A Novel Digital Twin (DT) model based on WiFi CSI, Signal Processing and Machine Learning for patient respiration monitoring and decision-support

Citation for published version:

Digital Object Identifier (DOI):
10.1109/ACCESS.2023.3316508

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Access

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A Novel Digital Twin (DT) model based on WiFi CSI, Signal Processing and Machine Learning for patient respiration monitoring and decision-support

SAGHEER KHAN1, AAESHA ALZAABI1, (MEMBER, IEEE), ZAFAR IQBAL1, THARMALINGAM RATNARAJAH1, (SENIOR MEMBER, IEEE), AND TUGHRUL ARSLAN1,2 (SENIOR MEMBER, IEEE).

1School of Engineering, The University of Edinburgh, Edinburgh EH9 3FF, U.K.
2Advanced Care Research Centre (ACRC), The University of Edinburgh, Edinburgh, EH16 4UX, U.K.
Corresponding author: Sagheer Khan (e-mail: s.khan-35@sms.ed.ac.uk)

ABSTRACT
Digital Twin (DT) in Healthcare 4.0 (H4.0) presents a digital model of the patient with all its biological properties and characteristics. One of the application areas is patient respiration monitoring for enhanced patient care and decision support to healthcare professionals. Obtrusive methods of patient monitoring create hindrances in the patient’s daily routine. This research presents a novel Respiration DT (ResDT) model based on Wi-Fi Carrier State Information (CSI), improved signal processing, and Machine Learning (ML) algorithms for monitoring and classification (binary and multi-class) of patient respiration. A Wi-Fi sensor ESP32 with Wi-Fi CSI was utilized for the collection of respiration data. This provides an added advantage of unobtrusive monitoring of patient vital signs. The Patient’s Breaths Per Minute (BPM) is estimated from raw sensor data through the integration of multiple signal processing methodologies for denoising (smoothing and filtering) and dimensionality reduction (PCA, SVM, EMD, EMD-PCA). Multiple filters and dimensionality reduction methodologies are compared for accurate BPM estimation. The elliptical filter provides a relatively better estimation of the BPM with 87.5% accurate estimation as compared to other bandpass filters such as Butterworth (BF), Chebyshev type 1 Filter (CH1), Chebyshev type 2 Filter (CH2), and wavelet Decomposition (62.5%, 75%, 68.75%, and 75% respectively). Principal Component Analysis (PCA) was performed to provide better dimensionality reduction with 87.5% accurate BPM values compared to EMD, SVD, and EMD-PCA (57%, 44%, and 44% respectively). Additionally, the fine tree algorithm, from the implemented 21 ML supervised classification algorithms with K-fold cross-validation, was observed to be the optimal choice for multi-class and binary-class classification problems in the presented ResDT model with 96.9% and 95.8% accuracy respectively.

INDEX TERMS Digital Twin, Machine Learning (ML), Principle Component Analysis (PCA), Respiration rate estimation, Signal Processing, Unobtrusive Wi-Fi Sensor.

I. INTRODUCTION
Advancements in technology have drastically transformed our world from time to time. Healthcare has been reshaped into smart and connected healthcare, known as Healthcare 4.0 (H4.0). It is a combination of technologies to create a connection between the digital, physical, and biological spheres. The amalgamation of a variety of technologies, such as Artificial Intelligence (AI) [1], Internet of Things (IoT) [2, 3], Cyber-Physical Systems (CPS) [4], big data [5, 6], etc., are utilized to establish automation and data exchange. Fig. [1] represents the revolution in healthcare. Healthcare 1.0 is at the stage of doctor and patient interactions. The doctor will examine the patient at the clinic and provide a diagnosis/medication/care routine based on test results and consultations. Healthcare 2.0 is the implementation of medical devices in monitoring, surgeries, imaging, and life support. Healthcare 3.0 is about
utilizing healthcare information technologies to employ computer networks and digitized records to make remote care and telehealth a reality. Creating a gateway between the patient and doctor to replace face-to-face encounters. Being able to do virtual meetings proved to be a major advantage in the recent COVID-19 pandemic. H4.0 is rising in parallel to I4.0 and is proving itself in healthcare to be revolutionary. Healthcare evolved with the use of AI, IoT, CPS, big data, and cloud computing technologies working together [7] to provide a quick and accurate diagnosis of patient big data. Increasing connectivity between the medical equipment and healthcare personnel to enhance patient care, recovery, and experience.

In the last decade, healthcare has kept on improving by providing smart healthcare services. The idea of Digital Twin (DT) has already advanced industries but is going to revolutionize H4.0 [7]–[10]. DT allows the formation of a digital representation of the physical system with all its traits. A bi-directional link between the physical system and its digital model [6], [11]. Creating such a link is the task of multiple technologies to work in cooperation with each other. S. Khan et. al. [7] provides a substantial review of such technologies working together for the creation of DT healthcare. The tasks of real-time predictions, comparisons, and simulations of a patient and the environment based on real-time sensor data can become a reality with DT. DT in healthcare can provide early detection of abnormalities, quick and accurate diagnosis, predictive analysis of patient vitals and procedures, the most effective and risk-free surgeries, and improved patient monitoring.

Over the years researchers have worked on implementing DT in healthcare through various methods. H. Laak et. al [12] provided a framework for DT in remote surgeries. To detect abnormalities and diagnosis, an Electrocardiogram (ECG) signal rhythms classifier based on Machine Learning (ML) is implemented [13]. An elaboration of DT in medicine, such as medical CPS, and ML in healthcare is reviewed in [14]–[16]. An overview of challenges and technologies in implementing DT in personal healthcare is reviewed in [17], [18]. Siemens Healthineers optimized Mater Private Hospital (MPH) with the help of DT technology. DT model with AI model was implemented in the radiology department to improve department operations of processing sensor data, patient demands, clinical complexity, and improving infrastructure. Capacity Command Center was designed by GE Healthcare for decision support and simulation capabilities at the John Hopkins Hospital in Baltimore. A DT model of the heart was created by [19]. The human respiratory system was developed by Oklahoma State University’s Computational Biofluidics and Biomechanics Laboratory [20]–[22]. Most of the healthcare DT models enabled by AI-ML are of humans [23]–[25]. According to [26], at this stage, replicating the full functionality of a human is not possible. Thus, the researchers are focusing on utilizing DT on specific aspects of human biology. Fig. 2 represents the multiple application areas of DT in H4.0.

