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Abstract 

A common measurement convention within the field of metacognition is to divide 

participants into quartiles based on task performance, and then compare self-estimated 

and actual scores within these sub-groups. This analysis strategy created the famous 

Dunning-Kruger effect, which asserts that the poorest performers tend to grossly 

overestimate their abilities. A study by Zhou and Jenkins (2020) has recently replicated 

this effect within the domain of face matching. However, it can be shown that the 

analysis strategy induces numerical artefacts prone to misinterpretation, and that 

randomly generated data lead to the same pattern of results. Estudillo and Wong (2021) 

used a different quartiles-based approach to argue that only the lowest and highest 

performers on a task of face recognition showed some insight into their performance. 

Again, a numerical artefact can explain their result, with the restricted range of the 

second and third quartiles causing reduced observed correlations between actual and 

self-estimated abilities. These studies highlight the need for methodological caution 

when exploring metacognitive questions, and we outline some avenues that may aid 

future investigation. 
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Introduction 

 

This commentary draws attention to two problematic analysis strategies in recent 

studies of the metacognition of face perception. The first strategy is prevalent in the 

wider literature on metacognition, and we should be vigilant not to let it become 

established within the face perception literature. The second is relatively novel, and so it 

may be useful to raise awareness of its shortcomings here. Both strategies involve 

studying the relationship between paired measures by dividing a sample into quartiles 

on one of those measures, and both strategies induce numerical artefacts that may be 

mistaken by the unwary for meaningful patterns of behaviour. Our commentary 

focusses on articles by Zhou and Jenkins (2020) and Estudillo and Wong (2021), which 

illustrate these problematic analysis strategies, as applied to face perception. 

 

The Dunning-Kruger effect and regression to the mean 

 

Metacognition refers to the capacity to reflect on and assess one’s own cognitive 

processes. An obvious way to study this capacity is to elicit self-estimates of 

performance from participants on a particular task and compare these estimates to 

measures of their actual performance. We might further wish to know whether people 
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with different levels of ability on a task differ in terms of their metacognitive insight. 

Kruger and Dunning (1999) developed a method for making this comparison that has 

since become common. Unfortunately, the method is dangerous because it is liable to 

produce numerical artefacts that can masquerade as metacognitive differences between 

the best and the worst performers. 

Kruger and Dunning obtained actual and self-estimated measures of performance 

by asking participants to complete a cognitive task (for instance, logical reasoning), and 

also to estimate their level of performance, either as an absolute score or as a percentile 

relative to others. Participants were then ranked by actual score and divided into four 

quartiles of ability from worst (lowest quartile) to best (highest quartile). The data were 

visualised using the graphical convention shown in Figure 1, which illustrates how self-

estimated performance deviates from actual performance across the range of abilities. 

When this is done, the worst performers invariably overestimate themselves to a far 

greater extent than the best performers, who are generally more accurate in their self-

assessments and may even underestimate themselves. Figure 1a reproduces the first 

implementation of this approach (Study 1; Kruger & Dunning, 1999). 
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Figure 1. The classic DKE graphical convention, illustrating (a) the results from Study 

1 of Kruger and Dunning (1999); and the results from Experiment 2 of Zhou and 

Jenkins (2020) for (b) face identity, (c) gaze direction, and (d) emotion expression. 

Error bars represent 95% confidence intervals (not available for panel a). 

 

This general pattern of data communicates the Dunning-Kruger effect (DKE; 

Dunning, 2011), now replicated numerous times across diverse cognitive domains and 

tasks (some recent examples include: Anson, 2018; Aqueveque, 2018; Greitemeyer, 

2020; Lyons et al., 2021; Pennycook et al., 2017). Likewise, Zhou and Jenkins (2020) 
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have reported that the same pattern holds for multiple aspects of face perception, 

including the matching of identity, gaze direction, and emotional expression (Figures 

1b–1d). The lowest quartile of performers significantly overestimated themselves for 

each of these tasks, with the authors concluding that a lack of face processing ability 

was accompanied by a lack of insight into one’s ability. 

However, this pattern always arises from a DKE analysis, even if the data are just 

bounded sets of random numbers (Magnus & Peresetsky, 2022; for further discussion, 

see Kramer et al., 2022). This is illustrated in Figure 2a, which shows the same method 

of analysis as applied to random uncorrelated variables X and Y (to stand in for actual 

and self-estimated performance respectively). If we focus on those participants who 

scored in the lowest quartile on X, we will find that their score on Y is not nearly as 

extreme; and the same will be true for participants in the highest quartile (but in the 

opposite direction). This is a version of the familiar DKE in that lowest quartile 

participants overestimate themselves more than the highest quartile participants (who, in 

fact, underestimate themselves), but we would be wrong to interpret this in terms of 

metacognitive differences. Instead, it is the result of regression to the mean, an 

inevitable numerical consequence of the fact that we selected subgroups of participants 

for being extreme on one variable (X), and then evaluated their score on a second 

variable (Y) with respect to the first. The DKE analytical strategy is a recipe for 
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regression to the mean, which is why the effect replicates so reliably across diverse 

domains. 

