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Abstract
As speech synthesis quality reaches high levels of naturalness
for isolated utterances, more work is focusing on the synthesis
of context-dependent conversational speech. The role of con-
text in conversation is still poorly understood and many con-
textual factors can affect an utterances’s prosodic realisation.
Most studies incorporating context use rich acoustic or textual
embeddings of the previous context, then demonstrate improve-
ments in overall naturalness. Such studies are not informative
about what the context embedding represents, or how it affects
an utterance’s realisation. So instead, we narrow the focus to
a single, explicit contextual factor. In the current work, this is
turn-taking. We condition a speech synthesis model on whether
an utterance is turn-final. Objective measures and targeted sub-
jective evaluation are used to demonstrate that the model can
synthesise turn-taking cues which are perceived by listeners,
with results being speaker-dependent.
Index Terms: dialogue, context-aware TTS, turn-taking

1. Introduction
Text-to-Speech (TTS) naturalness is often very high for isolated
read speech utterances. But, speech is rarely produced in isola-
tion: it is spoken in context. This is particularly true for conver-
sation. Recent work has focused on synthesis of contextualised
conversational speech by incorporating information about the
previous acoustic and/or textual context [1, 2, 3, 4, 5]. Context
is a broad term and has different effects on an utterance e.g.,
pragmatic context [6], entrainment with a speaking partner or
utterance position in a turn [7]. The effect of context on speech,
especially its prosodic realisation, is poorly understood and can
be data-dependent [8]. Prosodic cues also show inter-speaker
variability [9]. This makes it difficult to predict what effect
context should have on an utterance, and to measure progress
if using paradigms such as Mean Opinion Score naturalness.

All of the above methods involve conditioning synthesis on
a pre-trained embedding such as BERT for text, or an acoustic
embedding of previous acoustic content. It is unclear what these
representations capture and, importantly, whether they capture
individual effects reported in the literature. To better understand
what can be learned by representing context and how different
aspects of context affect speakers’ realisations, it is important to
test individual contextual factors in isolation and to create suit-
able evaluation paradigms for them. This will not only provide
better evidence for the effect of context in natural speech, but
will allow us to make hypotheses about expected speech syn-
thesis model behaviour.

We therefore narrow our focus to a single aspect of context,
to observe its effect on prosodic realisation. While most work
has focused on the prior context, here we condition the model

on whether a speaker continues talking or gives up their turn.
This is known as turn-taking and is a key aspect of conversation
which affects how speakers realise an utterance [7]. In contrast
to the work cited above, we use natural conversational speech,
not (semi-)scripted dialogue. We answer three questions:

1) Does conditioning a TTS model on turn-taking enable
the model to learn prosodic turn-taking cues from natural con-
versational speech that are perceptible to listeners? 2) Does
conditioning a TTS model on turn-taking lead to increased turn-
finality judgements over a baseline? 3) What prosodic cues dis-
tinguish natural turn-medial vs turn-final utterances and are they
also present in synthetic speech?

2. Previous Work
Turn-taking is an important aspect of interaction [10] that helps
speakers signal to their partner whether they are giving up their
speaking turn or have more to say. The signal can be any com-
bination of pragmatic and/or syntactic and/or prosodic cues, all
optional, but which have an additive effect [10, 11].

Most work on context uses datasets comprising scripted or
semi-scripted conversation. This might not contain the true-to-
life interactional turn-taking features found in natural conversa-
tional speech. Such datasets are often constructed for back-and-
forth agent-user interaction, and so include an unnaturally-high
proportion of turn-final utterances. In corpus research on spon-
taneous speech, the usual unit of analysis is the inter-pausal unit
(IPU). A conversational turn can comprise many IPUs so there
is a class imbalance between turn-final and turn-medial IPUs. If
training a TTS model on natural conversational speech, we are
likely to have far more turn-medial IPUs in the training data,
which might potentially lead to more turn-medial prosody. In
this study, we use natural conversational speech to train our TTS
models. We are not the first to do this, but prior work does not
consider context, e.g., [12, 13, 14, 15].

Specific prosodic and acoustic turn-taking phenomena have
been found in English corpus research [16] and prosodic cues
have been found to be important for turn-end estimation [17].
Various cues have been found to be different between turn-final
and turn-medial transitions in the literature including creaky
voice [18], shorter turn-final IPUs, final-word lengthening, and
increase in speech rate [16, 7], as well as differences in F0 [7].

