE calculations.
Therefore, the LCOE values presented here are only used for compar-
ison between the two sites, and should not be taken out of this context.

It is reasonable to assume that the estimates of annual energy

production made here could be doubled (i.e. 18.31 GWh for site A and
16.52 GWh for site B) and manufacturing costs could be halved (i.e.
£3 m instead of £6 m) once pre-commercial wave energy converters
have been developed further. If the O&M base development is
allocated £5 m rather than £20 m and the cost of the subsea station
is brought down to £0.5 m, then the new estimates for LCOE equate to
£324/MWh for site A and £357/MWh for site B. This is similar to other
estimates of wave energy LCOE (World Energy Council, 2013),
however, it is clearly an area for further research.

The O&M model simulations carried out in this study assume that
all maintenance tasks would be undertaken at the ports described in

3 5 7 9 11 13 15
0.25 0.16% 0.41% 0.30% 0.00% 0.00% 0.00% 0.00%
0.75 0.00% 4.22% 9.62% 0.07% 0.00% 0.00% 0.00%
1.25 0.00% 3.84% 20.29% 1.72% 0.00% 0.00% 0.00%
1.75 0.00% 0.62% 16.66% 3.91% 0.01% 0.00% 0.00%
2.25 0.00% 0.03% 9.70% 4.42% 0.02% 0.00% 0.00%
2.75 0.00% 0.00% 5.18% 3.86% 0.05% 0.00% 0.00%
3.25 0.00% 0.00% 2.53% 3.33% 0.10% 0.00% 0.00%
3.75 0.00% 0.00% 1.17% 2.41% 0.09% 0.00% 0.00%
4.25 0.00% 0.00% 0.43% 1.96% 0.06% 0.00% 0.00%
4.75 0.00% 0.00% 0.07% 1.16% 0.07% 0.00% 0.00%
5.25 0.00% 0.00% 0.00% 0.72% 0.05% 0.00% 0.00%
5.75 0.00% 0.00% 0.00% 0.39% 0.02% 0.00% 0.00%
6.25 0.00% 0.00% 0.00% 0.16% 0.02% 0.00% 0.00%
6.75 0.00% 0.00% 0.00% 0.08% 0.02% 0.00% 0.00%
7.25 0.00% 0.00% 0.00% 0.02% 0.01% 0.00% 0.00%
7.75 0.00% 0.00% 0.00% 0.02% 0.01% 0.00% 0.00%
8.25 0.00% 0.00% 0.00% 0.01% 0.01% 0.00% 0.00%
8.75 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
9.25 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
9.75 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Hs (m)
Te (s)

Fig. 15. Occurrence table for site B.
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Fig. 16. Cumulative Distribution Functions of installation and removal accessibility during winter (December, January and February) for the two sites used in this study.
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Section 3.2.1. However, operators of wave energy arrays would have to
consider each maintenance task independently. It is likely that more
complex tasks would require specialist equipment, such as a dry dock,
meaning that the forward O&M base would need careful planning and
significant investment. If such upgrades were impossible due to space
or logistical restrictions, WECs would need to be taken to larger ports
for some maintenance tasks. For site A, this may involve taking the
device to Lyness in the Orkney Islands (see Fig. 8), or Penzance if the

farm was at site B (see Fig. 9). Transit times to and from Penzance
would also suffer from having to travel around the Cornish headland
where tidal conditions would play a part in determining weather
windows. Both journeys would require a much greater tow time,
resulting in longer waits for a suitable weather window and decreased
vessel availability for other WECs at the farm. This would have
significant knock-on effects on profitability of the wave energy farm.
The assumed O&M base location for site B has also not taken into
account that access to Hayle harbour is tidal dependent. This would
mean that a vessel towing a WEC into the O&M base would have to
wait outside the harbour until the tide allows entry, thereby extending
the time to carry out the marine operation.

A more in-depth analysis of weather window lengths and con-
straints would be required to assess the true impact of using different
ports for the O &M activities of the Pelamis wave farm. However, a
preliminary analysis provides an indication of the impact of extending
the required length of weather window using the same weather
constraints. If a 24 h weather window is specified and the same
number of marine operations discussed in Section 3.2.1 is used, then
the estimated average number of days to wait for a weather window
increases significantly from 1.48 and 1.23 up to 4.77 and 4.60 for sites
A and B respectively (see Fig. 22).