The paper is distributed in sections for better understanding and improving the layout. Section II provides the motivation and contribution of this research. Section III discusses Wi-Fi sensing and sensing in DT, Section IV is the preliminary discussions on Wi-Fi CSI, PCA, Empirical Mode Decomposition (EMD), and Single Variable Decomposition (SVD), Section V provides an overview of data collection with ESP32 sensor. Section VI is the detailed performance analysis of multiple pre-processing techniques on raw Wi-Fi CSI sensor data in the creation of the ResDT model, Section VII discusses various ML algorithms accuracies for the multiple classification problem, Section VIII discusses the conclusion and future work.

II. PROBLEM STATEMENT AND CONTRIBUTION

A. PROBLEM STATEMENT

Overall, life expectancy has increased, reaching the sixties and beyond. Countries across the world are seeing an increase in their older populations. It is predicted by the World Health Organization (WHO) that by 2030, one out of six people would be 60+ years of age. By 2050, the number of people 60 and older will have doubled [27]. This creates a burden on the healthcare system and resources. [28], [29]. Not only with age, but people of any age can present multiple health
conditions with breathing being a crucial indicator of the health condition.

It is elaborated in [30], [31] that DT in H4.0 has application areas of high-quality economical healthcare, improved patient monitoring, accurate diagnosis and medication, preventing emergencies, and early diagnosis of medical conditions and decision-support. However, it is an open research field with problems of optimal signal processing methodology; how big data analytics can be implemented, which AI and ML algorithms can improve decision-making and predictive analysis, which communication technology is best suited in a specific healthcare scenario, cyber security for sensor and patient data protection, etc. [7].

In [32], around 5% of the population in prosperous countries suffer from the breathing disorder of bradypnea (slow breathing), and nearly 30% of the people in the study, in their 60s, showed symptoms of multiple breathing diseases. In clinical medicine, impedance pneumography, and capnography are two of the conventional methodologies for continuously checking the breathing rate. They are intrusive respiration monitoring methods which may not be considered in the future for elderly care home or hospital environment. Based on the advancements in sensing, signal processing and machine learning, they can be incorporation for enhanced respiration monitoring methodologies.

Unobtrusive sensing methods have a more promising future in healthcare, especially for elderly care. They do not create hindrance in patient daily life as compared to obtrusive methods. Compared to obtrusive data collection, one such solution can be unobtrusive sensor data collection. Y. Liu et. al. [24] worked on creating cloud-based DT Healthcare (CloudDTH) for real-time monitoring of the patient. The data acquired through the ECG sensors are sent to the CloudDTH platform through the ECG device (Huake HKW-10). The authors presented a contact based DT model for data collection. P. Jagade et. al. [33] worked on monitoring human respiration rate through Infrared Thermography (IRT) but that requires clear LOS between the infrared camera and the patient. M. Chu et. al. [34] monitored the respiration rate of the human through low-powered piezo-resistive sensors attached to the human body. The sensors are combined with Bluetooth units to observe respiration rate from a distance but the sensors can create hindrance in daily routines. F. Ryser et. al. [35] utilized a single chest-worn accelerometer to estimate the respiration rate. Respiration and abdominal bands are attached on the around the chest. Even with unobtrusive sensing methods, there is the limitation of clear LOS, privacy concerns, or the need of putting on special equipment by the patient.

In the above-mentioned literature along with the work presented in [36]–[39], they have the limitation of obtrusive sensing, the need for clear LOS, and restricts the patient’s movements. Hence, unobtrusive sensor data collected with Wi-Fi CSI can provide a better solution for unobtrusive monitoring of the patient/elderly vital signs without the need for clear LOS, no privacy violation, or the need for special arrangements. Wi-Fi CSI has the advantage of monitoring the patient’s physical, physiological, and biological features without the technology creating obstruction in the daily routine.

B. CONTRIBUTION

Following are the novel points of this research toward implementing DT technology in healthcare for monitoring the Breaths Per Minute (BPM) of a patient with respiration problems through unobtrusive Wi-Fi sensing with integration of signal processing methodologies and ML algorithm.

1) We propose a novel DT model (ResDT) based on Wi-Fi CSI for patient respiration rate. ESP32 sensor with Wi-Fi CSI allows for an unobtrusive method of respiration data collection for the DT model.

2) Our study is the investigation of signal processing techniques performance analysis comparison on complex noisy ESP32 sensor data in the proposed ResDT model. This will help select the optimal methodology for estimating accurate BPM from raw sensor data. Various techniques comparison comprise; multiple Infinite Impulse Response (IIR) bandpass filters (0.15Hz to 0.6Hz) and wavelet decomposition performance comparison for denoising the respiration sensor data; multiple dimensionality reduction methodologies comparison on complex Wi-Fi CSI respiration datasets in the estimation of the patient’s BPM.

3) In our research, 21 ML-based supervised learning classification algorithm accuracies, along with K-fold cross-validation, are assessed for the various classification problem of abnormal and normal respiration rates in the proposed ResDT model. This will help in implementing decision-support or classification between binary and multi-class problems in proposed ResDT model.

C. PROPOSED RESDT MODEL

Fig. [3] represents the proposed Respiration DT (ResDT) model. ESP32 Wi-Fi sensor with CSI characteristics collects patient respiration data unobtrusively. The raw data is not ready to analyzed for the estimation of the patient’s BPM. It is subjected to multiple denoising methodologies of smoothing, bandpass filters, and PCA to acquire the patient BPM from raw sensor data. Feature data is extracted, enabling the testing of ML algorithms and neural networks for binary and multi-class classification in the proposed ResDT model.

III. SENSING

A. WI-FI SENSING

The recent COVID-19 pandemic has shown how conventional methodologies fail in providing healthcare in such harsh conditions [39], [40]. Not only that, with the increasing number of elderly patients, it is important to look for new innovative noninvasive techniques to overcome these challenges. Researchers can make use of cameras indoors to capture images of respiration signals [41]. The major
The drawback of this camera-based respiration monitoring is that the images require a clear line of sight and sufficient illumination [42], [43]. An additional drawback is that the cameras are a privacy concern. Under the threat of cyber-crimes, it is difficult to have a promising solution for indoor sensing [44]. Wearable devices can be utilized as a solution for unobtrusive sensing [45]. Even though wearable devices have a broad range of applications, they need exclusive gear to be worn for extended periods and are only appropriate for extended periods of monitoring an immobile patient [46]. A smartphone can be a solution to acquire data from the subject’s body but it needs to be carried all the time [47], [48]. Another solution can be the environmentally installed sensors but they require a heavy installament setup [49], [50].