3. Method
3.1. Data

3.1.1. Conversational Data

We use the CANDOR Corpus [19], a corpus comprised of
1656 open-domain online conversations between two speakers,



recorded in separate channels, and transcribed automatically.
To split into utterances, we implemented communicative state
classification [20] in which we split each channel into IPUs at
every silence longer than 200ms, dropping IPUs comprising
only backchannels to reduce the chance of overlapping speech
(out of scope here). We selected target IPUs if no overlap
occurred on either side leaving 262 446 [left-context]-[target]-
[right-context] triplets, labelled according to who spoke in the
right-context IPU, i.e., same vs different speaker to the target.

For initial data selection we chose target IPUs with dura-
tion 1 s to 11 s surrounded by no more than 2 s of silence on
either side. All targets with text containing symbols, numbers
or acronyms were removed. We removed targets containing a
question-mark (a proxy for questions; our focus is declarative
prosody). We then stripped all automatically-inserted punctu-
ation. We calculated speech rate using canonical syllables per
second and only retained target IPUs with speech rate 2-6 syl-
lables per second. We finally removed triplets where the left-
context or target IPU had fewer than 3 words.

We then made two subsets of data. The first (modelling)
consisted of all speakers with more than 10min of speech, to
be used for modelling. The second (heldout) contained speak-
ers with less than 10min of speech, to be used as a source of
text for our evaluation, and never used in training. After initial
filtering we had 51 093 targets (turn-medial 40 739; turn-final
10 354) totalling 56.72 h. We aligned the modelling data using
the Montreal Forced Aligner (MFA) [21] and removed all tar-
gets where alignment failed and all speakers where more than
5% of their utterances failed.

3.1.2. Read Speech Data

Initial tests showed that training models on only the above
data was not feasible, due to data quantity and variable record-
ing conditions. Therefore the LJSpeech corpus was used in
addition, which we chunked at punctuation (which was then
stripped) to shorten the utterances and make them more compa-
rable to IPUs in the conversational data. We removed utterances
with fewer than 3 words, leaving 16 000 utterances for training
and 100 for development.

3.1.3. Final Data Selection

Natural conversations exhibit class imbalance – there are far
more turn-medial IPUs – so further selection was required to
improve class balance. We first took all data from the 41 speak-
ers with 15min to 20min of speech. To this we added all data
from speakers with a high number of turn-final IPUs, plus all
turn-final IPUs from the remaining speakers.

We then calculated the number of turn-final IPUs per
speaker and, by random selection, ensured the data contained
the same number of turn-medial IPUs for that speaker. The re-
sulting dataset contains all available turn-final IPUs, but still has
some class imbalance: Table 1. We then partitioned into 24 000
utterances (23 914 CANDOR + 86 LJSpeech) for training, 100
for development, and the remaining 242 for testing. There are
212 unique speakers (including LJ).

3.1.4. Training Data Acoustic Analysis

F0 and intensity contours were extracted using Praat at 10ms
intervals. F0 parameter settings were automatically determined
[22], with per speaker floor and ceiling based on global raw F0
values. F0 and intensity were normalised to make values com-
parable across speakers and samples. Intensity was normalised

by subtracting speaker mean per IPU. F0 was converted to semi-
tones relative to speaker global mean in Hz. Values more than
2.5 standard deviations from the utterance mean were removed
as outliers. We also checked for octave jumps ending outside of
the 5th and 95th quantiles per IPU and removed values outside
of those.

We characterised F0 and intensity contours using using
Legendre Polynomial (LP) decomposition. LP coefficients have
been shown to provide interpretable characterisations of F0 con-
tours [23]: e.g., the first 3 LP coefficients can be called height,
slope, and convexity of the contour. Coefficients were deter-
mined using least squares fit of an order 5 Legendre series over
a specified interval, time normalized to span [-1,1]. To anal-
yse potential differences in turn-medial and turn-final prosody,
we calculate LP coefficients for F0 and intensity over the last
500ms of the IPUs in the training data, inspecting only the
first 3 coefficients. We also calculate the speech rate (sylla-
bles/second) over the whole IPU based on phone alignments.
See Table 1.

Table 1: Descriptive statistics and median acoustic feature val-
ues for final conversational corpus.