 

 

Figure 2. Randomly generated datasets of paired data with a correlation of zero. (a) 

Both X and Y are generated from distributions with the same mean and standard 

deviation. (b) Y is generated from a distribution with the same standard deviation as X, 

but a higher mean. Quartile means come from averaging over 10,000 iterations. Error 

bars representing 95% confidence intervals are negligible in length. 

 

Unlike in Figure 2a, the classic DKE combines overestimation amongst the 

lowest-quartile performers with more accurate self-estimation in the highest quartile. 

However, this is easily modelled by setting the mean value of Y (self-estimation) to be 
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higher than the mean value of X (actual performance), as has been done in Figure 2b. In 

general, if participants think that the task is fairly easy, then their mean self-estimates 

will be quite high and overestimation at the lowest end will be exaggerated, whilst the 

self-estimates of the highest performers will look more accurate (Burson et al., 2006). 

Zhou and Jenkins (2020) observed very high mean self-estimates for matching in 

relation to gaze direction (Figure 1c) and emotional expression (Figure 1d), suggesting 

that participants generally thought these were quite easy tasks. However, the self-

estimate is not necessarily a good measure of metacognition because such methods 

cannot distinguish between metacognitive bias, a general tendency to give high or low 

estimates, and metacognitive sensitivity, an ability to discriminate whether one is 

performing well or poorly on a given trial (Fleming & Lau, 2014). 

At the participant level, metacognitive sensitivity cannot be measured by global or 

aggregate self-estimates. For this, we need psychophysical analyses of how well self-

estimates track performance across trials (see Fleming & Lau, 2014). Alternatively, we 

can examine whether self-estimates show any sensitivity to actual performance across 

participants by studying the correlation of self-estimated and actual performance. The 

correlations that Zhou and Jenkins (2020) found for unfamiliar face perception tasks 

were low (-0.06 to 0.27), as was also the case in Kruger and Dunning’s (1999) original 

studies (of humour, grammar, and reasoning). The general lack of a relationship is 

indicated by the near-horizontal grey lines seen in Figure 1, which differ little from 
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those for the random, uncorrelated variables in Figure 2. This lack of correlation implies 

that participants have little or no metacognitive insight into their face processing 

abilities and/or that aggregate or one-shot estimates are not valid measures of 

metacognitive insight. 

It is important to emphasise that even if more substantial correlations were 

observed between self-estimated and actual performance (resulting in grey lines with 

positive slopes), the problem of regression to the mean would not be resolved, although 

the severity of its effects might be reduced. Regression to the mean will always apply to 

any two variables unless they are perfectly correlated. The best way to deal with 

regression to the mean is to be aware of it, and to avoid analyses that could make our 

results prone to its influence (Campbell & Kenny, 2002). Kruger and Dunning’s (1999) 

method of analysis by quartiles is especially prone to regression, which has been 

highlighted repeatedly in the scientific literature (e.g., Burson et al., 2006; Gignac & 

Zajenkowski, 2020; McIntosh et al., 2019; Nuhfer et al., 2016, 2017) and recently in an 

article aimed at a wider readership (McIntosh & Della Sala, 2022). Researchers 

interested in metacognition in relation to face perception should be aware of this 

statistical artefact and avoid making causal explanations from it. 

 

Within-quartile correlations and range effects 
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As noted, one potential strategy to assess metacognitive sensitivity is to study the 

correlation between self-estimates and actual performance. Provided that the self-

estimate is a valid measure of metacognitive insight, then this correlation can be 

informative about metacognitive sensitivity at the group level. This approach was taken 

recently by Estudillo and Wong (2021), who were interested in the relationship between 

face recognition ability, assessed by the Chinese version of the Cambridge Face 

Memory Test (CFMT-Chinese; McKone et al., 2012), and insight into one’s own face 

recognition difficulties, assessed by the 20-item prosopagnosia index (PI-20; Shah, 

Gaule, et al., 2015; Shah, Sowden, et al., 2015). Across a sample of 255 Chinese 

ethnicity students, they found a moderate overall association between test scores and 

self-estimated abilities (r = -0.35).1 

In an attempt to investigate whether the level of insight varied across the range of 

performance, Estudillo and Wong then subdivided their sample into performance 

quartiles on the ability test (CFMT) and re-assessed the correlation with PI-20 scores 

per quartile. They found that the group-level relationship remained statistically 

significant for the lowest and highest quartiles only. They also replicated this result in a 

secondary dataset reanalysed from Gray et al. (2017; N = 425). Given this consistent 

pattern across quartiles, the authors concluded that only people at the lowest or highest 

ends of actual ability have metacognitive insight into their level of performance. 