A real-time economical unobtrusive respiratory monitoring method is essential. Wi-Fi sensing can be utilized to sense the vital signs of a patient from a distance [51], [52]. But recent studies have shown that Wi-Fi signals tend to get disturbed by the movement of residents and other movements in a zone [53]. For that, in Wi-Fi sensing data, Channel State Information (CSI) [54] applies to a range of applications such as sedentary behavior analysis [55], gesture recognition [56], vital sign detection [57], human detection [58], occupancy detection [59], crowd counting [60], and human activity recognition [61], etc. Compared to contact-based sensing methods, Wi-Fi signals have multiple excellent attributes and advantages over wearable devices.

1) Only information about the human vital signs, position, etc. can be obtained from the wireless signals. Wi-Fi signal protects the user’s privacy as it cannot acquire details about appearance, clothes, etc.
2) Wireless-based sensing technology does not require specific gears to be worn by the user. It still achieves accurate sensing and is very appropriate for long-term implementation.
3) Wireless signals are propagated in a zone and do not depend upon LOS. Diffraction and reflection of wireless signals can still deliver valuable sensor data even if there is an obstruction in the middle of the device and the user.
4) The wireless signal transmission and reception do not depend on the light, making it possible to work around the clock.

B. SENSING IN DT

Wi-Fi sensing is not only important for the unobtrusive respiration monitoring of a patient but also crucial in the creation of DT models. The DT’s popularity increased with the availability of economical and miniature-size sensors that can provide all kinds of patient vital information. These models are data-driven and can only represent the theoretical behavior of a system if the actual state in the physical world is unknown. The choice of the sensor itself is critical as it impacts the functionality and accuracy of the DT model. S. Khan et al. [44] discussed the importance of the sensor’s position in data collection for the creation of DT models. If the sensor utilized provides inaccurate measurements of the patient’s respiration rate, the DT model will not replicate the respiration behavior in real-time. This will lead to inaccurate recommendations with the DT utilized in research or clinical trials.

In the context of DT technology in healthcare, unobtrusive sensing through Wi-Fi CSI has a vital role in building an accurate DT model that reflects the current state of the patient. The benefits of data sensing in DT include predictive analysis, equipment maintenance, optimizing healthcare, accurate real-time monitoring, and improved decision-making. Unobtrusive Wi-Fi sensing with outstanding characteristics gives it a broad range of potential applications in DT and the possibility to be the cornerstone of the following generation of sensing technology.

IV. PRELIMINARIES

A. CHANNEL STATE INFORMATION (CSI)

Numerous wireless network standards e.g., LTE, Wi-Fi, and WiMAX embrace Orthogonal Frequency-Division Mul-
tiplexing (OFDM) for communication [62]. OFDM is the suitable choice for achieving high data rates and frequency-selective channels. The total spectrum is split into narrowband orthogonal subcarriers in OFDM. The channel fading caused by large delay spreads is lessened by the utilization of Inverse Fast Fourier Transform (IFFT) for data transmission on the subcarriers. The complexity of the Fast Fourier Transform (FFT) at the receiver can be reduced by the utilization of cyclic redundancy. Channel properties of the communication link between the transmitter and receiver are represented by the CSI. It can be freely acquired from the signals of COTS Wi-Fi devices equipped with a Network Interference Card (NIC). The CSI signals are the superpositions of the signals from different propagation paths. The outcome of analyzing the CSI is that the information of the surrounding, encoded in the Wi-Fi signals, can be acquired. The CSI has been measured at different subcarrier frequencies due to the OFDM. Multiple antennas are authorized to communicate through multiple data streams in a Multiple-Input Multiple-Output (MIMO) system. The propagation of a Wi-Fi signal can be affected by the micro-movement of the subject. The kind of micro-movement under observation in this research is respiration. This can thus be detected by CSI. N. Bao et. al. [63] provide a discussion on the phase and amplitude information has a lower estimation error than 3.5 breaths/minute. It is stated by the authors that the frame-capture-based respiration estimation has a lower estimation error than 3.5 breaths/minute. Some of the PCA advantages are:

1) Lower memory requirements.
2) Orthogonality decreases the absence of repetition in the data by utilizing orthogonal components [70], [71].
3) Noise reduction as the maximum variation basis is considered. In the background, the small variation is automatically removed [70].
4) Reducing complexity as data is grouped by the PCA [70], [71].
5) PCA does not require complex computations.

However, in the PCA, until the training data provides specific information, the simplest invariance could not be captured [72]. Also, it is difficult to compute the covariance matrix accurately in PCA [70]. L. D. Khanh et. al. [73] utilized Ultra-Wide Band (UWB) impulse radar to sense the vital signals of the heart rate of the patient. The data is subjected to PCA for reducing data complexity and acquiring the projection on the primary PC. Such a projection facilitates substantially enhancing the Signal-to-Noise (SNR) in comparison to other techniques of complex signal decomposition and Direct Fast Fourier Transform (DFFT). PhotoPlethysmoGraphy (PPG) signals can be utilized to obtain cardiorespiratory signals i.e., respiration rate and heart rate which will lessen the number of sensors placed on the patient’s body for data collection [74]. The authors proposed Ensemble Empirical Mode Decomposition with Principal Component Analysis (EEMD-PCA) for estimating heart rate and respiratory rate concurrently from the PPG datasets of MIMIC (Physionet ATM data bank) and Capnobase database with the short length of 30 seconds. The proposed algorithm provided better results compared to existing methods of Correntropy Spectral Density (CSD) [75], Power Spectral Density (PSD) [75], Smart Fusion [76], and Empirical Mode Decomposition (EMD) [77]. Another example of recent work of respiration rate estimation based on Wi-Fi frame capture [78]. The authors worked on Beamforming Feedback Matrices (BFMs) contained in the capture frames. BFM is a rotated matrix of CSI. PCA was utilized to separate the data from the chest movements of the subjects in the BFMs. The resulting data were subjected to Discrete Fourier Transform (DFT) to estimate respiration rates in the frequency domain. It is stated by the authors that the frame-capture-based respiration estimation has a lower estimation error than 3.5 breaths/minute.