Turn-Medial Turn-Final

Total Turns 15788 8468
Duration (h) 17.99 8.74
Mean Tokens 13.00 12.03
Female Utterances 5740 3002
Male Utterances 10 048 5466

Acoustic Features

F0 height (LP coeff 1) -1.05 -1.12
F0 slope (LP coeff 2) -0.40 -0.15
F0 convexity (LP coeff 3) 0.13 0.18
Intensity height (LP coeff 1) -0.59 -0.76
Intensity slope (LP coeff 2) -2.56 -3.50
Intensity convexity (LP coeff 3) -2.44 -2.99
Speech rate (syll/s) 4.00 4.10

We found significant differences in the first 3 LP coeffi-
cients for F0 and intensity, as well as speaking rate (Wilcoxon
ranked sum test, p < 0.05). Overall, turn-final IPU ends are
characterised by a lower, flatter F0 contour and lower overall
intensity. We observe a slightly faster speaking rate in the turn-
final condition, but differences between conditions are small.

3.2. Models

We trained a TURN and a BASELINE FastPitch [24] model
with identical architectures. We adapted the FastPitch model to
use phone durations from MFA as input to the duration predic-
tor during training and used the automatically aligned phoneme
sequence as our input to the model (including silence tokens).
We applied global mean/variance per-speaker F0 normalisation.
Turn-conditioning is incorporated using an embedding table,
whose output is summed to the encoder output and speaker em-
bedding, before being passed forward to the variance adapters.
The turn-condition input has three possible values: 0 for base-
line; 1 for turn-medial; 2 for turn-final.

The only difference between BASELINE and TURN is the
value of the turn-condition input. For BASELINE, it is fixed to
0 throughout all training and during inference. For TURN, it
is set to 0 for read-speech data, to 1 for conversational IPUs la-
belled as turn-medial, and to 2 for conversational IPUs labelled
as turn-final.



Pre-training was identical for both models, using only the
read speech data with a batch size of 16 for a total of 200k steps.
For both BASELINE and TURN, we completed training with
a batch size of 32 for an additional 525k steps using the con-
versational data described above, plus 86 LJSpeech utterances.
For both models the speaker embedding table contained 500
speaker codes and the turn-condition embedding table 3 codes.
Each was trained on on a single NVIDIA GeForce GTX 1080
Ti GPU. After FastPitch inference, waveforms were generated
using the HiFi-GAN universal vocoder [25] with a denoising
factor of 0.01.

4. Subjective Evaluation
Most previous studies demonstrate some overall improvement
in naturalness, using standard testing procedures like Mean
Opinion Score. This does not provide any insight into what
listeners were attending to. Instead, we use a method inspired
by the work of [26].

4.1. Test Materials

4.1.1. Text Selection

Turn-taking cues are not only prosodic. In fact, the textual
content is a strong cue, with prosody having an additive effect
[10, 11]. Because of this, when evaluating prosodic turn-taking
cues it is important to choose turn-neutral texts, where the like-
lihood of a turn-end cannot easily be judged using text alone
[26]. We selected 600 random utterance texts from our held out
data, 300 turn-final and 300 turn-medial, which were then fil-
tered for personal identifying material, controversial topics and
profanity, leaving 532 sentences. We divided these into 4 groups
of 133. Each group was presented to 10 participants who were
asked to rate each sentence (presented as text only) for turn-
finality on a scale of 1-5 where a rating of 3 indicates maximum
uncertainty that the speaker had finished talking. We used the
instruction wording from [26]. We then took the median and
mode rating of each text and chose utterances with only one
mode, a mode of 3 and a median rating between 2.75-3.25.

4.1.2. Target Speaker Selection

As expected, given the large number of speakers with variable
data quantity and recording conditions, the models could not
synthesise all speakers with good quality. Expert listening to
synthetic speech from the BASELINE model for the 53 speak-
ers with more than 10min of training speech was used to elim-
inate potential target speakers before the formal listening test,
reducing the pool to 24 speakers. 20 participants then rated the
naturalness of 5 synthetic utterances for each speaker on a scale
of 1-5 (total utterances = 120), presented as speech only, in a
randomised order. Using these ratings, we picked the best 5
target speakers (Table 2) for use in the following listening tests.

Table 2: Target Speaker Corpus Training Information

Speaker Total Utts Turn-medial Turn-final Mean Naturalness Rating Pretest

48 192 174 18 2.91
143 238 216 22 2.82
156 273 190 83 2.77
176 184 168 16 2.93
200 245 200 45 2.85

4.2. Participants

In all of the experiments, listeners were recruited using Prolific1

and reported being English native speakers, residing in the US,
with no hearing impairments. At the beginning of the survey,
we asked participants if they were using headphones and at the
end whether they could play all of the audio.

