

Edinburgh Research Explorer

A Data-efficient Neural ODE Framework for Optimal Control of
Soft Manipulators
Citation for published version:
Kasaei, M, Kouhkiloui Babarahmati, K, Li, Z & Khadem, M 2023, A Data-efficient Neural ODE Framework
for Optimal Control of Soft Manipulators. in Proceedings of the 7th Conference on Robot Learning (CoRL
2023). vol. 229, Proceedings of Machine Learning Research, PMLR, pp. 2700-2713, The Conference on
Robot Learning 2023, Atlanta, Georgia, United States, 6/11/23.
<https://proceedings.mlr.press/v229/kasaei23a.html>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 7th Conference on Robot Learning (CoRL 2023)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 07. May. 2024

https://proceedings.mlr.press/v229/kasaei23a.html
https://www.research.ed.ac.uk/en/publications/afb6ae68-4d13-4869-8d14-316bcc2aa752

A Data-efficient Neural ODE Framework for Optimal
Control of Soft Manipulators

Mohammadreza Kasaei
School of Informatics

University of Edinburgh, UK
m.kasaei@ed.ac.uk

Keyhan Kouhkiloui Babarahmati
School of Informatics

University of Edinburgh, UK
kkouhkil@ed.ac.uk

Zhibin Li
Department of Computer Science
University College London, UK
alex.li@ucl.ac.uk

Mohsen Khadem
School of Informatics

University of Edinburgh, UK
mohsen.khadem@ed.ac.uk

Abstract: This paper introduces a novel approach for modeling continuous for-
ward kinematic models of soft continuum robots by employing Augmented Neural
ODE (ANODE), a cutting-edge family of deep neural network models. To the
best of our knowledge, this is the first application of ANODE in modeling soft
continuum robots. This formulation introduces auxiliary dimensions, allowing
the system’s states to evolve in the augmented space which provides a richer
set of dynamics that the model can learn, increasing the flexibility and accuracy
of the model. Our methodology achieves exceptional sample efficiency, train-
ing the continuous forward kinematic model using only 25 scattered data points.
Additionally, we design and implement a fully parallel Model Predictive Path In-
tegral (MPPI)-based controller running on a GPU, which efficiently manages a
non-convex objective function. Through a set of experiments, we showed that the
proposed framework (ANODE+MPPI) significantly outperforms state-of-the-art
learning based methods such as FNN and RNN in unseen-before scenarios and
marginally outperforms them in seen-before scenarios.

Keywords: Soft robots, Non-parametric modelling, Optimal control

1 Introduction

Soft robots are composed of compliant materials such as silicone, rubber, or elastomers, which
allows them to conform to surfaces and objects while maintaining a level of physical robustness
unavailable to their rigid counterparts. This level of compliance makes them suitable for a broad range
of applications, including medical procedures, search and rescue operations, and exploration [1].
However, the design and control of soft continuum robots present significant challenges. This
is due to the inherent non-linearities and high DOF required to accurately capture the structural
deformations that realize these compliant behaviours, which in turn makes it challenging to control
the robot’s motion. Several methodologies have been proposed to model soft robot controllers,
broadly classified into two categories: model-based and data-driven [2].

Model-based approaches rely on mathematical models to represent the dynamics of the robot and
use this model to design controllers. Various methodologies have been proposed in this category,
including polynomial curvature fitting [3], reduced-order finite element models [4], and lumped
parameter models [5, 6]. A comprehensive review of physics-based models for soft robots can be
found in [7]. These models have limitations, as they are based on assumptions that may not hold in
all conditions and may only be able to accurately describe the behaviour of the robot under a subset
of conditions. Furthermore, these methods can be computationally expensive and may not fully
capture the nonlinear behaviour exhibited by the robot. Additionally, physics-based models’ error
tends to increase together with the model inaccuracies, e.g., fabrication inaccuracies.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

Figure 1: 25 scattered data points are employed within the demonstration space for acquiring
knowledge about a continuous forward kinematic model (left). Subsequently, this trained model
serves as the foundation for a fully parallel controller capable of managing a non-convex objective
function executed on a GPU (right).

Learning-based approaches for soft robot modelling and control utilize collected data to develop
models and controllers, either with or without relying on mathematical models. The learning-based
models tend to be insensitive to physics-based modelling assumptions and fabrication inaccuracies,
especially if training is accomplished on the physical robot arm. These approaches aim to learn
kinematic or dynamics models directly [8, 9, 10, 11, 12] or employ model-based/model-free Rein-
forcement Learning (RL) techniques to learn control policies [13, 14]. While data-driven approaches
have the potential to overcome the limitations of model-based methods, they also face inherent draw-
backs. First, they require a substantial amount of training data, which can be challenging to acquire
for real robots and may compromise their structural integrity as demonstrated in [15], [16] and [17],
where 12000, 7000, and 4096 sample points were utilized. Second, the ability to generalize knowl-
edge is limited, leading to poor performance in new or unseen situations [18]. Lastly, data-driven
approaches lack interpretability and physical insight, making it challenging to understand decision-
making processes and the underlying physical principles of soft robot behaviour [13].

In this paper, we introduce a novel framework for modeling and controlling soft robots. We address
the limitations of existing data-driven methods and propose a solution that is extensively tested on a
real soft robot in different scenarios. Our key contributions are as follows:

1. We propose a novel approach to developing continuous forward kinematic models for soft con-
tinuum robots by employing Augmented Neural ODE (ANODE) [19], a state-of-the-art family of
deep neural network models. To the best of our knowledge, this is the first time that ANODE has
been applied to modelling soft continuum robots. Our methodology achieves exceptional sample
efficiency, training the continuous forward kinematic model using 25 real robot demonstrations.