1) Mathematical Model

Details of mathematical model of PCA is discussed in [79], [80] but the following mathematical model provides a generic overview of how PCA works in our dataset. The input matrix X of time series respiration sensor data is represented in

\[y_i = H_l x_i + n_l \] (1)

The transmitted signal is represented by \(x_i = R(N_T) \) and the received signal is represented by \(y_i = R(N_R) \). The subcarrier index is represented by \(i \) whereas, \(n_l \) is the noise vector. \(N_T \) represents the number of the transmitter antenna. \(N_R \) are the number of receiver antenna. \(H_l \in C^{N_R \times N_T} \) represents the complex CSI matrix.

\[H_{lm}^{mn} = \begin{bmatrix} H_{11} & ... & H_{1N_T} \\ H_{21} & ... & H_{2N_T} \\ ... & ... & ... \\ H_{N_R1} & ... & H_{N_RN_T} \end{bmatrix} \] (2)

For the communication link, between the \(n-th \) transmitter antenna and \(m-th \) receiver antenna, \(H_{lm}^{mn} \) is the channel frequency response.

\[H_{lm}^{mn} = |H_{lm}^{mn}| + \exp(j\angle H_{lm}^{mn}) \] (3)

\(\angle H_{lm}^{mn} \) and \(|H_{lm}^{mn}| \) correspond to the phase and amplitude response.

B. PRINCIPAL COMPONENT ANALYSIS (PCA)

The complexity of high-dimensional sensor data is simplified while preserving trends and patterns by using PCA. PCA retains information as much as possible from the original signal while deriving the data signal into a fewer number of decorrelated linear combinations. The general idea of PCA is to find the Principal Components (PC) of the data signals that are orthogonal to each other [65]. PCA can be utilized in multiple applications e.g., data compression, noise reduction, biological signal processing [66], and image and pattern recognition [67], [69]. Some of the PCA advantages are:

1) Lower memory requirements.
2) Orthogonality decreases the absence of repetition in the data by utilizing orthogonal components [70], [71].
3) Noise reduction as the maximum variation basis is considered. In the background, the small variation is automatically removed [70].
4) Reducing complexity as data is grouped by the PCA [70], [71].
5) PCA does not require complex computations.
The respiration signals are obtained from raw sensor data by using the PCA through the covariance matrix. The covariance matrix is defined as Equation 5 or Equation 6:

\[C = \text{conv}(X) \]
\[C = \frac{1}{n} \sum_{j=1}^{n} X_j X_j^T \]

This provides an \(m \times m \) matrix. The answer to Equation 7 provides the eigenvector \(\alpha_j \) and eigenvalues \(\lambda_j \):

\[C_j \alpha_j = \lambda_j \alpha_j \quad j = 1, 2, 3, 4, \ldots n \]

The PCA acquired are using Equation 8:

\[z_j = \alpha_j X \]

They are assembled in order of magnitude of eigenvalues. The eigenvalues correspond to the fraction of the total variance. So, the PC with the most variance is considered the signal with the most data.

D. SINGLE VARIABLE DECOMPOSITION (SVD)

SVD is a characteristic decomposition and massive data compression technique utilized in the fields of data analysis, ML, and signal processing. SVD disassembles the sensor data matrix into three components: U (left singular vector), \(\Sigma \), and V (right singular vector). The U and V are the orthogonal matrices, whereas, \(\Sigma \) is the singular values of the original matrix represented in a diagonal matrix. S. Liu et. al. [87] provided a detailed mathematical model of SVD for signal processing. According to [88], a simpler version can be represented in equation 10:

\[A = U \Sigma V^T \]

Where \(A \) is an MxN matrix, \(U \) is an MxM, \(\Sigma \) is an MxN matrix, and \(V^T \) is an NxN matrix.

In our research, the purpose of the SVD method is to achieve denoising, dimensionality reduction, and characteristic decomposition to estimate the patient’s BPM for the creation of a respiration DT model.

V. RESPIRATION DATA COLLECTION WITH ESP32

ESP32 Microcontroller units containing Wi-Fi modules using the esp32-csi tool have been utilized to collect datasets i.e., Wi-Fi sending data using CSI for respiration rate measurements, in a standard 3m x 3m room [89]. With respect of Fig. 3, this is the initial stage where patient respiration data collection is performed with ESP32 sensor. The patient chest expansion and contraction during the breathing process perturbs the Wi-Fi’s propagation environment. The chest small perturbations are detected as small changes in the Wi-Fi CSI data [90]. The Wi-Fi CSI-based non-invasive sensor datasets are collected from the experiments to be utilized for creating a patient DT model. The experiment was performed with the Wi-Fi transmitter and receiver in a 3m x 3m room. The subject is seated around 0.9m perpendicularly from the midpoint of the transmitter-to-receiver direct line-of-sight distance away from the Wi-Fi transmitter and receiver, which were installed at a height of 0.85m from the floor level. The subject’s age is 26; 1.56m tall and weighs 47kg. Sensor data is collected over 2 minutes with 120 packets per second sampling rate of the transmitter. The sensor data is expected to be 14400 packets according to the sampling rate, but it is expected in the experimental setup to have losses. The sensor data has 52 subcarriers as the sensor with Wi-Fi CSI characteristics utilizes the concept of OFDM. The beats are set to a range of 12BPM to 28BPM to depict the respiration rate of older adults. The range of normal BPM for older adults is 12 to 16 and beyond which is an indication of health problems. MATLAB has been used to acquire Wi-Fi CSI signal from the .csv file, signal processing, and utilizing ML algorithms for BPM rate calculation, classification of normal and abnormal BPM, and predicting BPM values. Fig. 4 represents the Wi-Fi CSI respiration rate data collection of a patient with an ESP32 sensor.
VI. RESPIRATION DT MODEL PRE-PROCESSING

A. METHODOLOGY AND FILTERS COMPARISON

Filtering is the central part of extracting the respiration signal from a strong noisy signal. It is attained by utilizing capable bandpass digital IIR filters. In [33], [91], the authors provided a comparison of IIR and FIR filters for baseline noise removal in the ECG signals. Due to the computational complexity of FIR, higher memory requirements, and phase delay due to higher-order FIR, IIR is considered a better option. Fig. 5 provides an overview of the methodology adopted for preprocessing raw Wi-Fi CSI data for estimating patient BPM.