4.3. Statistical Analysis

For all AB experiments below we used binomial mixed-effects
regression models with a logit-link function [27] due to lack
of independence in listeners and stimuli. We included stimulus
and listener as random effects. No predictors were included,
making it a mixed-effects equivalent to an exact binomial test
with the null hypothesis being that participant choice does not
differ from chance. For each experiment, choice denotes the
chosen audio for most final sounding and the model is specified
as:

choice ∼ 1 + (1|listener) + (1|stimulus)

4.4. Experiment 1 – Finality Judgements, Turn Model

To answer Question 1 (end of Section 1), we tested whether
conditioning the TURN model on turn-medial vs. turn-final
led to a perceptible difference for listeners. For each of the
5 target speakers, we synthesised two versions of the 50 turn-
ambiguous2 texts using the TURN model, one turn-medial, the
other turn-final, then conducted a separate listening test for
each. In each test, 20 listeners were presented with 50 pairs
of synthetic utterances. The order was shuffled and the within-
pair order randomised, per listener. We asked listeners Which of
the following sounds like the speaker is finished talking?.

Figure 1: Results for Experiment 1 comparing TURN generat-
ing turn-medial vs TURN generating turn-final

20 participants took part in each listening test (total=100;
of which we removed 3 for not wearing headphones and 3 for
having issues playing audio). We analysed each listening test
(i.e., each target speaker) independently and report the results in
Table 3 and Figure 1. We found a significant majority choice for
the turn-final synthesis for 3 speakers, with 2 speakers showing
no significant difference in choice. This demonstrates that our
model is able to learn patterns of turn-taking, but that the results
are speaker-dependent.

1https://www.prolific.co
2Samples: https://johannahom.github.io/SSW-2023/



Table 3: Results for Experiment 1 comparing TURN generating
turn-medial vs TURN generating turn-final, per speaker

Speaker β Probability Estimate Confidence Interval p-value

48 0.25 0.56 0.51 - 0.61 < 0.05
143 -0.11 0.47 0.40 - 0.54 > 0.05
156 0.33 0.58 0.52 - 0.64 < 0.05
176 0.49 0.62 0.56 - 0.68 < 0.05
200 0.06 0.52 0.46 - 0.57 > 0.05

4.5. Experiment 2 – Finality Judgements, Turn Model vs
Baseline

To answer Question 2 (end of Section 1), we need to test
whether our TURN model in turn-final condition sounds more
turn-final than BASELINE, which is trained on both turn-
final and turn-medial IPUs. We synthesised the same 50 turn-
ambiguous texts used in Experiment 1, but this time we com-
pared the output of the BASELINE model with the TURN
model operating with the turn-condition input set to turn-final.
Again, we tested each speaker in a separate listening test, using
the same design as Experiment 1.

Figure 2: Results of Experiment 2 comparing TURN generating
turn-final vs BASELINE

20 participants took part in each listening test (total=100;
of which we removed 5 for not wearing headphones and 4 for
having audio issues). The results are summarised in Table 4.
Here we can see that speaker 176 and 48 mirror Experiment
1: the turn-final condition sounds more turn-final than baseline.
Speaker 143 remains on par with baseline. We see a change for
speaker 200 who sounded more turn-final than baseline here,
but who had no significant preference to turn-medial in Experi-
ment 1. Speaker 156 on the other hand had a significant differ-
ence in Experiment 1, but now is no different to baseline; this
might be due to this speaker having a high number of turn-final
IPUs in the training data (Table 2), making BASELINE sound
turn-final.

Overall results taken together indicate that TURN is able
to produce turn-taking cues more effectively than BASELINE,
for most but not all speakers.

5. Objective Evaluation
To investigate the cause of the speaker-dependent results from
experiment 1 and 2, and to answer Question 3 (end of Section
1), we extracted the same acoustic information as for the train-
ing data. By analysing the acoustic output of each model con-
dition along with the training data for each speaker, we hope
to provide insight into which cues may be important for listen-

Table 4: Results of Experiment 2 comparing TURN generating
turn-final vs BASELINE, per speaker.

Speaker β Probability Estimate Confidence Interval p-value

48 0.34 0.58 0.50 - 0.66 < 0.05
143 0.004 0.50 0.45 - 0.55 > 0.05
156 -0.03 0.49 0.42 - 0.56 > 0.05
176 0.33 0.58 0.52 - 0.64 < 0.05
200 0.31 0.58 0.53 - 0.63 < 0.05

ers when determining turn-finality. We are also interested in
whether cues found in the literature are also found in our turn-
final synthesis. We hypothesise that speakers who show more
differences in cues between conditions and should show large
preferences in turn-finality ratings as cues should have an addi-
tive effect [11]. Measuring cues and comparing to the training
data of each speaker can also provide insight into how much in-
formation is learned across speakers in the data and how much
is constrained by speaker conditioning.