In addition, the base case results for site B show a significant drop
in both availability (4% down) and revenue (3.5% down) when the
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Fig. 18. Cumulative Distribution Functions of installation and removal accessibility during summer (June, July and August) for the two sites used in this study.
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Fig. 19. Cumulative Distribution Functions of installation and removal accessibility during autumn (September, October and November) for the two sites used in this study.
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Fig. 20. Comparison of the two sites in terms of the average number of days to wait for a 12 h weather window suitable for installation of a P2 device in each month.
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required length of weather window is specified as 24 h rather than 12 h
(Fig. 23). This is matched by an OPEX increase of 8%. The applied 95%
confidence intervals confirm that the two sets of results are statistically
different.

4.3. Failure rate sensitivity

Table A.3 (section 9) contains the numerical results of the
sensitivity analysis described in Section 2.3 and Table A.4 provides
the percentage changes from the base case.

4.3.1. Minor primary hydraulic faults
From the results of the sensitivity analysis, it can be seen that the

biggest drop in profitability of the wave farm occurs when the failure
rate for fault category 13 (‘minor primary hydraulic’) is increased by a
factor of 10. The percentage changes from the base case are repre-
sented graphically for the two sites in Fig. 24.

Availability decreases from the base case by approximately 22.2%
for each of the two sites, whilst revenue decreases by 27.4% and 27.8%
for sites A and B respectively. Operational expenditure also increases
significantly in this case by 57.7% and 61.5% for sites A and B
respectively. As shown in Table A.1 (section 9), the base failure rate
for category 13 is a probability of failure per year (Pfail) of 0.9375.
Increasing this rate by a factor of 10 leads to a probability of failure of
0.9938 per year. Therefore, a minor primary hydraulic failure is almost
guaranteed to occur at least once per year on each machine in this

Table 3:
Breakdown of CAPEX assumptions.

Item CAPEX per unit Notes Total CAPEX for farm

WEC manufacturing cost £6 m per WEC Based on pre-commercial P2 WEC costs £60 m
WEC insurance £120k per WEC 2% of device CAPEX £1.2 m
O&M base development £20 m Quayside, shed, office space £20 m
Licencing and surveys £0.8 m Farr Point experience £0.8 m
Subsea station £2 m No prior deployment £2 m
Balance of plant £1 m Quayside machinery £1 m
Spare parts £1 m Stored in shed £1 m
Decommissioning £1 m per WEC Added to OPEX in year 20 £10 m (year 20)
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Fig. 22. Effects of an increased length of weather window in terms of estimated number of days to wait to carry out an installation or removal operation.
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scenario. On the other hand, the values for associated parameters such
as power loss, time off site and repair costs are minimal when
compared to other fault categories. However, the results from the
sensitivity analysis show that the increased failure rate of minor
primary hydraulic faults has a significant impact on operability of the
wave farm. This indicates that an increase in the number of minor
primary hydraulic faults leads the cost-benefit analysis (CBA) part of
the O &M tool to set affected devices for retrieval more than in the base
case, regardless of the low-impact associated parameters.

Conversely, when the failure rate for category 13 is decreased by a
factor of 10, the results show the largest increases in availability and
revenue. With fewer minor primary hydraulic faults occurring in the

farm, the cumulative impact of power loss is reduced when compared
to the base case. However, this scenario does not lead to an equally
significant decrease in OPEX. An explanation for this could be that the
reduced number of minor primary hydraulic faults does not have
enough of an impact on the cost-benefit calculations to lead to a
decrease in either the average number of marine operations or the time
a machine spends off site over the lifetime of the farm.

