MULTI-MODALITY IMAGING IN AORTIC STENOSIS

Citation for published version:

Digital Object Identifier (DOI):
10.1093/ehjci/jead153

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
European Heart Journal - Cardiovascular Imaging

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
MULTI-MODALITY IMAGING IN AORTIC STENOSIS

AN EACVI CLINICAL CONSENSUS DOCUMENT

Marc R Dweck¹, Krithika Loganath¹, Rong Bing¹, Thomas A. Treibel², Gerry P McCann³, David E Newby¹, Jonathon Leipsic⁴, Chiara Fraccaro⁵, Pasquale Paolisso⁶, Bernhard Cosyns⁸, Gilbert Habib⁹, João Cavalcante¹⁰, Erwan Donal¹¹, Patrizio Lancellotti¹², Marie-Annick Clavel¹⁴,¹⁵, Catherine M. Otto¹⁶, Phillipe Pibarot¹⁴,

¹ Centre for Cardiovascular Science, University of Edinburgh, United Kingdom
² Barts Health NHS Trust and University College London, London, United Kingdom
³ Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre,
⁴ Centre for Cardiovascular Innovation, St Paul’s and Vancouver General Hospital, Vancouver, British Columbia, Canada
⁵ Department of Cardiac, Thoracic and Vascular Science and Public Health, Padova, Italy
⁶ Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
⁷ Department of Advanced Biomedical Sciences, University of Naples, Italy
⁸ Department of Cardiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
⁹ Cardiology Department, Hôpital La Timone, Marseille France
¹⁰ Allina Health Minneapolis Heart Institute, Minneapolis, Minnesota, United States of America
¹¹ Cardiology and CIC, Université Rennes, France
¹² University of Liège Hospital, GIGA Cardiovascular Sciences, Department of Cardiology, CHU Sart Tilman, Liège, Belgium
¹³ Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
¹⁴ Institut Universitaire de Cardiologie et de Pneumologie de Québec/Québec Heart and Lung Institute, Québec, Canada
¹⁵ Faculté de Médecine - Département de Médecine, Université Laval, Quebec, Canada
Division of Cardiology, Department of Medicine, University of Washington School of Medicine, United States of America

Keywords: Aortic stenosis, Cardiac magnetic resonance, Cardiac computed tomography, Echocardiography, Positron-emission tomography

Word Count: 5412
References: 103
Tables: 2
Figures: 8

Reviewers: This document was reviewed by members of the 2020-2022 EACVI Scientific Documents Committee: Magnus Bäck, Philippe B. Bertrand, Dana Dawson, Kristina H. Haugaa, Niall Keenan and Ivan Stankovic.
Abstract:
In this EACVI clinical scientific update, we will explore the current use of multi-modality imaging in the diagnosis, risk-stratification and follow-up of patients with aortic stenosis, with a particular focus on recent developments and future directions. Echocardiography is and will likely remain the key method of diagnosis and surveillance of aortic stenosis providing detailed assessments of valve haemodynamics and the cardiac remodelling response. CT is already widely used in the planning of transcutaneous aortic valve implantation. We anticipate its increased use as an anatomical adjudicator to clarify disease severity in patients with discordant echocardiographic measurements. CT calcium scoring is currently used for this purpose, however contrast computed tomography techniques are emerging that allow identification of both calcific and fibrotic valve thickening. Additionally, improved assessments of myocardial decompensation with echocardiography, cardiac magnetic resonance and computed tomography will become more commonplace in our routine assessment of aortic stenosis. Underpinning all of this will be widespread application of artificial intelligence. In combination we believe this new era of multi-modality imaging in aortic stenosis will improve the diagnosis, follow-up and timing of intervention in aortic stenosis as well as potentially accelerate the development of the novel pharmacological treatments required for this disease.
1. **INTRODUCTION**

Aortic stenosis (AS) affects 12.4% of adults over the age of 75 years (1), already accounting for substantial global morbidity and premature mortality, that is likely to increase with an ageing population. Yet, the pathology of AS remains poorly understood, and there is no effective medical therapy capable of slowing disease progression.

