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Abstract 

The sciences are often divided into 'basic' and 'applied', with the implication that fundamental 

knowledge is discovered through basic science and that applied sciences (tissue engineering, 

surgery etc.) feed on it in a one-directional transfer of information. This brief article outlines the 

history of our attempts to understand how kidneys naturally form (basic embryology) and how to 

engineer them in a dish (applied science), and shows how advances on each side have ended up 

advancing the other, in a bi-directional flow of information. This mutual dependency suggests that it 

would be better not to divide basic and applied work into different journals and conferences, and 

that both would proceed faster if practitioners of each were regularly exposed to the problems and 

advances of the other. 
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Introduction 

The sciences are often divided into the 'basic' and the 'applied'. The usual view is that applied 

sciences depend on basic sciences for essential knowledge, but that the converse is not the case: this 

might explain why, at least in the author's country, applied scientists seem often to be viewed as  

'below', in some social sense, their basic-science colleagues. As a hybrid scientist/technologist who 

has worked for many years in both the basic science side of developmental biology (embryology) 

and its applied side (tissue engineering), I would argue that each depends very much on the other. 

This short article will illustrate the point with the story of kidney development – how scientists 

came to understand how natural kidneys develop and how tissue engineers have learned to engineer 

realistic kidney organoids in culture. 

 

Foundations  

Attempts to engineer renal tissue would be futile without some understanding of how natural 

kidneys form in the embryo. The foundations for this basic knowledge were laid by a small number 

of anatomists working in the 19th and early 20th centuries1-6. Between them, they established that the 

metanephric (permanent) kidneys are the third pair of kidneys formed in development, the first two 

pairs (pronephros and mesonephros) regressing in females or being adapted for reproductive 

functions in males. The drainage ducts of the temporary kidneys, the Wolffian ducts, send a branch 

out from their caudal ends: this branch is called the ureteric bud (UB) (fig 1a). The UB crosses the 

peri-Wolffian mesenchyme to invade a specific area of the caudal intermediate mesoderm, called 

the metanephrogenic mesenchyme (MM: also called by some authors the 'metanephric 

mesenchyme' although this term is ambiguous, applying equally to the adult, so should be avoided). 

Once in the MM, the UB begins to branch giving rise, eventually, to the tree-like urine collecting 

duct system of the kidney (fig 1b). As the UB branches, the tips of its branches become capped with 

a population of mesenchymal stem cells, the 'cap mesenchyme'. Each cap mesenchyme maintains 

itself throughout kidney development and it divides with the underlying ureteric bud tip so that new 

branches are capped. As well as maintaining itself, the cap mesenchyme sheds cells from its distal 

zone (ie the part furthest from the tip), and these cells aggregate, epithelialize and become excretory 

nephrons, which connect at their distal ends to their nearby UB branches (fig 1c). Blood vessel 

progenitors invade the proximal pole of the new nephron to make a glomerulus, and the glomeruli 

later connect to the systemic circulation (the timing being revealed by the observation that injecting 

tracer into systemic circulation fails to dye all glomeruli of the early kidney2). It should be noted 

that, although contemporary authors tend to cite 21st century research papers for almost all of the 

above, it was all known before 1930 and even terms like 'cap mesenchyme' and 'stem cell' were in 
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use by then4,5,7.  

 

 

The first steps towards mechanistic understanding 

The first steps towards a mechanistic understanding of kidney development, in terms of establishing 

how particular events depend on other events, came from early attempts to build embryonic kidney 

components in isolation from the rest of the kidney. The work was made possible by the 

development of techniques for culturing kidneys in the lab, at first in clotted serum or hanging 

drops and, later, on filters in relatively simple media5,8,9. An attempt to produce nephrons outside 

the body by culturing MM without its UB failed: the mesenchyme produced no nephrons and just 

rounded up and died8. Isolation of MM and recombining it with UB, however, resulted in the 

formation of a kidney rudiment with nephrons, indicating that nephrons depend for their formation 

on an inductive signal from the ureteric bud. The observation that other tissues such as dorsal spinal 

cord could substitute for ureteric bud in inducing nephrons10 indicated, in the language of the era, 

that the induction was permissive (telling cells they could go ahead and follow a pre-determined 

path) rather than instructive (specifying to naive cells exactly what they should do: as we have 

understood more about the nature of signalling, the concept of instructive induction has laregly 

disappeared from embryological thinking). 

 

Attempts to construct renal tissues and, in particular, failure to do so, therefore had the effect of 

exposing very important features of normal kidney development. In the molecular era, the pathway 

mediating the induction of nephron formation has been identified by a combination of 

pharmacological11, gene expression, and knockout studies. A reciprocal induction of UB branching 

by MM was also identified, led by the implications of a knockout phenotype that abolished 

branching12,13. In recent years, many more signalling interactions have been identified (see 

McMahon14 for a recent review), leading to the view that the developing kidney organizes its 

anatomy through the exchange of signals mediating rich feedback (feeding back information about 

what has been built to the processes that will build the next stage). This feedback makes the system 

highly adaptive and tolerant of error.  