It is possible to look into the fault category at a component level by
investigating the P2 FMEA spreadsheet. From this, it can be seen that
the component with the biggest influence on the minor primary
hydraulic fault category is the hydraulic valves within the ram mani-
folds. There are 8 such valves within a single ram manifold, with a total
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Fig. 25. Sensitivity analysis results for ‘Half circuit failure’, normalised against the base case.
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of 16 manifolds in a Pelamis P2 device. Each of these 128 hydraulic
valves has a manufacturer's target Mean Time Between Failure (MTBF)
of 100 years. This equates to a total probability of failure of 0.7313 per
year, making up the majority of the 0.9375 base failure rate for the
minor primary hydraulic fault category. With the results showing that
an increase in the number of failures in the minor primary hydraulic
fault category could have a significant impact on profitability of the
wave farm, it is clear that developers of WECs should work closely with
manufacturers to design components specifically for the marine
environment, and carry out testing accordingly for more realistic
failure rate estimates. Further analysis could investigate the assumed
value for power loss due to this failure, as 5% could be deemed too
conservative.

4.3.2. Half circuit failure
The biggest increase in OPEX occurs when the failure rate of

category 7 (‘half circuit failure’) is increased by a factor of 10. This is a
64.5% increase for site A and 63.1% for site B, as shown in Fig. 25.
There are also decreases in availability and revenue in the region of 4–
5% and 6–8% respectively for both sites. There are also minor
increases in availability and revenue, and a slight decrease in OPEX,
when the failure rate for the half circuit failure category is decreased by
a factor of 10.

A Pelamis P2 device was made up of four articulating joints called
modules, each housing a hydraulic power take off unit. A half circuit
failure is defined as any mechanical or hydraulic fault, such as an oil
leak or ram manifold crack, which leads to one half of a module
becoming incapable of power generation. This category has the second
highest base failure rate (Pfail = 0.36) due to the sheer number of
potential faults that could contribute to a half circuit failure. In the O&
M model, this is classed an intermediate failure where the associated
power loss, time off site and repair costs are not particularly large when
compared to the major faults. Therefore, it can be assumed that the
results of the sensitivity analysis for this category come from the high
probability of failure in the base case.

This assumption can be confirmed when compared to the results for
category 9 (‘data communications’). Here, the power loss and repair
parameters are similar to the half circuit failure but with a much lower
base failure rate (Pfail = 0.0139). The sensitivity analysis for data
communications faults shows virtually no impact on operability of the
wave farm. This information highlights that in subsystems where many
individual faults lead to the same overall failure, those components
must be over engineered and thoroughly tested to ensure minimal
impact over the lifetime of the wave farm.

4.3.3. Control system faults
The results of the sensitivity analysis are also quite significant for

fault category 11 (‘control system’), as shown in Fig. 26. When the

control system base failure rate (Pfail = 0.2604) is increased by a factor
of 10, availability and revenue drop by approximately 7% and 9.5%
respectively for both sites. There is some variation between the two
sites in terms of the increase in OPEX; 27.4% for site A and 30.8% for
site B, although the 95% confidence intervals overlap, implying that the
two results are statistically similar. A control system failure is classed
as a minor fault and therefore most likely requires other faults to have
occurred before the CBA deems it beneficial to repair the affected P2
machine. Again, minor impacts are seen when the base failure rate is
decreased by a factor of 10.

Similar to category 7, a control systems failure can arise from
several sources such as the pressure sensors in a ram manifold. This
cumulative effect leads to the control systems failure having the third
largest base failure rate of all 16 fault categories. Obtaining the failure
rate for this category is made difficult due to different specifications of
pressure sensor having very different failure rates, and also because
pressure sensor failure rates are highly dependent on the operating
environment. When comparing categories 7 (half circuit failure) and 11
(control systems), it can be seen that they have the exact same values
for power loss (0.2), time to fix (2 days) and repair costs (£3000 in
total). The three differences that may contribute to the variation in the
sensitivity analysis results are the base failure rate (Pfail = 0.36 for half
circuit failure versus Pfail = 0.2604 for control systems failure),
classification (intermediate versus minor) and labour requirements
(two technicians versus one). Although a previous study has shown
labour logistics to have a significant effect on the operability of the
wave farm (Gray and Johanning, 2016), the simulations in this paper
do not delay repairs due to a lack of technicians. The much larger
increase in OPEX when the base failure rate for category 7 is increased
by a factor of 10 compared to the same scenario for category 11 (63–
65% versus 27–31%) must be attributed to the greater base failure rate.
However, this does not explain the variation in availability and
revenue. With the half circuit failure having the greater base failure
rate, it was expected that the scenario of increasing it by a factor of 10
would lead to a greater decrease in availability and revenue than for the
control systems category. The reverse has been shown in the results
which could perhaps be explained by the different classifications of the
two faults. As stated in the methodology (Section 2), if a device suffers
either one major fault or two intermediate ones, then it is retrieved for
repair as soon as weather permits. Therefore, the fact that a half circuit
failure is classed as an intermediate fault could mean that the O &M
model sets devices for immediate retrieval more when the base failure
rate is increased, thus avoiding the complexities of the CBA.