Non-invasive imaging, in combination with clinical assessment, has played a central role in the assessment and management of AS for many decades. In particular, echocardiography remains the reference standard, however other imaging modalities are now increasingly being used, providing complementary information that is improving our understanding of the underlying biology, and helping to guide clinical decision making. This consensus document seeks to complement the recent European Society of Cardiology guidelines (2), providing added detail on the role of multi-modality AS imaging in current clinical practice as well as a focus on emerging applications and future developments.
2. **PATHOLOGY**

We believe it important to describe briefly the pathobiology of AS with respect to both the valve and myocardium so that we can contextualise the information provided by each of the individual imaging modalities. Recently, there has been a clear shift away from the paradigm of passive “wear and tear” to considering aortic valve stenosis as a metabolically active, highly regulated and potentially modifiable disease process (3). In brief, a model for AS is proposed comprising both an initiation and propagation phase (4). The early *initiation phase* shares many similarities with atherosclerosis. Mechanical stress and subsequent injury to the endothelium of the valve leaflets triggers inflammatory cell infiltration and lipid deposition, regions of which co-localise with microcalcification and areas of mineralisation (3). These changes induce differentiation of valve interstitial cells into activated fibroblasts and osteoblasts which promulgate progressive valve fibrosis and calcification. The trans-differentiation of activated fibroblasts and osteoblasts signals the start of the *propagation phase*. Here, progressive thickening and reduced pliability of the leaflets increases mechanical stress and cellular injury, thereby establishing a self-perpetuating cycle of injury, inflammation and fibro-calcific leaflet thickening. (4). The *propagation phase* is defined clinically by the inexorable progression of AS, with baseline assessments of valve calcification consistently serving as the most powerful predictors of AS progression, outperforming traditional cardiovascular risk factors (5, 6).

The myocardial remodelling response to AS varies between individuals and has an important influence on the development of symptoms, heart failure and long-term prognosis. AS causes an increased afterload, triggering a hypertrophic remodelling response that restores wall stress and cardiac performance for many years in accordance with the law of Laplace (7). Importantly, the degree of left ventricular hypertrophy is not well predicted by AS severity alone, being under the influence of multiple other factors including arterial hypertension, sex and genetic polymorphisms (8). Eventually, the hypertrophic response decompensates and...
patients transition to heart failure and the development of adverse clinical events. At the pathological level, this left ventricular decompensation relates to progressive diffuse myocardial fibrosis and myocyte cell death triggered by the hypertrophied myocardium outgrowing its blood supply (9). Alongside, increased end diastolic pressures, capillary rarefaction and arteriolar remodelling, these pathological changes characterise left ventricular decompensation and the transition to heart failure, resulting in increased myocardial stiffness, reduced contractility and impaired cardiac function.

Finally, it is increasingly appreciated that AS and transthyretin amyloidosis (ATTR) commonly co-exist, (e.g. 16% of TAVI candidates (10), most likely reflecting the increasing prevalence of the two conditions with advancing age (11, 12).
3. **ECHOCARDIOGRAPHY**

Echocardiography is the primary imaging modality for the diagnosis and assessment of AS. The purpose of the echocardiographic examination in a patient with suspected AS is three-fold: i) to confirm valve morphology and a diagnosis of AS ii) to grade AS severity; and iii) to assess the structure and function of the left ventricle, the other cardiac chambers and the aorta (Fig. 1).

3.1. Assessment of the Aortic Valve

Aortic valve morphology

Transthoracic echocardiography is able, in the majority of cases, to determine the valve phenotype (tricuspid, bicuspid, unicuspid or other) according to Sievers classification (Type 0: No raphe, type 1: 1 raphe, type 2 : 2 raphe) or a new classification recently proposed by an international group of experts (13, 14). Transoesophageal echocardiography (TOE), computed tomography (CT) or cardiac magnetic resonance (CMR) can be helpful to clarify aortic valve morphology when transthoracic echocardiography is not diagnostic.