5.1. Target Speaker Acoustic Features Natural Speech
turn-medial vs turn-final

Table 5 shows differences in acoustic features for turn-medial
and final IPUs for our target speakers. Compared to the training
data on aggregate, we observe speaker-specific cues for turn-
taking: not all features show significant differences. Moreover,
differences are not always in the same direction. For example,
Figure 3 shows distribution of F0 height (1st LP coefficient) for
target speakers. We see that Speaker 176 has a lower F0 for
turn-final IPUs, while speaker 48 has higher F0. In fact, listen-
ing to samples suggests that speaker 48 has utterance final pitch
rises as a default, i.e. uptalk. Speaker 48 also exhibited higher
intensity (height) in the turn-final condition (though not signif-
icantly so), while the 4 other speakers showed lower intensity
turn-finally. Mean speech rate was slower at the end of turn-
medial IPUs for two speakers, however the differences were not
significant for any of the speakers.

Table 5: Significant differences (p < 0.05) between turn-medial
and turn-final IPUs for speakers (Wilcoxon ranked sum test)

48 143 156 176 200
F0 height ✓ . ✓ ✓ .
F0 slope . . . . .
F0 convexity . ✓ . ✓ .
Intensity height . . ✓ . .
Intensity slope . ✓ ✓ . .
Intensity convexity . . . ✓ .
Speech rate (syll/s) . . . . .

.

5.2. Comparison of features turn-final and turn-medial

First for experiment one we compare the values of various
prosodic markers found in Table 6 between the turn-medial and
turn-final output per speaker. As we can see, across all speakers
we find a significant difference between turn-medial and turn-
final speech rate and final word duration. This mirrors results
found in the study of [7]. In Figure 4 we can see the direc-
tion of this difference, with all speakers showing an increase in
final word duration when synthesised as turn-final and speech
rate being significantly faster than in turn-medial position. In-
terestingly, differences in these features do not directly lead to
an increase in turn-final choices in experiment 1 as in the case



Figure 3: F0 height per speaker, Last 500 ms

of speaker 143 and 200. We found however, and if we look
at the average pitch height of the final word (Figure 4) that
speaker 143 had the phenomenon of uptalk, and this was par-
ticularly the case in turn-final position which may have led to
more turn-medial judgements. Similarly, speaker 200 compared
to the other speakers shows no significant difference between
turn-final and turn-medial conditions for f0 height.

Table 6: Significant differences (p < 0.05) between turn-medial
and turn-final output for speakers (Wilcoxon signed-ranks test)

.

featnice 48 143 156 176 200
Global F0 height ✓ ✓ . ✓ .
Global F0 slope . . . . ✓
Global F0 convexity . . . . .
Final word F0 height . ✓ ✓ ✓ .
Final word F0 slope . . . . .
Final word F0 convexity . . . . .
Intensity height . . . . .
Intensity slope . . . . .
Intensity convexity . ✓ . . .
Final word log duration ✓ ✓ ✓ ✓ ✓
Speech rate (syll/s) ✓ ✓ ✓ ✓ ✓

5.3. Comparison of features turn-final and baseline

For the stimuli in experiment 2, we do the same comparison,
comparing the output of the turn-final condition and the base-
line model output. Compared to the results in Table 6 in Table
7 we see fewer significant differences between features in the
baseline and turn-final condition. This suggests that our TURN
model leads to starker differences between the turn-medial con-
dition compared with the baseline along these dimensions.

Table 7: Significant differences (p < 0.05) between BASELINE
and TURN turn-final condition for speakers (Wilcoxon signed-
ranks test)

.

featnice 48 143 156 176 200
Global F0 height . . . ✓ .
Global F0 slope . . . . .
Global F0 convexity . . . . .
Final word F0 height . ✓ ✓ ✓ ✓
Final word F0 slope . . . . .
Final word F0 convexity . . . . .
Intensity height . ✓ . . .
Intensity slope . . . . .
Intensity convexity . . . . .
Final word log duration . ✓ . ✓ ✓
Speech rate (syll/s) ✓ . . ✓ ✓

6. Discussion
In this study, we found that conditioning a model on turn-
transition tags leads to increased perception of turn-finality
compared to the turn-medial case and the baseline, but that this
is speaker-specific. Specifically, speaker-specific differences
might just arise from differences in speakers’ natural prosodic
cues, but also be impacted by the number of each turn-type seen
in training. For example speaker 156 learns to sound more turn-
final than the turn-medial condition in the TURN model, but
sounds equally turn-final compared to the baseline. This is po-
tentially due to this speaker having more turn-final IPUs than
other speakers in training in the baseline. To test this, future
work will compare the turn-medial synthetic speech to the base-
line. Future work will also adapt the experiment instructions to
ask who is more likely to continue which will help to gain more
insight into how instructions might affect results.