Another fault category with similar parameters to the control
systems one is category 15; secondary hydraulic failure (see Table
A.1, section 9). It has the fourth highest base failure rate at Pfail =
0.2256, has total repair costs of £3500, takes one technician two days
to carry out the repair and is also classed as a minor fault. The biggest
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difference between the two categories is the associated power loss; 0.2
for control systems and 0.06 for secondary hydraulic. The results from
the sensitivity analysis show that changing the base failure rate of
category 15 has less of an impact than category 11 (Figs. 27–28). This
indicates that the power loss associated with a control systems failure is
a significant factor. Therefore, redundancy needs to be built into WEC
subsystems in order to minimise the power loss and improve the
profitability of the wave farm.

4.3.4. Faults leading to immediate recovery
Category 2 (‘major structural failure – no warning’) shows the third

largest increase in OPEX when the base failure rate is increased by a
factor of 10 (see Table A.4), at 54% and 56.4% for sites A and B
respectively. However, the decrease in availability (~1%) and revenue
(~1.5%) is negligible in comparison. This difference is due to the
classification of category 2 as a major failure. The O &M tool does not
enter the cost-benefit analysis calculations when a major failure occurs,
instead it sets the affected machine for removal and repair as soon as a
weather window is open. This effect can also been seen to a lesser
extent in the results for categories 1 (‘major mooring’) and 3 (‘major
structural – identified’). Category 2 sees the largest impacts because it
has the highest failure rate of the three and requires the longest time off
site for repair (see Table A.1, section 9). This decision making process
also occurs when power output on a machine drops to zero, which is
why similar results are produced for category 10 (‘electrical unions &
tieback’), even though it is classed as intermediate. The base failure
rates for these four categories are already so minimal that similar
impacts do not occur when the failure rate is decreased by a factor of
10.

5. Conclusions

This study has seen an Operations and Maintenance (O &M)
simulation tool used to address the two issues of site characteristics
affecting accessibility and power performance of wave energy arrays,
and uncertainty surrounding failure rate estimates. The Monte Carlo-
based O &M tool uses failure rate data that has been obtained for the
Pelamis P2 device to model the operations and maintenance activities
undertaken on a 10 machine wave farm over a lifetime of 20 years. The
tool uses the Pelamis approach of using low cost vessels for rapid
installation and removal of devices, with repairs taking place offsite at a
sheltered quayside. The majority of the inputs to the model, including
the failure rate data, have been informed by the P2 testing programme
undertaken at the European Marine Energy Centre (EMEC) from 2008
to 2014. One key input is a weather time series containing values for
significant wave height, wave period and wind speed. Two sites at
opposite ends of the UK have been analysed in this study.

Characteristic analysis of the two sites initially showed that there
was very little difference in terms of accessibility. Some variation in
power performance was, however, identified when the occurrence
tables for the two sites were matched to the power matrix for the
Pelamis P2 device. The outputs of the O&M tool confirmed the
expected variation in power performance, where a 10% difference in
revenue was identified between the two sites, based on device
performance in different wave climates. These results suggest that a
wave energy converter (WEC) should be designed for the weather
conditions at a specific site in order to maximise revenue. Despite the
differences between the two sites in terms of revenue and OPEX
identified in the base case results, the sites match in terms of the
relative trends of fault category sensitivity; demonstrating that a
sensitivity analysis does not need to be undertaken for every new site
considered. This was to be expected as the failure rates remain constant
for each simulation and are not affected by changes in weather
conditions. A more comprehensive assessment of the site differences
could be achieved by having the failure rate inputs of certain
components dependent on weather conditions. Further real sea testing

by WEC developers is required before this level of data becomes
available.