 

 

Making renal organoids by reaggregation of stem cells  

The discovery that kidney development is regulated by a web of cell interactions that give it self-

organizing character, capable of adapting to create realistic anatomy even under unusual constraints 
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such as developing on a flat surface, raised an interesting question: could a random mix of 

renogenic stem cells (UB and MM types) organize itself into realistic kidney tissue? An early 

attempt to do this, by disaggregating the UB and MM of a young kidney rudiment into a cell 

suspension and then reaggregating it met with failure: too many cells died by apoptosis15. This was 

not surprising, perhaps, for it is known that mammalian cells depend on normal cell-cell and cell-

matrix contacts for their survival and in the absence of these contacts they die: the process is called 

anoikis16. 

 

In the course of a quite different project, centred on the basic-science question of the role of actin 

reorganizion in the morphogenesis of renal tubules17, it had been observed that inhibition of Rho-

dependent kinase (ROCK), the focus of attention for the study because it is a regulator of actin 

organization, greatly reduced apoptosis in developing kidneys. The finding was incidental, not 

considered in the paper that came out of the work, but it was mentioned in an internal lab meeting. 

Remembering it, Unbekandt and Davies15 used ROCK inhibition to give re-aggregating renogenic 

stem cells temporary 'life support' as they re-established connections with one another. This 

prevented excessive apoptosis and allowed the cells to undergo significant self-organization. The 

result was an oragnoid in which UB cells formed distinct cysts that matured into collecting duct 

treelets. Around these, the MM formed nephrons which divided into segments (proximal tubule, 

distal tubule etc) and connected to nearby collecting ducts (Fig 2a). 

 

Generating large-scale anatomy 

Organoids formed by self-organization, as described above, have realistic micro-scale anatomy but 

completely lack organ-scale features, such as being organized around a single collecting duct tree, 

with a distinct cortex and medulla. This apparent boundary between fine and large-scale features is 

a typical feature of self-organizing organoid systems. It suggests that critical information, missing 

from self-organizing organoids, must be present in the embryo. Searching for it, to improve 

organoids, raises new questions about natural embryogenesis. The presence of multiple collecting 

duct treelets in simple renal organoids formed by re-aggregation, for example, draws attention to the 

critical importance of a natural feature of normal kidney development: the collecting duct 

progenitor (UB) enters the MM as one single tubule that never loses its integrity. This creates an 

asymmetry in the system that ensures that everything is arranged around the single tree. Extracting 

one ureteric bud treelet from a re-aggregate and combining it, intact, with reaggregated MM cells, 

so that there is now only one source of UB cells in the system, results in a more realistic renal 

anatomy with everything arranged around a single collecting duct tree (fig 2b)18. This improved 
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organoid even develops a distinct cortex and medulla in a suitable culture system19. This 

observation, made in the tissue engineering arena, informs embryological knowledge by confirming 

the critical role of the collecting duct tree in organizing large-scale anatomy.  

 

The collecting duct system of an organoid made as above does not, however, have an exit tube: all 

branches of the tree are collecting ducts, with no ureter.  Gene expression studies conducted for 

basic embryology have shown that the peri-Wolffian mesenchyme, through which the ureter passes 

before entering the MM, expresses signalling molecules distinct from those of the MM itself. Cut-

and-paste experiments that result in the (immature) ureter stalk being surrounded by MM, or the 

branching part of the UB being surrounded by peri-Wolffian mesenchyme, suggest that UB cells' 

decision about whether to make a branching collecting duct tree or a non-branching, uroplakin-

expressing ureter, is governed by signals from the mesenchyme that surrounds it. This knowledge 

can be used to add further realism to the organoid system: surrounding just one young collecting 

duct of an organoid based on a single collecting duct tree with signals characteristic of peri-

Wolffian mesenchyme causes that duct to branch no more, to induce no nephrons to form near it, 

but instead to thicken and express uroplakin (fig 2c) (Mills et al, manuscript in preparation). This 

manipulation, effectively a further symmetry-breaking step, increases the realism of the organoid 

considerably. It also enriches basic embryological knowledge by positively identifying the cause of 

the UB stalk becoming ureter not collecting duct. 