2. Utilizing the trained model as a basis, we developed a fully parallel Model Predictive Path Inte-
gral (MPPI) controller running on a GPU, capable of efficiently managing a non-convex objective
function. This controller harnesses the power of parallel processing to optimize trajectory planning
and control for the soft continuum robot. By leveraging the capabilities of the trained model, our
controller enables the robot to navigate previously unseen trajectories within the feasible kine-
matic space. In comparison to state-of-the-art data-driven approaches such as feed-forward neural
network (FNN) and recurrent neural network (RNN), our framework (FK model and controller
combination) demonstrates superior performance in terms of trajectory tracking error while trained
on significantly fewer data.

This paper is organized as follows: the methodology of the proposed approach is outlined in Section 2.
To evaluate the effectiveness of the proposed framework, a series of experiments are conducted in
Section 3, and the results are discussed. An ablation and comparison study with existing approaches
will be presented in Section 4. Finally, the conclusion and future work are summarized in Section 5.

2 Methodology
This section will provide a comprehensive overview of the key steps involved in our approach. We
will start by discussing the process of generating the training dataset, explaining how we collect the
necessary data to train our model. Next, we will focus on learning the differential kinematics of
the robot, highlighting the techniques and methodologies employed in this process. Finally, we will

2

describe the development of a controller based on the learned model, explaining how it enables the
robot to execute precise and controlled movements.

2.1 Training Dataset

The robot utilized in this study is a multi-backbone robot, as depicted in Figure 1 (left). It consists of a
central flexible backbone made of a compression spring and four parallel flexible rods encased around
it. By manipulating the rods (pulling/pushing), the shape of the robot can be altered. More details
about the robot prototype are presented in the appendix. The modeling and controlling of such robots
present significant challenges, including the complexity of the coupling between actuation inputs,
difficulties in modeling friction between the rods and spacers, particularly when the robot is bent,
and the challenge of determining model parameters and the backbone’s mechanical characteristics.

In this paper, we intend to utilize a limited dataset to model the behavior of the robot. The dataset was
generated by an experienced operator who performed a series of demonstrations using the robot. The
operator manipulated the lengths of the rods to move the tip in various directions. The demonstrations
were conducted with the rods being pulled/pushed up to 3mm. The feasible kinematic space and
demonstration space are depicted in Figure 1. As it is shown, the demonstration space is significantly
smaller compared to the feasible kinematic space. The robot inputs, ut ∈ R3, and the corresponding
Cartesian coordinates of the robot tip, xt ∈ R3, were recorded at a rate of 15 Hz to generate the
training dataset, i.e., D = {xk

t , uk
t }𝑁𝑘=1. The position of the robot was estimated using an RGB camera,

as discussed in Section 3. It is noteworthy that generating this dataset was efficient and took less
than 10 minutes, and our dataset contains N=9100 samples. Only 25 points randomly selected from
this dataset will be used to model the robot in the next section, while the remaining data was utilized
to train other state-of-the-art machine learning algorithms for comparison.
2.2 Learning Differential Kinematics of the Robot

We assume that the robot’s behavior can be modeled by a series of nonlinear differential equations:

¤x(𝑡) = 𝑓 (x(𝑡), u(𝑡)),
𝑓 : R3 × R3 → R3 (1)

with the initial conditions, x(𝑡0) = x(0), u(𝑡0) = u(0). It is assumed that a closed-form expression
for the function 𝑓 does not exist. One can use two consecutive states and an action to train a
multilayer perceptron (MLP) ({𝑥𝑡 , 𝑢𝑡 } → 𝑥𝑡+1) or a Recurrent neural network (RNN) like nonlinear
auto-regressive network with exogenous inputs (NARX). MLPs and NARX models work well on
the range of training data but they may struggle with extrapolation, especially if the data lies outside
the range of the training data. Additionally, MLPs and NARX models, which typically operate in
a discrete-time fashion, may produce predictions that exhibit discontinuities between time steps,
leading to less smooth or less physically plausible extrapolations [20].

To overcome these limitations, and to develop a continuous and smooth data-efficient neural net-
work to approximate the robot’s model, we formulated the problem as an Augmented Neural
ODE (ANODE) [19] which can naturally extend predictions beyond the observed data and time
span [20]. Indeed, the robot is modeled using stiff differential equations which is characterized by
having solutions with rapidly changing components as well as slowly changing components. Explicit
methods like Euler (ResNet) [21] will be unstable unless the step size is taken to be extremely small.
There are some tricks to overcome these issues but they do not fundamentally change the underlying
stability properties. The key features of the ANODE in comparison to the other approaches are data
efficiency, capturing complex dynamics, continuous-time formulation, generalization, and handling
of trajectory intersections [19]. In this work, we used fixed-adams (Adams-Bashforth-Moulton) [22]
method which is an implicit method that is more stable and accurate for stiff differential equations,
as they take into account not only the current and previous steps, but also the future step that we are
trying to compute. This allows them to handle the rapidly changing components of the solution in a
more robust way. Additionally, to prevent trajectories from intersecting, we expand the learning and
solution space of the ODE from R3 ×R3 → R3 to R3 ×R3+𝑝 → R3+𝑝 . By concatenating a vector of

3

zeros (0𝑝×1) to each data point, we solve the ODE in this augmented space. This augmentation leads
to a smoother learned function 𝑓 , resulting in simpler flows that can be computed by the ODE solver
in fewer steps. Additionally, it allows the ODE flow to lift points into the extra dimensions, effectively
preventing trajectory intersections. This continuous-time formulation allows the model to capture
the underlying dynamics and make reasonable extrapolations based on the learned ODEs [19]. With
the objective in mind, we proceed to discretize the robot model described in (1) and transform it into
a boundary value problem:

x+ = 𝑓\ (x(𝑡), u(𝑡)), (2)
based on the following boundary conditions:

x0 = x(𝑡0), u0 = u(𝑡𝑘),
x𝑘 = x(𝑡𝑘), u𝑘 = u(𝑡𝑘),

(3)

considering the neural network 𝑓\ as an approximation of the function 𝑓 , we can determine the
solution of x(𝑡𝑘) if we have prior knowledge of 𝑓\ :

x(𝑡𝑘) = x(𝑡𝑘−1) +
∫ 𝑡𝑘

𝑡𝑘−1

𝑓\ (𝑥(𝑡), 𝑢(𝑡))𝑑𝑡, (4)

thus, conventional numerical ODE solvers like the Euler, Runge-Kutta or fixed-adams algorithms
can be utilized to estimate the value of x(𝑡𝑘):

x̂(𝑡𝑘) = ODESolver(𝑓\ , x(𝑡𝑘−1), (𝑡𝑘−1, 𝑡𝑘)). (5)