![Image of pre-processing flowchart]

FIGURE 5: Block diagram of pre-processing raw respiration Wi-Fi CSI data

In this research, we aim to utilize bandpass digital IIR filters for acquiring the appropriate frequency range (0.1Hz to 0.6Hz) for respiration rate from the noisy Wi-Fi CSI sensor data. A comparison of multiple IIR filters and wavelet decomposition method is additionally carried out. The following are compared in terms of acquiring accurate BPM from raw sensor data:

1. Butterworth Filter (BF)
2. Chebyshev type 1 Filter (CT1F)
3. Chebyshev type 2 Filter (CT2F)
4. Elliptic Filter (EF)
5. Wavelet Decomposition

Table 1 provides a comparison of multiple IIR filters and wavelet decomposition for the calculated BPM after preprocessing. The resulting data from each of the methodology is passed through the PCA for respiration rate estimation. The elliptic filter provides the least number of errors in calculating the BPM concerning the inter-observer variability threshold of +-5 BPM [92]–[94]. The elliptical filter provides a relatively better estimation of the BPM with 87.5% accurate estimation as compared to other bandpass filters such as Butterworth (BF), Chebyshev type 1 Filter (CH1), Chebyshev type 2 Filter (CH2), and wavelet Decomposition (62.5%, 75%, 68.75%, and 75% respectively). Additionally, for normal BPM (12 to 16), elliptical filter presents no inaccurate calculation of the BPM based on the inter-observer variability threshold.

TABLE 1: Respiration Rate of Multiple IIR filters

<table>
<thead>
<tr>
<th>BPM</th>
<th>Butterworth</th>
<th>Elliptic</th>
<th>Chebyshev1</th>
<th>Chebyshev2</th>
<th>Wavelet</th>
</tr>
</thead>
<tbody>
<tr>
<td>12BPM</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13BPM</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>14BPM</td>
<td>7</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>15BPM</td>
<td>9</td>
<td>14</td>
<td>15</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>16BPM</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>17BPM</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>18BPM</td>
<td>21</td>
<td>16</td>
<td>21</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>19BPM</td>
<td>22</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>20BPM</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>21BPM</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>22BPM</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>23BPM</td>
<td>27</td>
<td>21</td>
<td>27</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>24BPM</td>
<td>29</td>
<td>10</td>
<td>29</td>
<td>29</td>
<td>12</td>
</tr>
<tr>
<td>25BPM</td>
<td>8</td>
<td>23</td>
<td>21</td>
<td>29</td>
<td>18</td>
</tr>
<tr>
<td>26BPM</td>
<td>12</td>
<td>30</td>
<td>34</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>27BPM</td>
<td>7</td>
<td>10</td>
<td>19</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td>28BPM</td>
<td>33</td>
<td>30</td>
<td>10</td>
<td>33</td>
<td>28</td>
</tr>
</tbody>
</table>

B. ELLIPTIC FILTER PARAMETRIC ANALYSIS

Table 2 represents the values of metrics such as SNR, Peak Signal-to-Noise Ratio (PSNR), and Shannon entropy for all the experimental and pre-processed BPM signals. This provides a performance overview of the pre-processing methodology implemented to acquire the subject respiration information from raw sensor data. The SNR values are shown for both the raw and the pre-processed signal. It indicates an increase in signal strength with the pre-processing methodology implemented. PSNR is the ratio of the maximum possible value of a signal and the noise level. PSNR is interpreted as the higher the value, the better the quality of the signal. According to Table 2, the PSNR provides positive values for all the BPM showing a positive signal strength over the noise. The Shannon entropy is considered a natural choice for quantifying the complexity of a signal. Higher entropy represents higher uncertainty and a more unpredictable signal. Shannon entropy is considered for the raw and pre-processed signal. According to Table 2, for the majority of the signals, there is an increase in entropy value...
after pre-processing is applied to the raw signal. A higher entropy can be an indication of pre-processing adding noise or complexity to raw sensor data. However, the BPM values acquired for the majority of the sensor data are within the inter-observer variability threshold of ±5.

Table 2: Signal parametric analysis before and after Pre-Processing with Elliptic filter

<table>
<thead>
<tr>
<th>BPM</th>
<th>SNR-Raw</th>
<th>SNR-Processed</th>
<th>Entropy-Raw</th>
<th>Entropy-Processed</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0.16</td>
<td>4.51</td>
<td>4.57</td>
<td>12</td>
<td>5.01</td>
</tr>
<tr>
<td>13</td>
<td>0.67</td>
<td>3.56</td>
<td>3.52</td>
<td>15</td>
<td>6.04</td>
</tr>
<tr>
<td>14</td>
<td>2.10</td>
<td>8.57</td>
<td>3.90</td>
<td>18</td>
<td>8.40</td>
</tr>
<tr>
<td>15</td>
<td>0.84</td>
<td>5.20</td>
<td>4.5</td>
<td>9</td>
<td>3.58</td>
</tr>
<tr>
<td>16</td>
<td>0.51</td>
<td>9.96</td>
<td>3.93</td>
<td>21</td>
<td>4.48</td>
</tr>
<tr>
<td>17</td>
<td>1.03</td>
<td>15.72</td>
<td>3.96</td>
<td>22</td>
<td>7.39</td>
</tr>
<tr>
<td>18</td>
<td>0.18</td>
<td>6.43</td>
<td>4.21</td>
<td>21</td>
<td>2.93</td>
</tr>
<tr>
<td>19</td>
<td>0.66</td>
<td>3.88</td>
<td>4.44</td>
<td>22</td>
<td>2.54</td>
</tr>
<tr>
<td>20</td>
<td>0.07</td>
<td>8.29</td>
<td>4.53</td>
<td>24</td>
<td>2.67</td>
</tr>
<tr>
<td>21</td>
<td>0.57</td>
<td>2.58</td>
<td>4.33</td>
<td>10</td>
<td>1.80</td>
</tr>
<tr>
<td>22</td>
<td>0.84</td>
<td>8.30</td>
<td>3.34</td>
<td>24</td>
<td>4.08</td>
</tr>
<tr>
<td>23</td>
<td>1.17</td>
<td>7.99</td>
<td>3.38</td>
<td>27</td>
<td>4.74</td>
</tr>
<tr>
<td>24</td>
<td>0.37</td>
<td>3.61</td>
<td>3.32</td>
<td>29</td>
<td>5.42</td>
</tr>
<tr>
<td>25</td>
<td>0.09</td>
<td>11.31</td>
<td>3.47</td>
<td>29</td>
<td>4.04</td>
</tr>
<tr>
<td>26</td>
<td>0.75</td>
<td>8.62</td>
<td>4.84</td>
<td>10</td>
<td>0.61</td>
</tr>
<tr>
<td>27</td>
<td>1.59</td>
<td>10.42</td>
<td>4.28</td>
<td>9</td>
<td>4.3</td>
</tr>
<tr>
<td>28</td>
<td>0.45</td>
<td>10.95</td>
<td>4.28</td>
<td>33</td>
<td>4.3</td>
</tr>
</tbody>
</table>