The sensitivity analysis on the failure rate inputs to the O &M tool
has identified hydraulic valves as the component most sensitive to
changes in estimated failure rate in the Pelamis P2 device. Although a
simple parts count would show that hydraulic valves are the most
abundant component in the WEC, the method of simulating lifetime O
&M shows exactly what the impact of these components failing is on
overall array performance. To minimise the uncertainty surrounding
failure rates of these valves, as well as other components, WEC
developers should collaborate with manufacturers to design and test
components for the marine environment. In cases where several
individual faults can cause the same overall failure within a WEC, the
associated components must be over engineered and tested to reduce
the impact on operability of a wave farm. In addition, redundancy of
components must be built in to WEC subsystems to minimise the
power loss associated with faults. It is vital that major failures, such as
a structural breach, are considered and planned for in order to deal
with such occurrences in a rapid and co-effective manner.

This study has demonstrated how an O&M simulation tool can
enable effective budgeting and planning of a wave energy farm. It has
highlighted how the tool can assist in strategic decision making such as
port location and farm design. In addition, by using an O&M model to
undertake a sensitivity analysis, a technology developer will be able to
prioritise the design of certain components and subsystems to ensure
that the WEC achieves its full potential when deployed in a wave farm.

6. Further work

At present, the failure rate data is given to the O &M tool as
constant values throughout the lifetime of the wave energy array. This
is a flawed assumption as some components within a WEC would be
likely to degrade over time, as well as being affected by changes in
weather conditions. It is also true that the failure rates presented in this
study are likely to be more representative of ‘early failure rates’, given
that the values have been inferred from the experience gained during
the Pelamis P2 testing programme. Future O &M tools should be more
realistic in this regards, perhaps by applying a Weibull distribution
model to replicate component degradation. This would also pave the
way for incorporating a predictive maintenance strategy, whereby
WECs are scheduled for inspection when certain components have
reached a certain level of risk in terms of potential failure. Increased
application of condition monitoring systems in real-sea wave energy
testing programmes is vital for this type of failure rate modelling.

In order to obtain realistic outputs, a wave energy O &M simulation
tool must be device specific due to the complexity of the inputs and
variables involved. There is no such thing as a realistic and generic O&
M tool for WECs because of the lack of convergence on a single device
design. Many of the inputs contain a level of uncertainty which can be
addressed through further sensitivity analysis. An example is the vessel
costs where, for this study, a day rate has been assumed and unaltered
for inflation over time. Further work will involve assessing different
vessel hire or purchase arrangements to identify the optimal strategy
for wave farm logistics. The O&M tool is also a ‘living’ software tool in
that real sea testing will improve the inputs to the model and therefore
provide more confidence in the outputs. Further work will involve
identifying the development steps required to build the O &M tool
around another wave energy device. Such a process will be extremely
useful for developers of WEC technology at an early stage of develop-
ment because the O&M tool outputs can provide feedback into the
design of their devices, thus enabling iterative improvements. Once a
WEC developer has achieved a level of operational experience with
their device, the O&M tool could be used for due diligence and cost
estimation, thereby making projects more attractive for commercial
investment.

A. Gray et al. Ocean Engineering 141 (2017) 493–511

507



Acknowledgements

The authors’ appreciation of the Pelamis engineers who undertook
the P2 testing programme and provided the inputs for the O &M tool
used in this study is warmly noted. Wave data for site B was provided
by the University of Exeter, and the matching wind speed data was
obtained from the Channel Coastal Observatory's MET station, in-

stalled by the University of Plymouth. The lead author would also like
to thank Wave Energy Scotland, the IDCORE programme and its
funding bodies, in particular the ETP (Energy Technology Partnership),
for their support. IDCORE is funded by the Energy Technology
Partnership and the RCUK Energy Programme; Grant number EP/
J500847/1.

Appendix

See Tables A.1–A.4

Table A.1.
Part i: O &M tool fault categories and associated parameters.