However, in cases where 𝑓\ is imprecise or remains unknown, it becomes possible to assess the error
in estimating the boundary values:

ℓ = ∥x̂(𝑡𝑘) − x(𝑡𝑘)∥. (6)
To update this model, 𝑓\ , we adopt a random selection approach, where only 25 points are chosen
from the generated dataset. At each training step, a single point from the dataset is selected. The loss
function is estimated using equations (2-6). This error is utilized in a supervised learning manner,
and the model is trained using the adjoint sensitivity method [23] to ensure memory efficiency. It is
important to note that, based on equation (3), the control inputs remain constant, denoted as u0 = u𝑘 ,
during each training step. To enhance learning efficiency, we have disregarded the dynamics of the
control inputs (i.e., ¤u = 0) and focused solely on learning the input-output dynamics. Details of
training and network architecture are presented in the appendix.
2.3 Controller Architecture

In this section, we present a robot control methodology that utilizes the trained model, 𝑓\ , to steer
the robot towards arbitrary trajectories in accordance with non-convex cost objectives. The proposed
approach is a derivative-free, sampling-based Model Predictive Control (MPC) technique, known
as the Model Predictive Path Integral (MPPI) controller, which is capable of handling nonlinear
dynamics and non-convex cost objectives [24]. First, a Jacobian matrix, denoted as J, is defined
through the utilization of the trained model, 𝑓\ , which maps the velocity of the robot’s end-effector
to the corresponding velocities in the configuration space:

¤x = J ¤u, (7)

where J is a 3× 3 matrix, x ∈ R3 and u ∈ R3 represent the robot’s end-effector Cartesian coordinates
and the input space, respectively. In this work, we employ a numerical estimate of the Jacobian using
finite difference method and batch sampling from the trained model. Now, using (7), a discrete-time
stochastic dynamical system can be obtained:

x𝑡+1 = x𝑡 + J(¤u𝑡 + 𝛿 ¤u𝑡) (8)

where 𝛿 ¤u𝑡 is the control input update which represents by a zero-mean Gaussian noise vector with a
variance of Σu (𝛿 ¤u𝑡 ∼ N(0, Σu)). Using (8), the control problem can be formulated as a stochastic
optimal control problem. Given a finite time-horizon, 𝑡 ∈ {0, 1, 2, ..., 𝑇 − 1}, the objective of the
controller is to determine an optimal control sequence, 𝑢 = (u0, u1, ..., u𝑇−1) ∈ R𝑚×𝑇 , that minimizes

4

the expected cost-to-go, 𝑆(𝜏), across all possible system trajectories, 𝝉 = {x0, u0, x1, ..., u𝑇−1, x𝑇 },
with respect to (8), by taking into account the state-dependent cost function, 𝑆(𝜏) ∈ R:

𝐽 = min
u
E

[
𝜙(x𝑇) +

𝑇−1∑︁
𝑡=0

(
𝑞(x𝑡) +

1
2

u𝑇𝑡 Ru𝑡
)]
, (9)

where 𝜙(x𝑇) is the terminal cost, 𝑞(x𝑡) represents running cost and R ∈ R𝑚×𝑚 denotes a positive
definite control weight matrix. In order to solve this optimization problem, we adopt an iterative
update law, as derived in reference [24], for the implementation of the MPPI algorithm. This
algorithm iteratively updates the control sequence for a predefined time horizon, utilizing a successive
approximation approach:

u𝑡 ← ut +
∑𝐾
𝑘=1 𝑒𝑥𝑝

(
−(1/_)𝑆(𝜏𝑡 ,𝑘)

)
𝛿u𝑡 ,𝑘∑𝐾

𝑘=1 𝑒𝑥𝑝
(
−(1/_)𝑆(𝜏𝑡 ,𝑘)

) , (10)

where 𝐾 represents the number of samples, 𝑆(𝜏𝑡 ,𝑘) = 𝜙(x𝑇) +
∑𝑇−1
𝑡=0 𝑞(x𝑡 , u𝑡 , 𝛿u𝑡) is a cost-to-go

of the 𝑘 𝑡ℎ sample, and _ ∈ R+ is a hyperparameter called inverse temperature. The cost-to-
go function serves as a critical component in guiding the robot’s decision-making process, in-
corporating multiple objectives such as tracking a reference trajectory, obstacle avoidance, and
considering affordance. By evaluating the future costs associated with different control inputs,
the cost-to-go function allows the robot to anticipate the consequences of its actions. It con-
siders the desired trajectory as a reference, aiming to minimize the deviation from this path
while avoiding obstacles. Furthermore, the cost-to-go function can take into account the con-
cept of affordance which encodes the relationships between actions, objects, and their result-
ing effects [25]. The architecture of the proposed controller is depicted in Figure 1 (right).

Motors and driving
interface

Racks

Extensible soft
manipulator

Marker Solid gripper

Box

Tubes

X

Y

Z

Figure 2: Experiment setup.