C. STEP-BY-STEP PERFORMANCE ANALYSIS

Fig. 6 provides the results throughout the multiple stages of pre-processing presented in Fig. 5. Following is the step-by-step detail elaboration of the pre-processing output:

1) Fig. 6(a) is the raw 12 BPM Wi-Fi CSI sensor data considered as an example of pre-processing techniques. The DC offset is removed from the sensor data set by subtracting the mean from it, Fig. 6(b).

2) The sensor data is then subjected to a smoothing process i.e., the moving average [52] in Fig. 6(c). Smoothing is implemented to discover important patterns in data while removing the unnecessary information (i.e., noise).

3) The smoothed data is passed through the bandpass filter (frequency range 0.1Hz to 0.6Hz [73, 76, 77]) shown in Fig. 6(d). A bandpass filter allows the signal in a specific band of frequencies, called a passband but blocks the components with frequencies above and below the band. This is a contrast to the high pass filter and low pass filter, which allows the components above and below the specific frequencies, respectively. An ideal bandpass filter will have a completely flat passband with all the frequencies passing to the output without attenuation or amplification and complete attenuation for frequencies outside the passband. But achieving an ideal bandpass filter is not possible in the real world.

4) As for dimensionality reduction, by using PCA, the processed data is projected in the form of principal components. The total number of principal components is 52 presented in Fig. 6(e).

5) A scree plot has been used to visualize all the principal components of the filtered CSI signal. This will help in deciding which PC to retain and which to let go of. The PCs of the data signal will have variable variance. PC1 will have the highest variance, PC2 with the second highest variance, and so on. No definite rule is present for deciding when to stop including the variables but in [95], two recommendations are provided. The first recommendation is to select stop selecting the variables when an elbow in the scree plot appears – the plot begins to flatten out. The second recommendation is to stop selecting the variables when the variable falls below 1. B. Yu et. al. [96] provided a discussion in terms of the bandpass filter and PCA. With the bandpass filter removing the noise, this allows the PCA to maximize the amplitude of the signal rather than the noise. The authors calculated the scree plot and selected the first PC component since it has the highest variance. Based on the discussion of [95], [96] and according to the scree plot of Fig. 6(f), the first PC will be selected to calculate the BPM of the patient.

6) The first PC is represented in Fig. 6(g). The final stage is to implement the Power Spectral Density (PSD). It is the method of characterizing the distribution of the signal frequency components in an easier visual interpretation than a complex Discrete Fourier Transform (DFT) [95].

7) Fig. 6(h) represents the PSD graph has a frequency, with the maximum power, 0.205 is multiplied by 60 to acquire 12.3 BPM. According to [92]–[94], the clinical limits can be defined as +/- 5 BPM, or the inter-observer variability in the clinical setting can result in a BPM difference between 2 to 5 BPM.

D. COMPARISON OF MULTIPLE TECHNIQUES AND RESDT MODEL

In our research, we aim to perform a comparison to analyze the suitability of multiple techniques such as EMD, PCA, EMD-PCA, and SVD in the development of the ResDT model. The elliptic filter will be used as a bandpass filter in comparison to EMD, PCA, EMD-PCA, and SVD. EMD-PCA is a modification to the initial EMD method. This offers a harmonious approach toward denoising and finding out prominent features in raw sensor data. EMD applied as a pre-processing step, generates IMFs. These IMFs are further analyzed by PCA to identify the most relevant IMFs and extract their corresponding features. The combination of these techniques allows for extracting salient features, a robust framework for denoising, and a compact and meaningful representation of data.

Table 3 provides a comparison between EMD, PCA, EMD-PCA, and SVD in terms of estimation of the patient BPM. According to the interobserver variability of ±5BPM, PCA provides the least errors in BPM estimation as compared to other methodologies. Incorrect BPM estimations are pre-
Pre-processing Wi-Fi CSI Data

(a) Raw respiration Wi-Fi CSI data
(b) DC-off set removed from respiration Wi-Fi CSI data
(c) respiration Wi-Fi CSI data after moving average filter
(d) Respiration Wi-Fi CSI data after Elliptical bandpass filter
(e) All principal components after PCA
(f) Scree plot
(g) First Principal Component (PC1)
(h) PSD of First Principal Component

FIGURE 6: Pre-processing of raw respiration Wi-Fi CSI data (a) Raw respiration Wi-Fi CSI data (b) DC-off set removed from respiration Wi-Fi CSI data (c) respiration Wi-Fi CSI data after moving average filter (d) Respiration Wi-Fi CSI data after Elliptical bandpass filter (e) All principal components after PCA (f) Scree plot (g) First Principal Component (PC1) (h) PSD of First Principal Component

PCA is the suitable option to be utilized as a pre-processing methodology for the respiration data acquired through ESP32 unobtrusive sensor. The resulting BPM through the PCA is presented in Fig. 7 as a respiration DT model, ResDT.