ID Full name Classification Probability of failure per
year

Power loss Parts cost
(£k)

Other costs
(£k)

Days off-
site

1 Major mooring Major 0.01594 1 20 30 5
2 Major structure (no warning) Major 0.0624 0.5 15 30 15
3 Major structural failure (identified through

monitoring system)
Major 0.03017 0.5 15 20 10

4 Major primary hydraulic Major 0.00997 1 10 5 5
5 Loss of GPS comms & main comms Major 0.004 1 2 2.5 2
6 Major sealing Intermediate 0.03174 0.33 1 2 5
7 Half circuit failure Intermediate 0.36 0.2 1 2 2
8 Minor mooring Intermediate 0.03371 0 2.5 5 3
9 Data communications Intermediate 0.01395 0.33 1 2 2
10 Electrical unions/ tieback Intermediate 0.0396 1 25 5 2
11 Control system Minor 0.2604 0.2 1 2 2
12 Minor structural Minor 0.02621 0 2 2 2
13 Minor primary hydraulic Minor 0.9375 0.05 0.15 1 1
14 Minor sealing Minor 0.19 0 0.25 2 2
15 Secondary hydraulic Minor 0.2256 0.06 1.5 2 2
16 Generator or switchgear Minor 0.0396 0.06 1 2 2

Part ii: O &M tool fault categories and associated parameters

ID Full name Moorings specialists
required

Hydraulic specialists
required

Structural
specialists required

Electrical specialists
required

Other technicians
required

1 Major mooring 2 0 0 0 1
2 Major structure (no warning) 0 0 3 0 1
3 Major structural failure (identified

through monitoring system)
0 0 2 0 1

4 Major primary hydraulic 0 1 0 0 1
5 Loss of GPS comms & main comms 0 0 0 1 1
6 Major sealing 0 0 3 0 1
7 Half circuit failure 0 0 0 1 1
8 Minor mooring 2 0 0 0 1
9 Data communications 0 0 0 1 1
10 Electrical unions/ tieback 0 0 0 1 1
11 Control system 0 0 0 1 0
12 Minor structural 0 0 1 0 1
13 Minor primary hydraulic 0 1 0 0 0
14 Minor sealing 0 0 1 0 0
15 Secondary hydraulic 0 1 0 0 0
16 Generator or switchgear 0 0 0 1 0
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Table A.3.
Results from O&M tool sensitivity analysis.

Base Case Site Availability (per year) Revenue (£k per year) OPEX (£k per year)

A 0.868 2848.9 1116.3

B 0.857 2570.0 1087.7

Availability (per year) Revenue (£k per year) OPEX (£k per year)

Pfail > Decreased Increased Decreased Increased Decreased Increased
Category Site

1 Major mooring A 0.867 0.870 2842.1 2854.6 1101.1 1227.7
B 0.859 0.863 2573.3 2591.0 1080.5 1212.9

2 Major structure (no warning) A 0.863 0.857 2829.2 2807.0 1046.0 1718.5
B 0.858 0.848 2574.3 2534.0 1030.9 1701.2

3 Major structural failure (identified through monitoring
system)

A 0.867 0.865 2843.1 2834.1 1068.2 1338.3
B 0.857 0.859 2571.4 2577.9 1047.8 1317.6

4 Major primary hydraulic A 0.866 0.871 2838.9 2857.7 1103.0 1152.4
B 0.855 0.860 2559.6 2581.3 1065.0 1137.8

5 Loss of GPS comms & main comms A 0.863 0.870 2830.7 2856.7 1088.2 1101.3
B 0.858 0.859 2570.4 2574.6 1096.9 1103.8

6 Major sealing (ram bellows seals etc) A 0.866 0.855 2841.4 2795.8 1092.0 1187.9
B 0.860 0.843 2581.1 2515.6 1088.0 1151.6