3 Experiments

Here, a series of experiments were conducted to
assess the effectiveness of the proposed approach
across various scenarios. Figure 9 shows the ex-
perimental setup employed in our study, compris-
ing a flexible and expandable soft manipulator, a
Logitech RGB camera positioned within the robot’s
workspace, and a user interface for recording, initi-
ating, and terminating the experiments. To enable the camera to detect the position of the robot’s tip,
an ArUco marker [26, 27] is affixed to the tip of the robot, providing feedback to the control loop.
Details of the robot, the hyperparameters, the controller configuration, and the network structure can
be found in the appendix.

3.1 Experiment Design

A series of experiments have been conducted to assess the effectiveness of the proposed framework:

• Static Target Tracking: ten different targets are pre-defined within the robot’s workspace. The
objective is to reach these targets with minimal positional error.

• Trajectory Tracking: the robot is set to track various trajectories in both 2D and 3D space, which
include: i) a square on the X-Y plane with sides measuring 0.06 m; ii) A circular shape in the XY
plane with a radius measuring 0.03 meters; iii) A triangle with all sides measuring 0.06 meters;
iv) An eight-shaped curve defined by the equations 𝑥 = 𝑎 cos

(
2𝑡 𝜋
𝑇

)
and 𝑦 = 𝑏

2 sin
(

4𝑡 𝜋
𝑇

)
, where

𝑎 = 0.03, 𝑏 = 0.05, 𝑇 = 100 seconds, and 𝑡 ranges from 0 to 120 seconds; v) A helical trajectory
is executed along the Z-axis, characterized by a radius of 0.03 m and a pitch of 0.02 m. To assess
the tracking’s repeatability and accuracy, three trials are conducted for each trajectory.

5

Figure 3: Trajectory tracking results: the robot is set to track diverse trajectories in both two-
dimensional (2D) and three-dimensional (3D) space. The solid-red and the dashed-black lines
represent the actual and desired trajectories, respectively.

• Obstacle Avoidance: in this task, the robot is set to track a helix trajectory characterized by a
radius of 0.03 m and a pitch of 0.02 m which is near the border of its feasible kinematic space.
The objective of this task is to show how safely the robot is tracking the desired trajectory while
avoiding obstacles without being unstable.

• Box Opening and Test Tube Manipulation: to showcase a potential application of the robot and
the controller’s adeptness at incorporating affordance in object manipulation during environmental
interactions, we have designed a demanding teleoperation task consists of two sub-tasks: opening
the box and picking and placing the test tubes into the rack. In this task, the operator’s objective is
to maneuver the robot to open the lid of a wooden box, taking into consideration that the robot lacks
the strength to counteract the force of gravity and fully extend the lid. This challenging scenario
serves as a compelling demonstration of the controller’s ability to effectively utilize affordance
while navigating the complexities of object manipulation in real-world environments.

3.2 Results and Discussions Table 1: Static Target Tracking Results
SSE (mm) 𝜎 (mm) ST (sec)

𝑥 0.82 0.68 5.72
�̃� 0.71 0.58 4.21
𝑧 0.37 0.32 3.82

In the context of static target tracking, the robot’s per-
formance is assessed based on three metrics: steady-
state error (SSE), standard deviation (𝜎), and settling
time (ST). The obtained results are showcased in Ta-
ble 1. It is noteworthy that the position error remains
below the threshold of 1 mm. Additionally, the consistently low standard deviation reveals a stable
error pattern observed throughout all experiments.

In trajectory tracking experiments, the evaluation of the robot’s performance involves the calculation
and presentation of the root mean squared error (RMSE) and standard deviation (𝜎) of the error
across five distinct trials. These metrics, along with a visual depiction in Figure 3, provide a
comparative analysis between the robot’s actual tip trajectory and the desired trajectory. Notably, the
robot successfully tracks various shapes, including square, circle, triangle, eight, and helix, with a
maximum RMSE of 3.2 × 10−3 m. Results are summarised in Table 2.

Table 2: Trajectory Tracking Results

RMSE (mm) 𝜎 (mm)
𝑥 �̃� 𝑧 𝑥 �̃� 𝑧

Square 2.40 2.60 2.50 1.40 1.50 1.30
Circle 2.80 3.20 3.10 0.51 1.50 1.50

Triangle 1.10 1.10 1.60 0.90 0.90 1.50
Eight 2.00 2.10 2.50 0.50 0.50 1.50
Helix 1.10 1.10 1.80 0.52 1.50 0.61

Representative results depicted in Figure 4
showcase the effectiveness of the MPPI algo-
rithm in achieving obstacle avoidance while si-
multaneously maintaining stable tracking of the
desired trajectories. In our implementation, the
running cost is the sum of the individual cost
terms including a term for tracking a reference
trajectory, a term for avoiding obstacles, and a
term for penalizing jerky motions (details are presented in the appendix). The running cost plays a
vital role in guiding the robot’s behavior by influencing the control actions to minimize deviations and
ensure a safe and efficient path. By incorporating the position of the obstacles into the running cost,
the robot can effectively evaluate the consequences of its actions and make decisions that prioritize
obstacle avoidance and trajectory tracking. This approach enables the robot to dynamically adjust
its control inputs based on real-time feedback, resulting in reliable and robust performance even in
complex scenarios.

6

Figure 4: Representative results of obstacle avoidance experiments. Blue dots represent the obstacles,
solid-red and dashed-black lines are the actual and reference trajectories, respectively.

321 4 5 6

Figure 5: This set of snapshots illustrates the box opening and test tube manipulation task. In
this particular task, the operator’s objective is to guide the robot in opening the lid of the box and
subsequently picking and placing the tubes into the designated racks.