Haemodynamic severity of AS

The main echocardiographic parameters to define AS severity are the peak aortic jet velocity, peak and mean transvalvular gradients, aortic valve area, and Doppler velocity index (DVI) (15). Aortic valve area can be indexed for body surface area to account for differences in height, particularly in those of shorter stature. It should be avoided in obese or very thin patients, when indexing to height may be superior. Based on these echocardiographic parameters, we can differentiate severe from non-severe AS (Table 1).

To avoid underestimation of AS severity, the continuous-wave Doppler beam must be aligned parallel to the direction of the stenotic jet. This is not predictable from imaging or colour
Doppler data and so multiple measurements from different positions in the thorax must be acquired. It is important to note that velocity and gradients are highly flow-dependent and may underestimate AS severity in the presence of low-flow states for example in patients with impaired systolic function or small cavity size. The aortic valve area, calculated from the continuity equation, is widely used as a “less flow-dependent” parameter of AS severity that can be employed to assess AS severity even in low flow states. It should be noted that aortic valve area can be prone to measurement error, related predominantly to inaccuracies in assessing the left ventricular outflow tract (LVOT) area (16) and the simplistic assumption that the LVOT is circular rather than oval. Alternatives include the velocity time integral (VTI) ratio, which provides a ratio of the VTI at the aortic valve and the left ventricular outflow tract (17) and therefore avoids measurement of the left ventricular outflow tract area completely. In addition, hybrid methods are being explored which calculate the aortic valve area using flow velocities from Doppler, alongside measurements of the left ventricular outflow tract area from TOE, CT or CMR (18). When using these hybrid methods, a larger cut-off value of aortic valve area (< 1.2 cm² vs. < 1.0 cm²) should be applied to define severe AS.

Discordant grading of AS severity at echocardiography

Up to 40% of patients with severe AS have an apparent discordance between the peak velocity/mean gradient and aortic valve area: most commonly where the aortic valve area indicates severe disease and the peak velocity or mean gradient suggest otherwise (19). “Discordant grading” includes 3 main categories: (i) “classical” low-flow, low-gradient AS with stroke volume index <35 mL/m² and with reduced left ventricular ejection fraction (<50%); (ii) “paradoxical” low-flow, low-gradient AS with stroke volume index <35 mL/m² but with preserved left ventricular ejection fraction (≥50%), and (iii) normal-flow, low-gradient AS with stroke volume index ≥35 mL/m² and preserved left ventricular ejection fraction (≥50%).
In cases of low-flow low gradient aortic stenosis with low ejection fraction, dobutamine stress echocardiography is recommended (2, 20). True severe aortic stenosis is characterised by a fixed aortic valve area (≤1.0cm²) in the face of an increased flow rate. This will result in higher gradients and velocities across the stenotic valve (transaortic velocity ≥ 4m/s and mean pressure gradient across the valve of >40mmHg at any stage of dobutamine stress echocardiography). Another important parameter to assess is the change in stroke volume with dobutamine administration. An increase of stroke volume of <20% is a marker of reduced LV reserve and is associated with a worse prognosis and higher peri-operative risk (21). This can help guide decision-making in these higher-risk patients, where TAVI would be preferrable to surgical AVR. However, recent data assessing the performance of the above guideline measures against to the calculated projected AVA (AVA_{proj}) from the True or Pseudo Severe Aortic Stenosis (TOPAS) study demonstrated that AVA_{proj} was superior to the AVA and haemodynamic measures at distinguishing true severe AS from pseudo-severe AS and at predicting mortality in medically managed patients (22). A multi-modality approach is useful in patients where clinical ambiguity remains.