7 Half circuit failure A 0.880 0.820 2895.8 2635.9 1033.4 1836.7
B 0.871 0.816 2622.4 2400.6 1028.0 1774.2

8 Minor mooring A 0.864 0.873 2829.2 2866.4 1108.3 1181.4
B 0.859 0.866 2576.0 2600.1 1090.0 1144.0

9 Data communications (NB GPS OK) A 0.868 0.859 2849.3 2813.5 1071.0 1138.8
B 0.856 0.859 2565.6 2579.1 1080.2 1117.8

10 Electrical unions/ tieback A 0.865 0.868 2838.6 2836.5 1086.8 1327.1
B 0.859 0.864 2578.1 2583.4 1056.1 1330.4

11 Control system A 0.878 0.799 2890.5 2577.6 1061.1 1421.7
B 0.874 0.789 2629.2 2328.8 1051.5 1423.1

12 Minor structural A 0.866 0.868 2840.7 2850.4 1113.7 1090.3
B 0.858 0.857 2571.2 2571.3 1082.3 1103.4

13 Minor primary hydraulic A 0.925 0.646 3065.0 2067.9 1118.2 1760.0
B 0.923 0.634 2801.3 1855.1 1096.1 1756.5

14 Minor sealing A 0.868 0.853 2845.4 2804.6 1097.5 1155.0
B 0.865 0.853 2597.6 2564.1 1090.7 1151.7

15 Secondary hydraulic A 0.869 0.820 2847.6 2671.6 1092.9 1233.1
B 0.866 0.813 2601.8 2431.1 1058.5 1211.8

16 Generator or switchgear A 0.864 0.856 2829.2 2801.5 1087.9 1128.3
B 0.861 0.850 2584.4 2545.3 1087.1 1095.8

Table A.4.
Results of sensitivity analysis in terms of percentage increase from base case.

Percentage Increase from Base Case (%)

Availability Revenue OPEX

Pfail > Decreased Increased Decreased Increased Decreased Increased
Category Site

1 Major mooring A −0.2 0.2 −0.2 0.2 −1.4 10.0
B 0.2 0.6 0.1 0.8 −0.7 11.5

2 Major structure (no warning) A −0.6 −1.2 −0.7 −1.5 −6.3 54.0
B 0.1 −0.9 0.2 −1.4 −5.2 56.4

3 Major structural failure (identified throughmonitoring system) A −0.1 −0.3 −0.2 −0.5 −4.3 19.9
B 0.1 0.2 0.1 0.3 −3.7 21.1

4 Major primary hydraulic A −0.3 0.3 −0.4 0.3 −1.2 3.2
B −0.2 0.4 −0.4 0.4 −2.1 4.6

5 Loss of GPS comms & main comms A −0.5 0.2 −0.6 0.3 −2.5 −1.3
B 0.1 0.2 0.0 0.2 0.8 1.5

6 Major sealing (ram bellows seals etc) A −0.3 −1.3 −0.3 −1.9 −2.2 6.4
B 0.3 −1.4 0.4 −2.1 0.0 5.9

7 Half circuit failure A 1.1 −4.9 1.6 −7.5 −7.4 64.5
B 1.5 −4.1 2.0 −6.6 −5.5 63.1

8 Minor mooring A −0.5 0.5 −0.7 0.6 −0.7 5.8
B 0.2 0.9 0.2 1.2 0.2 5.2

9 Data communications (NB GPS OK) A 0.0 −0.9 0.0 −1.2 −4.1 2.0
B 0.0 0.2 −0.2 0.4 −0.7 2.8

10 Electrical unions/ tieback A −0.3 −0.1 −0.4 −0.4 −2.6 18.9
(continued on next page)
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Table A.4. (continued)

Percentage Increase from Base Case (%)

Availability Revenue OPEX

Pfail > Decreased Increased Decreased Increased Decreased Increased
Category Site

B 0.2 0.7 0.3 0.5 −2.9 22.3
11 Control system A 1.0 −6.9 1.5 −9.5 −4.9 27.4

B 1.7 −6.8 2.3 −9.4 −3.3 30.8
12 Minor structural A −0.2 −0.1 −0.3 0.1 −0.2 −2.3

B 0.1 0.0 0.0 0.1 −0.5 1.4
13 Minor primary hydraulic A 5.7 −22.2 7.6 −27.4 0.2 57.7

B 6.6 −22.2 9.0 −27.8 0.8 61.5
14 Minor sealing A 0.0 −1.5 −0.1 −1.6 −1.7 3.5

B 0.8 −0.4 1.1 −0.2 0.3 5.9
15 Secondary hydraulic A 0.1 −4.8 0.0 −6.2 −2.1 10.5

B 1.0 −4.4 1.2 −5.4 −2.7 11.4
16 Generator or switchgear A −0.5 −1.2 −0.7 −1.7 −2.5 1.1

B 0.4 −0.7 0.6 −1.0 −0.1 0.7
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