In the Box Opening and Test Tube Manipulation task, the robot operates in a unidirectional tele-
operation mode, where the designed controller enables it to track targets specified by an operator
through keyboard input. The complexity of this task arises primarily from the absence of direct
force feedback, the disparity in kinematics between control interfaces and the robot, the delayed
response time, and the lag between the operator’s commands and the robot’s actions. To address
these challenges, we incorporate a set of affordance terms into the running cost of the controllers
(details are provided in the appendix). These affordance terms can be selectively activated or de-
activated by the operator to limit the motion of the robot along one direction deemed suitable to
accomplish the task (i.e, 𝑥, 𝑦, or 𝑧), depending on the task phase. The versatility of MPPI, which
can handle non-convex running costs, allows us to effectively utilize these affordance terms for a
more intuitive and context-aware interaction between the operator, the robot, and the environment,
enabling more effective and efficient teleoperation. A video showing the results is available online
https://youtu.be/6tYS-5tkoQg and Figure 5 shows a set of snapshots of this task.

4 Ablation and Comparison Study
In this section, we conduct an ablation study to thoroughly compare the performance of the proposed
ANODE-based forward kinematics model with Feedforward Neural Network (FNN) and Recurrent
Neural Network (RNN) based models in four distinct scenarios. We assess the performance of
the models in open-loop and closed-loop trajectory tracking scenarios for both unseen-before and
seen-before scenarios, providing a comprehensive analysis of their strengths and limitations. In
the open-loop scenarios, we opted to exclude the MPPI controller and instead utilized a simplified
approach. Specifically, we employed the equation (¤u = J+ ¤x), where J+ represents the pseudo-inverse
of the Jacobian and ¤x is the reference trajectory. By implementing this modified strategy, we aimed
to observe the system’s response without the influence of the MPPI controller, focusing solely on
the FK models. In the seen-before scenario, the robot was tasked with tracking an eight-trajectory
in X-Y plane within the demonstration space. Conversely, in the unseen-before scenario, the robot
was challenged to track a 3D eight-trajectory spanning the entire feasible kinematic space. These
distinct scenarios were designed to assess the robot’s ability to adapt and generalize its knowledge
across different dimensions and spatial configurations. By evaluating its performance in both seen
and unseen trajectories, we gain valuable insights into the framework’s capacity to handle novel
situations and extrapolate its learned behaviors to unfamiliar scenarios.

Furthermore, by comparing ANODE’s performance with the traditional MLP and RNN mod-
els, we aim to highlight the unique advantages of the ANODE model in capturing the un-
derlying dynamics and temporal dependencies inherent in soft robot forward kinematics pre-
diction. The FNN is constructed with multilayer perceptrons (MLP) to map the input 𝑢𝑡 to

7

https://youtu.be/6tYS-5tkoQg

Figure 6: Results of the ablation study: the dashed-black lines, the solid-red and solid-blue lines
correspond to the reference, closed-loop and open-loop actual trajectories, respectively.

the output 𝑥𝑡 . On the other hand, the RNN adopts a NARX architecture, which takes the
current state (𝑥𝑡 , 𝑢𝑡) as input and predicts the subsequent state 𝑥𝑡+1. Both the FNN and
RNN models are trained using the dataset D generated in accordance with the methodol-
ogy described in Section 2, employing mean square error as their respective loss functions.

Table 3: Ablation and comparison results of trajectory
tracking scenarios; -O/-C tokens refer to open-loop and
closed-loop results, respectively.

RMSE (mm) 𝜎 (mm)
𝑥 �̃� 𝑧 𝑥 �̃� 𝑧

se
en

MLP-C 0.531 0.548 0.570 0.531 0.548 0.869
MLP-O 0.572 0.563 0.702 0.557 0.543 0.494
RNN-C 0.542 0.537 5.100 0.541 0.537 0.498
RNN-O 0.576 0.546 5.000 0.544 0.540 0.419

ANODE-C 0.105 0.127 0.116 0.105 0.127 0.116
ANODE-O 0.198 0.177 0.122 0.198 0.177 0.121

un
se

en MLP-RNN-(C/O) - - - - - -
ANODE-C 0.256 0.164 0.157 0.256 0.164 0.157
ANODE-O 5.600 3.100 4.900 4.700 1.800 2.900

To ensure a fair and equitable compari-
son, we maintained consistent network
sizes across all methods. We trained
three distinct FK models and integrated
them within the identical control loop
framework depicted in Figure 1 (right).
To evaluate and contrast their respective
performances, we computed the RMSE
and standard deviation (𝜎) of errors
across five trials, summarizing the out-
comes in Table 3. Representative out-
comes are visually depicted in Figure 6,
providing further insights into the trajectory-tracking capabilities of each model. As depicted in this
figure, all the models demonstrated proficiency in successfully accomplishing the seen-before sce-
nario. Notably, among the tested methods, the ANODE(both open/closed loop versions) showcased
superior performance, outperforming the other models in accurately accomplishing the task. In the
unseen-before scenario, ANODE stood out as the only model capable of effectively generalizing its
knowledge and successfully accomplishing the task. On the other hand, the MLP and RNN models
encountered difficulties, leading to the robot becoming uncontrollable. The results showed that the
proposed method outperformed alternative approaches significantly in unseen-before scenarios and
performed slightly better in seen-before scenarios.

5 Conclusion and Limitations
This paper introduced a new method for modelling the continuous forward kinematic models of
soft continuum robots using ANODE. The proposed method only required 25 scattered data points.
Additionally, we developed a parallel MPPI-based controller running on a GPU, which effectively
handles a non-convex objective function. This design enhances the adaptability and robustness of the
learned model, enabling accurate prediction and control of soft continuum robot motion in various
new scenarios. Through extensive experimentation, ablation, and comparison studies, our pro-
posed framework (ANODE+MPPI) exhibits superior performance over learning-based approaches
like FNN and RNN in unseen-before scenarios. It also slightly outperforms them in seen-before
settings. While these results are promising, there are some challenges and limitations. The soft robot
manipulator being studied has a limited input space comprising three variables. However, when
applied to more complex robotic systems characterized by higher dimensions, the Neural ODEs
encounters certain limitations. Specifically, the computational costs associated with training Neural
ODEs become more challenging. This is attributed to the time-consuming nature of the forward
pass, which necessitates the numerical integration of an ODE. Additionally, the proposed method-
ology assumes the presence of continuous dynamics within the robot, rendering it less suitable for
effectively modelling soft robots that exhibit sudden changes, instabilities, or discontinuities in their
behaviour.