Similar to [24], the ResDT model will be presented in the form of a estimated BPM graph. The BPMs are recorded by the subject in a linear format starting from 12BPM to 28BPM. The respiration data is currently from a single subject to create the ResDT model. It is performed on purpose to know that the data collected can be labeled a certain BPM for the implementation of supervised ML. The ResDT model is represented in Fig. 7. According to the interobserver variability of +5BPM, the least number of experimental BPM (15, 21, 27) is incorrectly estimated after applying the pre-processing methodologies.
TABLE 3: Comparison based on BPM estimation

<table>
<thead>
<tr>
<th>CSI DATA</th>
<th>EMD</th>
<th>PCA</th>
<th>SVD</th>
<th>EMD-PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 BPM</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13 BPM</td>
<td>14</td>
<td>15</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>14 BPM</td>
<td>17</td>
<td>15</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>15 BPM</td>
<td>9</td>
<td>14</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>16 BPM</td>
<td>21</td>
<td>14</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>17 BPM</td>
<td>17</td>
<td>22</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>18 BPM</td>
<td>21</td>
<td>16</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>19 BPM</td>
<td>22</td>
<td>21</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>20 BPM</td>
<td>21</td>
<td>24</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>21 BPM</td>
<td>33</td>
<td>25</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td>22 BPM</td>
<td>10</td>
<td>24</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>23 BPM</td>
<td>19</td>
<td>21</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>24 BPM</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>25 BPM</td>
<td>21</td>
<td>23</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>26 BPM</td>
<td>12</td>
<td>30</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>27 BPM</td>
<td>19</td>
<td>10</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>28 BPM</td>
<td>12</td>
<td>30</td>
<td>22</td>
<td>22</td>
</tr>
</tbody>
</table>

FIGURE 7: ResDT of the patient’s BPM

VII. MULTI-CLASS AND BINARY-CLASS SUPERVISED CLASSIFICATION FOR RESDT MODEL

Various combinations of generic data processing techniques precede ML classification and regression processes before the respiration rate DT. Pre-processing is the first stage before any ML implementation in terms of learning and understanding depending on the features [97]. Some of the recent research work involves the utilization of ML algorithms for the accurate prediction of numerous medical methodologies with real-time data and processing capability [98]. I. L. Lee et. al. [15] elaborated on a context-aware healthcare system using the DT framework. ECG-based rhythms classifier model is created with ML to detect cardiac problems and diseases. In [99], authors utilized ML algorithms to accurately measure the bio-signals.

In our research, the focus is to utilize numerous ML based algorithms for supervised classification in the ResDT model. This will help analyze the suitability of of algorithms, classification problems, and understanding toward a multi-patient hospital DT model.

A thriving DT healthcare model depends on effective and precise ML algorithms to accurately perform multiple processes. Pre-processing has its importance. The signal-to-noise ratio is improved by pre-processing, which directly impacts the decision-making ability of the ML model for classification and regression. Data heterogeneity, data redundancy, and noisy data are some of the problems with ML implemented directly on raw datasets [100]. Experimental data is of a single subject over 2 minutes for every BPM. However, to increase the size of the data, the data is split into 30 secs. The features selected are of, according to Fig. [h], frequency and power value. The frequency value selected will correspond to the highest power value in that PSD for those specific 30-sec data selected. The total data size for ML is 408 BPM values. This will help analyze the ML algorithm’s accuracy in the ResDT model in terms of how successful they are in the classification of a certain BPM value (abnormal or normal) if continuous 30 secs pre-processed data is provided as input. The data is shuffled, and the total data set is kept at 80% training and 20% test datasets respectively. The training dataset is split into training and validation data sets. For validation, the k-fold cross-validation method is utilized [33]. The purpose of the validation data set is to provide an estimate of the model skill. The capability of the ML model on an unseen data sample is estimated by utilizing the statistical method of cross-validation. Cross-validation 10-fold is used in our ML ResDT model. Fig. 8 provides a representation of the 10-fold cross-validation for ML algorithms in the ResDT model. The validation set will be considered as the first fold, and the remaining n-1 folds (n=10 here) will be utilized for fitting the model and then the second fold and so on.

FIGURE 8: 10-fold Cross-Validation in ResDT Model

A. CLASSIFICATION ANALYSIS

Table 4 provides the accuracies of multiple classification algorithms on the calculated BPM, pre-processed raw Wi-Fi CSI data, of the ResDT model. These 21 algorithms are utilized for supervised learning classification problems. MATLAB classification learner app allows for built-in classifiers. Overall, these algorithms are a strong starting point for many supervised learning problems with a range of techniques that can be adapted for many different types of applications and data. Table 4 provides the binary-class and multi-class classification accuracies of the 21 supervised classification
algorithms. The ML algorithms have to classify the abnormal BPM (17 BPM to 28 BPM) and normal BPM (12 BPM to 16 BPM). In multi-class classification, the ML algorithms have to classify between 13 different BPM ranging from 12 BPM to 28 BPM. Free Tree algorithm has the best accuracies of 96.9% and 95.8% for multi-class and binary-class classification respectively in the proposed ResDT model. A comparison in terms of classification can be carried with [64]. J. Hu et. al. utilized the Convolutional Neural Network (CNN) on respiration Wi-Fi CSI sensor data for classification problems to show the potential of learning-based algorithms in unobtrusive vital sign detection. Our proposed ResDT has multi-class and binary-class classification accuracies of with 96.9% and 95.8% respectively compared to [64] 96.05%. Additionally, the classification is performed on 16 different classes as compared to [64] 6 classes.

The confusion matrix of the fine tree algorithm for multi-class and binary-class classification is Fig. 9 and Fig. 10. According to [101], the k-fold cross-validation method is considered to have the strongest bias performance estimates with a small data set. The authors performed a comparison with multiple validation methods in terms of bias ML performance estimation.