Though the amount of data of each class per speaker might
affect the comparison between the turn-model and the baseline,
we see that for speakers with very few turn-final IPUs in train-
ing, they benefited from training on a large amount of turn-final
IPUs across other speakers, for example speaker 176 had only
16 turn-final IPUs in training but showed strong learning from
other speakers with strong preference for turn-final synthesised
audio compared to both the turn-medial and baseline condi-
tion. The effect of learning from other speakers can also be
seen when we compare the differences in features between the
turn-final and turn-medial IPUs in the natural training data, and
the differences in the synthetic speech between the turn-medial
and turn-final condition with all speakers exhibiting final word
lengthening and increased speech rate in the turn-final condi-
tion, mirroring results found in corpus studies. This suggests
that this was learned corpus-wide as these features were not
found in their own productions, though as we will see from the
class imbalance, we have few turn-final productions for these
speakers.

Initial results suggest that word-final lengthening differ-
ences between utterances might be a helpful cue, but possibly
only in combination with other factors such as a lowering in f0,
again these cues are most likely additive [11] and interact with
each other [28]. We also found that the direction of f0 height
differences was not always the same across speakers across con-
ditions, this was particularly true for the turn-final synthesis of
speaker 143 who had a higher f0 level on the final word com-
pared to the turn-medial synthesis, which may have lead to dif-
ferent turn-finality interpretations. In future work we aim to
analyse the turn-finality ratings per experiment per stimulus and
correlate these ratings with the individual cues to gain more in-
sight into which specific cues and combinations might be help-
ful to speakers in judging turn-finality as we found differences
in ratings across utterances, even for speakers who showed no
significant differences overall between conditions. Future work
will also aim to test the ground truth recordings of speakers for
their turn taking cues in an experiment and will aim to run ex-
periments with more speakers from the training data.

7. Conclusion
In this work, we trained a TTS model with natural conversa-
tional data to model turn-taking cues. Overall, we found that our
TURN model conditioned with the turn-final flag was judged to
sound more turn-final than the TURN model conditioned with
the turn-medial code and more than the baseline, but results
are speaker-specific. Interestingly, though our target speak-



Figure 4: Speech rate (left), f0 height of final word (centre) and final word duration (right) of TTS output per speaker per condition.

ers showed large skews in the number of training samples of
turn-final utterances to turn-medial utterances, we were able to
elicit turn-finality judgements in three of five speakers suggest-
ing turn-finality cues can be learned from large amounts of data
of many speakers. We have shown that TTS has potential to
be used to analyse which cues listeners and speakers use in the
context of turn-taking, though more analysis is needed.
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Quality as a Turn-Taking Cue,” in Proc. INTERSPEECH, Graz,
Austria, 2019, pp. 4165–4169.

[19] A. Reece, G. Cooney, P. Bull, C. Chung, B. Dawson, C. Fitz-
patrick, T. Glazer, D. Knox, A. Liebscher, and S. Marin, “The
CANDOR corpus: Insights from a large multimodal dataset of
naturalistic conversation,” Science Advances, vol. 9, no. 13, 2023.

[20] M. Heldner and J. Edlund, “Pauses, gaps and overlaps in conver-
sations,” Journal of Phonetics, vol. 38, no. 4, pp. 555–568, 2010.

[21] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Son-
deregger, “Montreal Forced Aligner: Trainable Text-Speech
Alignment Using Kaldi,” in Proc. INTERSPEECH, Stockholm,
Sweden, 2017, pp. 498–502.

[22] K. Evanini and C. Lai, “The importance of optimal parameter set-
ting for pitch extraction.” The Journal of the Acoustical Society of
America, vol. 128, pp. 2291–2291, 2010.

[23] E. Grabe, G. Kochanski, and J. Coleman, “Connecting Intonation
Labels to Mathematical Descriptions of Fundamental Frequency,”
Language and Speech, vol. 50, no. 3, pp. 281–310, 2007, pub-
lisher: SAGE Publications Ltd.
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