8

6 Acknowledgement

This work is supported by EU H2020 project Enhancing Healthcare with Assistive Robotic Mobile
Manipulation (HARMONY, 101017008) and the Medical Research Council [MR/T023252/1].

References
[1] C. Lee, M. Kim, Y. J. Kim, N. Hong, S. Ryu, H. J. Kim, and S. Kim. Soft robot review.

International Journal of Control, Automation and Systems, 15(1):3–15, Feb 2017.

[2] G. Mengaldo, F. Renda, S. L. Brunton, M. Bächer, M. Calisti, C. Duriez, G. S. Chirikjian, and
C. Laschi. A concise guide to modelling the physics of embodied intelligence in soft robotics.
Nature Reviews Physics, 4(9):595–610, Sept. 2022.

[3] C. Della Santina and D. Rus. Control oriented modeling of soft robots: the polynomial curvature
case. IEEE Robotics and Automation Letters, 5(2):290–298, 2019.

[4] R. K. Katzschmann, M. Thieffry, O. Goury, A. Kruszewski, T.-M. Guerra, C. Duriez, and
D. Rus. Dynamically closed-loop controlled soft robotic arm using a reduced order finite
element model with state observer. In 2019 2nd IEEE international conference on soft robotics
(RoboSoft), pages 717–724. IEEE, 2019.

[5] C. Della Santina, R. K. Katzschmann, A. Biechi, and D. Rus. Dynamic control of soft robots
interacting with the environment. In 2018 IEEE International Conference on Soft Robotics
(RoboSoft), pages 46–53. IEEE, 2018.

[6] C. Della Santina, R. K. Katzschmann, A. Bicchi, and D. Rus. Model-based dynamic feedback
control of a planar soft robot: trajectory tracking and interaction with the environment. The
International Journal of Robotics Research, 39(4):490–513, 2020.

[7] C. Armanini, C. Messer, A. T. Mathew, F. Boyer, C. Duriez, and F. Renda. Soft robots modeling:
a literature unwinding, 2021.

[8] M. Kasaei, K. K. Babarahmati, Z. Li, and M. Khadem. Data-efficient non-parametric modelling
and control of an extensible soft manipulator. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 2641–2647. IEEE, 2023.

[9] B. Thamo, F. Alambeigi, K. Dhaliwal, and M. Khadem. A hybrid dual jacobian approach
for autonomous control of concentric tube robots in unknown constrained environments. In
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
2809–2815, 2021. doi:10.1109/IROS51168.2021.9636085.

[10] J. M. Bern, Y. Schnider, P. Banzet, N. Kumar, and S. Coros. Soft robot control with a learned
differentiable model. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft),
pages 417–423. IEEE, 2020.

[11] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi. Learning dynamic models for open loop
predictive control of soft robotic manipulators. Bioinspiration & biomimetics, 12(6):066003,
2017.

[12] D. Bruder, C. D. Remy, and R. Vasudevan. Nonlinear system identification of soft robot
dynamics using koopman operator theory. In 2019 International Conference on Robotics and
Automation (ICRA), pages 6244–6250. IEEE, 2019.

[13] R. Morimoto, S. Nishikawa, R. Niiyama, and Y. Kuniyoshi. Model-free reinforcement learning
with ensemble for a soft continuum robot arm. In 2021 IEEE 4th International Conference on
Soft Robotics (RoboSoft), pages 141–148. IEEE, 2021.

9

http://dx.doi.org/10.1109/IROS51168.2021.9636085

[14] D. Büchler, S. Guist, R. Calandra, V. Berenz, B. Schölkopf, and J. Peters. Learning to play
table tennis from scratch using muscular robots. IEEE Transactions on Robotics, 2022.

[15] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi. Model-based reinforcement learning for
closed-loop dynamic control of soft robotic manipulators. IEEE Transactions on Robotics, 35
(1):124–134, 2018.

[16] T. George Thuruthel, F. Renda, and F. Iida. First-order dynamic modeling and control of soft
robots. Frontiers in Robotics and AI, 7:95, 2020.

[17] G. Fang, Y. Tian, Z.-X. Yang, J. M. Geraedts, and C. C. Wang. Efficient jacobian-based inverse
kinematics with sim-to-real transfer of soft robots by learning. IEEE/ASME Transactions on
Mechatronics, 2022.

[18] W. Xu, J. Chen, H. Y. Lau, and H. Ren. Data-driven methods towards learning the highly
nonlinear inverse kinematics of tendon-driven surgical manipulators. The International Journal
of Medical Robotics and Computer Assisted Surgery, 13(3):e1774, 2017.

[19] E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. Advances in neural information
processing systems, 32, 2019.

[20] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[22] F. Bashforth and J. C. Adams. An attempt to test the theories of capillary action by comparing
the theoretical and measured forms of drops of fluid. University Press, 1883.

[23] L. S. Pontryagin. Mathematical theory of optimal processes. CRC press, 1987.

[24] G. Williams, A. Aldrich, and E. A. Theodorou. Model predictive path integral control: From
theory to parallel computation. Journal of Guidance, Control, and Dynamics, 40(2):344–357,
2017.

[25] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Learning object affordances:
from sensory–motor coordination to imitation. IEEE Transactions on Robotics, 24(1):15–26,
2008.

[26] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and M. Marín-Jiménez. Auto-
matic generation and detection of highly reliable fiducial markers under occlusion. Pattern
Recognition, 47(6):2280 – 2292, 2014. ISSN 0031-3203. doi:http://dx.doi.org/10.1016/
j.patcog.2014.01.005. URL http://www.sciencedirect.com/science/article/pii/
S0031320314000235.