 
1 Because high CFMT scores indicate better face recognition abilities, and higher PI-20 scores represent 
more subjective face processing difficulties, the expected correlation is negative. 
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However, it is once again the numerical approach that explains these apparent 

subgroup differences, rather than any true differences of metacognition. To appreciate 

this, it is critical to consider the effect of range restriction on the strength of correlation 

(see Goodwin & Leech, 2006; also noted by Burson et al., 2006). By dividing the face 

recognition test scores (assumed to be normally distributed within the population) into 

quartiles, we should expect that the scores within the second and third quartiles (the 

middle 50% of the data) are more restricted in range than those within the lowest and 

highest quartiles (see Figure 3). 

 

 

Figure 3. Quartiles and their score ranges. For the distribution of CFMT-Chinese test 

scores (M = 56.5, SD = 8.2; Estudillo & Wong, 2021), as for any normal distribution, 
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the second and third quartiles (white) will have a more restricted range of test scores 

(spanning 0.67 standard deviations either side of the mean) than the lowest and highest 

quartiles (extending out to more than 2 standard deviations; grey). 

 

For any bivariate population with a non-zero underlying relationship, restricting 

the range of a subsample will result in a lower estimated correlation. Conversely, 

because the spread of data in the lowest and highest quartiles is greater than in the 

middle quartiles, we should expect to see larger correlations within those quartiles. As 

Figure 4 illustrates, randomly generated bivariate data with a population-level 

correlation of -0.35 reproduce exactly this pattern of enhanced correlations in the lowest 

and highest quartiles (though note that all within-quartile correlations are weaker than 

the true population correlation, again due to range restriction).2 

 

 
2 Well-established methods exist for addressing relationships between variables bounded by restricted 
ranges. For example, Thorndike’s Case 2 adjustment can be used to predict the association across the 
whole sample when faced with range-restricted data (see Sackett & Yang, 2000). 
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Figure 4. The pattern of quartile correlations resulting from randomly generated data 

following the parameters of Estudillo and Wong (2021). In each iteration, the actual 

scores and self-estimated abilities were constrained to show a correlation of -0.35 

(dashed line) and came from normal distributions with means and standard deviations 

matching the original data. Quartile correlations are averaged over 10,000 iterations. 

The original data from Estudillo and Wong appear in grey for comparison. Error bars 

represent 95% confidence intervals and are negligible in length for the randomly 

generated data. 

 

This range restriction artefact is quite distinct from regression to the mean 

discussed above, although both may be magnified by subdividing participants into 
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quartiles. More generally, such arbitrary divisions of continuous variables, such as the 

common clinical practice of dichotomising, can mask group level patterns and reduce 

power to detect true relationships in the dataset (Altman & Royston, 2006; MacCallum 

et al., 2002; McClelland et al., 2015). 

 

Moving beyond quartiles 

 

After accepting that analytical strategies based on the arbitrary sorting and division of 

continuous data into performance quartiles are potentially problematic, how might we 

proceed when investigating metacognitive insight within face perception? To explore 

the relationship between actual scores and self-estimates of ability, one must first 

establish the reliability of the data produced from each of the two measures. If either 

measure fails to produce data with acceptable levels of reliability then advancing to the 

stage of paired comparisons is premature (Nuhfer et al., 2016). In paired measures, the 

two instruments/measures must also be aligned, meaning that participants self-assess 

their competence on the same challenge in which they demonstrate competence. 

Within the domain of face perception, researchers have arguably yet to establish a 

measure of self-reported ability that is sufficiently aligned with actual performance 

measures (Bobak et al., 2019; Matsuyoshi & Watanabe, 2021). For example, the 

correlation between performance and derived self-estimates featured in Zhou and 
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Jenkins (2020) was 0.27 or below, while the strength of (negative) correlation between 

CFMT and PI-20 scores in Estudillo and Wong (2021) was 0.35. Such misalignment 

suggests either that metacognitive insight for face perception is very poor in general or 

that the measures themselves are insufficiently well-developed. 

A second approach is to focus on trial-level insight. By collecting test responses 

along with confidence ratings for those responses, researchers have shown that 

individuals who performed better on tasks of face matching and recognition were also 

those demonstrating significantly higher confidence in their correct responses than in 

their incorrect ones (e.g., Grabman & Dodson, 2022; Kramer, 2023; Kramer et al., 

2022). In contrast, poor performers’ confidence ratings failed to differentiate between 

their correct and incorrect responses. These findings suggest that people with poorer 

face recognition abilities do indeed have poorer metacognitive insight, in the sense that 

they are less able to distinguish between their successes and failure. This is consistent 

with one premise of the DKE, but it contradicts the associated idea that poor performers 

are overconfident in their abilities. Very similar results were also reported for a logical 

reasoning test, suggesting that these patterns may generalise well across domains 

(McIntosh et al., 2022). 

To conclude, a quartiles-based approach to analysis seems pervasive within the 

literature on metacognition (particularly in studies of the DKE) and has recently 

appeared in the domain of face perception. However, flaws and pitfalls associated with 
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this type of analysis are now well documented, and we strongly urge future researchers 

to pursue other methods when assessing metacognitive insight for face perception. 
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