 

Kidneys from pluripotent stem cells  

The tissue-engineering experiments described above all used ex-fetu cells that were already 

committed to a renogenic fate and came from the area about to form a kidney. Clearly the routine 

construction of human kidneys from human ex fetu sources would be neither practical nor, to many 

people, ethical. Producing them from pluripotent human cells, for example hiPS cells20, is the 

obvious alternative, but this depends on the development of a method to 'program' pluripotent stem 

cells to the renogenic fate. Designing such a method is usually done by 'walking' cell through the 

sequence of signalling environments that would be experienced in the life of a cell that reached a 

renogenic fate in a real embryo (reviewed by Little & Takasato21). Establishing this sequence 

depends on two types of basic embryological information: lineage and signalling. The lineage 

information, from epiblast to intermediate mesoderm to nephrogenic zone, was established long ago, 

mainly by careful observation with no need for genetic cell marking (reviewed by Saxen7). The 

sequence of signalling events was worked out by a combination of observation of expression 

patterns of signalling molecules, and assessing the effects of defined signalling factors on cells at 
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various points of the lineage22,23. The first people to apply this information to the problem of 

engineering renal tissue from pluripotent stem cells (in this case, mouse ES cells) were Kim and 

Dressler24, who treated ES cells with retinoic acid, activin and BMP7 to make them into 

intermediate mesoderm cells that would differentiate into kidney tubules when placed into an 

embryonic kidney or combined with embryonic spinal cord. The cells did not, however, make 

kidneys on their own, suggesting that they may have represented MM but not UB.   

 

Several subsequent attempts to make kidneys from ES or iPS cells met with similar frustrations in 

generating either MM or UB but not making both in a form that would generate a renal organoid25-

28. This led Taguchi and colleagues29 to return to basic developmental biology, to examine more 

carefully the origins of, and the environments experienced by, the cells that make the UB and the 

MM. The conclusion from this careful analysis is that cells that give rise to the rostral end of the 

intermediate mesoderm, and thus eventually the UB, experience retinoic acid earlier and for longer 

than those in the caudal end of the intermediate mesoderm that make the MM. Using this new basic 

embryological information, discovery of which was prompted by frustrations on the applied side, 

Takasoto and colleagues30,31 returned to the problem of programming iPS cells to make self-

organizing kidneys on their own. They showed that they could, by varying the length of exposure to 

a particular growth factor during programming, choose whether the cells become almost all MM, 

almost all UB, or a mixture. The mixture, after a short induction by a Wnt agonist, produced 

organoids very similar to those made by reaggregation of ex-fetu murine renogenic stem cells 

described above15. The important difference was that Takasato's organoids31 were made from 

human cells taken all the way from the pluripotent state.  It will no doubt only be a matter of time 

before the realism of these organoids is improved using the symmetry-breaking tricks described 

above for the murine system. 

 

Concluding remarks 

Along the path to iPS-derived renal organoids, described above, applied science has both drawn on 

and informed basic science, and basic science has in its turn drawn on the results of tissue 

engineering work. The interchanges of information, some of which are summarized in fig 3, 

emphasizes the falseness of the dichotomy between basic embryology and tissue engineering.  It 

also suggests the foolishness of the way we tend to organize research communities. Embryologists 

and tissue engineers tend to publish in different journals (though with some overlap, for example in 

Organogenesis and Development) and go to different conferences. How much faster might both 

fields progress if the communities mixed more, and how much faster might other fields of 
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biomedical science and technology advance if they did the same? 
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Figures and Figure Legends 

 

 

 

Figure 1: normal development of the metanephric kidney.  (a) Depicts the early embryo, in which 

the Wolffian ducts (wd) run caudally from the mesonephros (mn) and assicated gonad (g) towards 

the cloaca: a ureteric bud (ub) crosses the peri-Wolffian mesenchyme (pwm) to enter the 

metanephrogenic mesenchyme (mm). (b) Shows the unbranched portion of the utereric bud 

becoming a ureter (ur) and he branching portion becoming a collecting duct tree: cap mesenchyme 

(cm) forms around the ureteric bud tips (ubt). (c) Depicts a time series of stages of nephron 

development: developing nephrons (dn) forr from cells left behind by the cap mesenchyme and 

undergo a stereotyped sequence of morphogenetic events to become a complicated, elgongated tube: 

the excretory nephron.  Images have been obtained with permission from the GUDMAP database 

(http://www.gudmap.org/Schematics). 

  

http://www.gudmap.org/Schematics
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Figure 2: Methods of renal tissue engineering. (a) Shows a basic reaggregation method (Unbekandt 

& Davies, 20100, in which mixed renogenic stem cells (UB and MM cells) are reaggregated and 

form small UB treelets and young nephrons near and connected to them. (b) Shows a serial-

aggregation method, in which just one UB treelet is isolated from a primary aggregate and 

aggregated with fresh aggregated MM cells: now the tissue organizes itself around a single, large 

UB/ collecting duct tree (Ganeva et al., 2011). (c) Shows the effect of applying local growth factors, 

characteristic of peri-Wolffian mesenchyme, near one developing collecting duct in the Ganeva 

system. This duct ceases to branch and nephrons do not develop around it, polarizing the whole 

organ so that this branch is ureter-like, and even expresses uroplakin (Mills et al., manuscript in 

preparation).   
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Figure 3: Examples of the cross-talk between research in basic renal embryology and research in 

renal tissue engineering, showing how advances in each have provided foundations for advances in 

the other. 