[27] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and R. Medina-Carnicer. Generation
of fiducial marker dictionaries using mixed integer linear programming. Pattern Recognition,
51:481 – 491, 2016. ISSN 0031-3203. doi:http://dx.doi.org/10.1016/j.patcog.2015.09.023.
URL http://www.sciencedirect.com/science/article/pii/S0031320315003544.

[28] S. Antman. Nonlinear Problems of Elasticity; 2nd ed. Springer, Dordrecht, 2005. doi:
10.1007/0-387-27649-1. URL https://cds.cern.ch/record/1250280.

10

http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2015.09.023
http://www.sciencedirect.com/science/article/pii/S0031320315003544
http://dx.doi.org/10.1007/0-387-27649-1
http://dx.doi.org/10.1007/0-387-27649-1
https://cds.cern.ch/record/1250280

Appendix

1 Robot Prototype

Figure 7: Prototype of the flexible robotic
arm composed of a reinforced multi-
backbone robot. The robot is connected to
four brushless DC motors using lead screws.
An ArUco marker [26, 27] is placed on the
robot tip, and a camera is used to track the
marker’s position.

The robot, as depicted in Figure 9, consists of a flex-
ible backbone rigidly affixed to spacers, accompa-
nied by four rods fixed at the end spacer and passing
through the remaining spacers with sufficient clear-
ance, forming the primary body of the robot.

To drive the robot, four brushless DC motors from
Maxon Motors, equipped with quadratic encoders
and 150:1 reduction gearheads, are utilized. Precise
motor position control is achieved through four PID
position controller modules (EPOS4 Compact 50/5
CAN), which receive encoder feedback and commu-
nicate with a PC using the CAN protocol to establish
and retrieve controller set-points and configurations.
Lead screws, connected to braided tubes via 3D
printed connectors, are attached to the motors to con-
vert motor power into tube-pulling and pushing ac-
tions. A schematic of the robot is shown in Figure 8.

2 Network Architecture and Training

Cross Section

Main Backbone

Braided
Tubes

Figure 8: Schematic of the robot.

Table 4 presents a summary of the hyperparameters and
network structure. It should be noted that we employed an
early-stopping technique to prevent overfitting when training
the model. With early stopping, the model’s training is
halted before it starts to overfit the training data, even if all
iterations or epochs have not been completed. This allows
the model to avoid memorizing the training data excessively
and improves its ability to generalize to new, unseen data.

Table 4: Hyperparameters and network structure.
Hyperparameter value

No. of hidden neuron (\) 112 (64,32,16)
Augmented vector size (p) 64

No. of hidden layers 3
Activation functions ELU

Learning rate 0.001
Type of ode-solver fixed-adams

Absolute tolerance for ode-solver 1e-9
Relative tolerance for ode-solver 1e-7

Number of iteration 9000

3 Controller Configuration

This section will provide the details of the controller configurations including its hyperparameters,
running cost, and terminal cost functions. The dynamics of the controlled system is captured by the
trained FK model (ANODE), while the running cost and terminal state cost are defined as follows:

11

• Running cost: our running cost function is composed of three costs and defined as follows:

cost_tracking = 𝑤tracking · ∥x − xreference∥2

cost_obstacles = 𝑤obstacle · ((𝑑1 < 0.01) + (𝑑2 < 0.01))
cost_jerk = 𝑤jerk · ∥u − uprevious∥2

cost_affordance = 𝑤affordance · affordance_measure
running_cost = cost_tracking + cost_obstacle + cost_jerk + cost_affordance

where x represents the current state of the system, xreference is the corresponding state in the reference
trajectory, u denotes the current control input, and uprevious represents the previous control input.
The weights 𝑤tracking, 𝑤obstacle, and 𝑤jerk control the importance of each term in the overall cost
function. 𝑤affordance determines a suitable metric or measure that quantifies the affordance for
the given task or goal. The first term penalizes the deviation of the reference trajectory. These
deviations are weighted by a factor of 200, encouraging the system to closely follow the desired
trajectory. The second term is a penalty term that considers the distance between the current states
and two obstacle locations, denoted as 𝑑1 and 𝑑2. If the distance to either obstacle is less than 0.01,
a high penalty of 100,000 is added. This incentivizes the system to avoid approaching the obstacles
too closely. To discourage jerky and abrupt movements, we considered another penalty term. This
term penalizes high rates of change in acceleration or control inputs. In our implementation, 𝑤jerk
is set to 0.1.

• Terminal cost: our terminal cost is defined as: terminal_cost = 𝑤terminal · ∥x − xgoal∥2, where
𝑤terminal is the weighting factor that controls the importance of the terminal cost.

The _ parameter was set to 1 to balance the importance between the running cost and terminal state
cost. The control inputs were constrained within the range defined by umin = [-0.01,-0.01,-0.01] and
umax = [0.01,0.01,0.01]. Gaussian noise with a standard deviation of Σu = 0.001 ∗ torch.eye(3)
was added to control samples for exploration. The MPPI optimization process involved generating
500 control samples per iteration, with a prediction horizon of 10 time steps. These parameter values
were chosen to achieve effective control performance and can be fine-tuned for specific application
requirements.

4 Affordance

In the context of robotics, an affordance is a relationship between an actor (i.e., robot), an action
performed by the actor, an object on which this action is performed, and the observed effect [25].
The general idea of the affordance theory can be used in robotics to provide some information of
mapping between objects, agents and the actions they can take on each other, as there is no unified
formalization of it in robotics. In our implementation, we incorporate a set of affordance terms
(penalties for violating the motion restrictions) into the running cost of the controllers which can
be selectively activated or deactivated by the operator, depending on the task phase. Thanks to the
versatility of MPPI, which can handle non-convex running costs, allows us to effectively utilize these
affordance terms for a more intuitive and context-aware interaction between the operator, the robot,
and the environment, enabling more effective and efficient teleoperation. By adding the affordance
measure to the running cost, we give more weight to actions that align with the desired affordance.