For binary classification, a metric of performance analysis is the Receiver Operating Characteristic (ROC). The ROC is the relationship between the True Positive Rate (TPR) and the False Positive Rate (FPR) for the different threshold values applied to classify the data. Whereas the AUC (Area Under the Curve) provides the area under this curve as a measure of the overall performance of the classifier. As the ROC is based on a binary classification system, the abnormal BPM (17 onward) is labeled as class 0, and the normal BPM (12 to 16) and as class 1. Fig. 11 provides the ROC and AUC (Area Under Curve) of the classes for the binary classification problem. The ROC curve of the classes is different, but the AUC is the same. That identifies that the two classes have achieved the same level of performance but in different ways.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Multi-Class Accuracy%</th>
<th>Binary Class Accuracy%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine tree</td>
<td>96.9</td>
<td>95.8</td>
</tr>
<tr>
<td>Medium tree</td>
<td>95.9</td>
<td>92.8</td>
</tr>
<tr>
<td>Coarse tree</td>
<td>70.2</td>
<td>93.8</td>
</tr>
<tr>
<td>Linear SVM</td>
<td>93.9</td>
<td>84.4</td>
</tr>
<tr>
<td>Quadratic SVM</td>
<td>90.2</td>
<td>84.4</td>
</tr>
<tr>
<td>Cubic SVM</td>
<td>90.3</td>
<td>77.9</td>
</tr>
<tr>
<td>Fine Gaussian SVM</td>
<td>82.2</td>
<td>89.8</td>
</tr>
<tr>
<td>Medium Gaussian SVM</td>
<td>93.6</td>
<td>90.8</td>
</tr>
<tr>
<td>Coarse Gaussian SVM</td>
<td>89.9</td>
<td>84.4</td>
</tr>
<tr>
<td>Fine KNN</td>
<td>89.6</td>
<td>91.8</td>
</tr>
<tr>
<td>Medium KNN</td>
<td>80.4</td>
<td>92.8</td>
</tr>
<tr>
<td>Cosine KNN</td>
<td>58.6</td>
<td>90.8</td>
</tr>
<tr>
<td>Cubic KNN</td>
<td>78.2</td>
<td>92.8</td>
</tr>
<tr>
<td>Weighted KNN</td>
<td>88.3</td>
<td>93.8</td>
</tr>
<tr>
<td>Bagged trees–Ensemble</td>
<td>96.1</td>
<td>94.8</td>
</tr>
<tr>
<td>Subspace discriminant–Ensemble</td>
<td>80.6</td>
<td>84.4</td>
</tr>
<tr>
<td>Subspace KNN–Ensemble</td>
<td>68.1</td>
<td>93.8</td>
</tr>
<tr>
<td>Narrow NN</td>
<td>92.3</td>
<td>91.8</td>
</tr>
<tr>
<td>Medium NN</td>
<td>93.6</td>
<td>94.8</td>
</tr>
<tr>
<td>Wide NN</td>
<td>94.2</td>
<td>93.8</td>
</tr>
<tr>
<td>Bilayered NN</td>
<td>92.6</td>
<td>94.2</td>
</tr>
</tbody>
</table>
validation are indeed high but k-fold cross-validation is performed to evaluate ML algorithms with k-fold cross-validation, the fine tree algorithm provides binary and multi-class classification accuracies for healthcare professionals. Among the implemented algorithms, fine tree classification is used for BPM in decision-making scenarios. The overview of the algorithm’s accuracies in terms of multi-class and binary classification with 10-fold cross-validation, are provided for the proposed ResDT model. This provides an overview of the algorithm’s accuracies in the ResDT model.

IX. ACKNOWLEDGEMENT
This work is carried out with support from Advanced Care Research Center (ACRC).

REFERENCES

ZAFAR IQBAL is currently a PhD Student at Institute of Energy Systems, School of Engineering, University of Edinburgh. His research interests include electrical power system, grid-connected inverters, and machine learning. He completed his masters from North China Electric Power University, Beijing in Power systems and its automation. He acquired bachelor’s degree from University of Engineering and Technology (UET), Lahore, Pakistan with thesis focus on design, implementation and monitoring of photovoltaic system. He did his research assistance in multi-vector mini-grid analysis and modelling at university of Edinburgh, Edinburgh from October 2022 to February 2023. He performed the duties of lecturer at University of Management and Technology, Lahore, Pakistan from October 2017 to July 2018.

SAGHEER KHAN is currently a PhD Student at Scottish Microelectronic Centre (SMC), School of Engineering, University of Edinburgh. His research interests include Digital Twin (DT), Industry 4.0, 5G, and IoT. He did his master’s degree in electrical engineering from the National University of Sciences and Technology (NUST), Islamabad, Pakistan, in 2019, with a focus on communication and signal processing. He received the bachelor’s degree in electrical from the Army Public College of Management and Sciences (APCOMS), University of Engineering and Technology (UET), Taxila, Pakistan, in 2016, with a focus on electronics.

AAESHA ALZAABI (Member, IEEE) received her B.Sc. degree in Electrical Engineering from the American University of Sharjah, United Arab Emirates in 2017. She then joined the University of Edinburgh, where she obtained a M.Sc in Signal Processing and Communications in 2020 and is currently pursuing a Ph.D. in Engineering at the institute for Integrated Micro and Nano Systems. Her research interests include RF sensing, wireless communications, embedded systems, and sensor fusion.

TUGHRUL ARSLAN (Senior Member, IEEE) holds the Chair of Integrated Electronic Systems with the School of Engineering, University of Edinburgh, Edinburgh, U.K. He is a member of the Institute for Digital Communications, The University of Edinburgh, Edinburgh, UK, as a Professor in Digital Communications and Signal Processing. He was a member of the IEEE CAS executive committee on VLSI Systems and Applications (1999 to date), and a member of the steering and technical committees of a number of international conferences. He is a co-founder of the NASA/ESA conference on Adaptive Hardware and Systems (AHS) and currently serves as a member of its steering committee.

THARMALINGAM RATNARAJAH (Senior Member, IEEE) is currently with the Institute for Digital Communications, The University of Edinburgh, Edinburgh, UK, as a Professor in Digital Communications and Signal Processing. He was a Head of the Institute for Digital Communications during 2016–2018. His research interests include signal processing and information theoretic aspects of 6G wireless networks, full-duplex radio, mmWave communications, random matrices theory, interference alignment, statistical and array signal processing, and quantum information theory. He has published over 400 publications in these areas and holds four U.S. patents. He has supervised 16 PhD students and 21 post-doctoral research fellows and raised $11+ million USD of research funding. He was the coordinator of the EU projects ADEL (3.7M€) in the area of licensed shared access for 5G wireless networks, HARP (4.6M€) in the area of highly distributed MIMO, as well as EU Future and Emerging Technologies projects HIATUS (3.6M€) in the area of interference alignment and CROWN (3.4M€) in the area of cognitive radio networks. Dr. Ratnarajah was an associate editor IEEE Transactions on Signal Processing, 2015-2017 and Technical co-chair, The 17th IEEE International workshop on Signal Processing advances in Wireless Communications, Edinburgh, UK, 3-6, July 2016. Dr. Ratnarajah is a Fellow of Higher Education Academy (FHEA).