Assessments of pressure recovery can also be useful, particularly in smaller patients with an ascending aorta diameter of less than 30mm. Using pressure recovery to adjust the aortic valve area helps to reclassify patients with discordant echocardiography from severe to moderate AS with corresponding improvements in prognosis observed (15, 23). The final alternative which is being increasingly used in patients with discordant echocardiography and which is recommended in the ESC guidelines is CT calcium scoring (Section 4). Figure 7 demonstrates a systematic approach to assessing these discordant patients (Section 4) (24).

3.2. Assessment of the Myocardium

Besides grading AS severity, echocardiography is useful in assessing the structure and function of the left ventricle (Fig. 1) as well as the other cardiac chambers. Left ventricular wall thickness is routinely measured on parasternal long-axis views and used to both derive left
ventricular mass measurements and to track progression of the hypertrophic response. However, at present, the ejection fraction remains the only left ventricular measurement recommended by the guidelines to guide clinical decision making and the timing of aortic valve replacement.

Deterioration of left ventricular ejection fraction generally occurs late in the course of the disease and is often preceded by the development of left ventricular diastolic dysfunction. Indeed, left ventricular ejection fraction underestimates systolic dysfunction in the presence of concentric remodelling or hypertrophy and may thus lack sensitivity in patients with AS. Recent observational studies and UK National Institute for Health and Care Excellence (NICE) guidelines (23) suggest applying a higher cut-off ejection fraction (<55%) to improve its sensitivity in detecting subclinical left ventricular systolic dysfunction.

3.4. Quality and standardisation of echocardiographic examination and reporting

Echocardiography should be performed in patients with AS, according to European Association of Cardiovascular Imaging expert advice for image acquisition and analysis (24). A multi-parameter integrative approach should be used to grade the severity of AS and of concomitant aortic regurgitation if any. The echocardiography report should include the parameters outlined in Table 2.

3.5 Developing techniques in the echocardiographic assessment of AS

Assessment of left ventricular function.

Other echocardiographic techniques are emerging to provide more sensitive assessments of left ventricular function in AS. Speckle tracking echocardiography provides assessment of myocardial strain. In particular, global longitudinal strain appears to provide a more sensitive marker of systolic dysfunction than ejection fraction. A threshold of < 15% is associated with AS patients who have a higher risk of adverse outcomes (25).
The first phase of left ventricular ejection fraction (EF1), is the percentage change in left ventricular volume from end-diastole to peak aortic valve flow. This has recently been proposed for early identification of left ventricular dysfunction in AS, with a threshold of < 25% being associated with an increased risk of adverse events (26).

Diastolic dysfunction is another important and relatively well-established component of overall left ventricular function. Recent registry data demonstrated diastolic dysfunction of grade II and above in 42% of severe AS patients, with more severe diastolic dysfunction incrementally associated with cardiovascular mortality and hospitalisations (27). Similarly, left atrial strain, another marker of left ventricular diastolic function, has demonstrated an association with increased hospitalization and mortality in patients with moderate to severe aortic stenosis (28).

Assessment of Other Cardiac Chambers

Assessment of left atrial dilatation, pulmonary artery pressure, right ventricular dysfunction and tricuspid regurgitation provides incremental information on the stage of disease and may have important prognostic implications in patients with AS (29). On this basis a classification for staging the extent of extra aortic valve cardiac damage and heart failure associated with AS has recently been proposed integrating progressive involvement of the chambers of the heart (30-32) (Fig. 2).