5 Modeling the Entire Body of the Robot

One can model the entire body of a soft robot as a continuous 3D curve. To this end, the configuration
of the main backbone can be defined using a unique set of 3D centroids, 𝑟 (𝑠, 𝑡) : [0, ℓ] × [0,∞] →
R3 × [0,∞], and a family of orthogonal transformations, R(𝑠, 𝑡) : [0, ℓ] × [0,∞] → so(3) × [0,∞]
where ℓ denotes length of the robot. The shape of the main backbone is defined by

r
′ (𝑠, 𝑡) = R(𝑠, 𝑡)𝑒3, R

′ (𝑠, 𝑡) = R(𝑠, 𝑡) [u(𝑡)]× , (11)

12

Figure 9: Simulation setup: the simulated robot is tracking a helical trajectory.
u(𝑡) = [𝑢𝑥 (𝑡), 𝑢𝑦 (𝑡), 0]𝑇 is the curvature vector of the deformed backbone. [.]× operator is the
isomorphism between a vector inR3 and its skew-symmetric cross product matrix, and 𝑒3 = [0, 0, 1]𝑇
is the unit vector aligned with the z-axis of the global coordinate frame. This can be formulated as an
ANODE problem and we can calculate the robot end-effector’s position as the Cartesian coordinates
of the robot’s tip:

x(𝑡) = r(ℓ(𝑡), 𝑡) =
∫ 𝑢𝑧 (𝑡)

0
r(𝑠, 𝑡)d𝑠. (12)

The current system has 14 states including a 3D position, a rotation matrix, and two inputs. To
validate the answer, we need a dataset to train a new ANODE, and test its performance. To this
end, we developed a simulated version of our robot in the Pybullet simulator and we assumed that
the robot can be modeled using Cosserat-rod theory [28]. The code is available online and can be
downloaded from here 1. Figure 9 shows a set of snapshots of the simulated robot while performing
a trajectory-tracking task. This simulation enabled the dynamic generation of shape configuration
data batches, where we produced 100 random shape configurations by sampling 𝑢𝑥 , 𝑢𝑦 from uniform
distributionsU(−0.01, 0.01) and setting 𝑢𝑧 using torch.linspace(0., 0.05, 100). For testing,
we expanded the input boundaries to incorporate unseen configurations, adjusting 𝑢𝑥 , 𝑢𝑦 to sample
from U(−0.015, 0.015) and 𝑢𝑧 to span torch.linspace(0., 0.07, 480). For performance
assessment, we executed 50 tests, predicting a span of 7 cm, divided into 480 steps. The resulting
average Mean Squared Error (MSE) was 0.00001494 which proves the good performance of ANODE
to approximate the shape of a soft robot. Two representative results are shown in Figure 10.

0.00

0.01

po
sit

io
n

(m
)

prediction x
true x

0.010

0.005

0.000

po
sit

io
n

(m
)

prediction y
true y

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
length (m)

0.000

0.025

0.050

po
sit

io
n

(m
)

prediction z
true z

0.02

0.01

0.00

po
sit

io
n

(m
)

prediction x
true x

0.02

0.01

0.00

po
sit

io
n

(m
)

prediction y
true y

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
length (m)

0.000

0.025

0.050

po
sit

io
n

(m
)

prediction z
true z

Figure 10: Two representative results of shape reconstruction.

6 Neural ODE vs Augmented Neural ODE

Neural ODEs and ANODEs belong to the same family of models. They both use differential
equations to model the change in a system over time. The difference between these two lies in how
they handle the evolution of the system’s state. A Neural ODE allows the state to evolve in the original
state space, while an ANODE introduces auxiliary dimensions, allowing the state to evolve in this
augmented space. To evaluate their performances in our case, we began by evaluating the NODE’s

1https://github.com/MohammadKasaei/SoftRobotSimulator

13

https://github.com/MohammadKasaei/SoftRobotSimulator
https://github.com/MohammadKasaei/SoftRobotSimulator

capability. We observed a slight decrease in performance, particularly in open-loop scenarios with
previously unseen conditions. Subsequently, to underscore ANODE’s potential in comparison with
its counterparts (i.e. MLP, RNN, ResNet), we ventured into a more intricate task — modeling the
robot’s entire body which has been discussed in the previous section. After generating the dataset
and training the models, for performance assessment, we executed 50 tests, predicting a span of
7 cm, divided into 480 steps. These predictions were based on control inputs drawn randomly from a
uniform distribution U(−0.015, 0.015) cm, which also covered unseen configurations. The resulting
average Mean Squared Error (MSE) for ANODE stood at 0.00001494, distinctly lower than NODE’s
0.00172892. A visual comparison of two exemplary outcomes is depicted in Figure 11. Evidently,
ANODE outshone in this setup, reaffirming its superior stability and generalization capabilities over
NODE.

0.00

0.01

po
sit

io
n

(m
)

prediction x
true x

0.010

0.005

0.000

po
sit

io
n

(m
)

prediction y
true y

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
length (m)

0.000

0.025

0.050

po
sit

io
n

(m
)

prediction z
true z

0.00

0.02

po
sit

io
n

(m
)

prediction x
true x

0.00

0.02

0.04

po
sit

io
n

(m
)

prediction y
true y

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
length (m)

0.00

0.05
po

sit
io

n
(m

)
prediction z
true z

ANODE NODE

Figure 11: Two representative results of shape reconstruction using ANODE and NODE.

14

	Introduction
	Methodology
	Training Dataset
	Learning Differential Kinematics of the Robot
	Controller Architecture

	Experiments
	Experiment Design
	Results and Discussions

	Ablation and Comparison Study
	Conclusion and Limitations
	Acknowledgement
	Robot Prototype
	Network Architecture and Training
	Controller Configuration
	Affordance
	Modeling the Entire Body of the Robot

	Neural ODE vs Augmented Neural ODE