This echo assessment of cardiac chamber remodeling may also be useful in selecting the optimal type and timing of aortic valve replacement with transcatheter aortic valve implantation (TAVI) potentially preferred in patients with more advanced damage. Careful consideration should be given to whether the cardiac chamber remodelling is due to AS or other co-morbidities (e.g. pulmonary hypertension or right ventricular dysfunction) and therefore whether improvement can be expected following aortic valve replacement.
Next steps

Large prospective outcome studies and randomised controlled trials are now required to assess how these novel echocardiographic markers of left ventricular function and cardiac damage might improve the assessment and care of patients with advanced AS. The ongoing DANAVR randomised controlled trial is investigating whether echocardiographic assessments of diastolic dysfunction might provide a more objective marker of left ventricular decompensation in AS and optimise the timing of aortic valve replacement (clinicaltrials.gov NCT03972644).
COMPUTED TOMOGRAPHY

4.1 CT calcium scoring

Discordant echocardiographic measurements are common and governed by complex interactions between the ventricle, the valve and systemic arterial compliance (33). It is therefore valuable to have an alternative, anatomical assessment of disease severity that is truly flow-independent, reliable, inexpensive and reproducible. Non-contrast CT aortic valve calcium scoring fulfils this role. As an anatomical measure of both valve calcium density and volume, a standardised method of assessment has been validated in multiple international cohorts, with established sex-specific thresholds for severe AS: 1200 AU in women (Positive predictive value of 93% and negative predictive value of 79%) and 2000 AU in men (positive predictive value of 88% and negative predictive value of 82%) (33, 34)(Fig. 3). CT aortic valve calcium scoring is now recommended by both European Society of Cardiology and American Heart Association/ American College of Cardiology Guidelines to help clarify stenosis severity when discordant echocardiographic assessments remain inconclusive (2, 35).

Aortic valve CT calcium scoring can be performed quickly with no iodinated contrast and a low dose of ionising radiation (~1 mSv) (36). Measurements are highly reproducible, demonstrate excellent agreement with concordant echocardiographic measurements, markers of left ventricular decompensation and provide powerful prediction of subsequent clinical events, (outperforming echocardiography in both regards) in all patient groups including those with discordant grading(37, 38). As with any technique there are limitations which include motion artifact in patients with fast heart rates and occasional difficulty in differentiating valve calcification from that in the aortic annulus, aortic root and mitral valve annulus. More fundamentally CT calcium scoring does not account for fibrotic aortic valve thickening, which can lead to underestimation of disease severity particularly in younger women with bicuspid valves. Finally, although calcium scoring is clinically useful as an arbiter of disease severity in
cases where echocardiographic measures are uncertain, borderline cases are often simply that – borderline – and a single value close to the established thresholds should be regarded within the broader clinical context.

4.2 CT angiography

CT angiography plays an important role in the work up of patients with AS being considered for TAVI. An accurate pre-TAVI CT assessment is pivotal not only in determining a patient’s eligibility but also for precise procedure planning. Imaging is needed to assess the optimal access route and to accurately select the optimal size of the valve bioprosthesis. The latter is based on co-axial measurements of the annulus, a structure which is frequently underestimated by 2D echocardiography measurements due to its oval shape. The aim is to achieve appropriate anchoring and sealing of the device with the goal of mitigating paravalvular leakage whilst minimizing the risk of annular rupture (39, 40). Over recent years, cardiac CT has become the reference standard imaging modality for TAVI procedure planning. Specific acquisition requirements have become standardised and image analysis is performed using dedicated semi-automated approaches (40, 41) to assess coronary anatomy, select the optimum type and size of bioprostheses and access route, with high intra- and inter-observer reproducibility (Fig. 4) (42-47). In selected cases CT can also be used to provide useful information about coronary anatomy prior to intervention.

4.3 Developing applications

Contrast-enhanced CT angiography holds promise in refining anatomic assessments of AS severity, with advantages over non-contrast approaches. These include high spatial resolution and improved anatomical definition which facilitates assessment of the valve in a uniform en-face view and differentiation of valve pathology from that in adjacent structures. Importantly, both non-calcific and calcific leaflet thickening can be quantified, a major potential advantage over CT aortic valve calcium scoring (Fig. 3). Various cohorts have attempted to derive
thresholds and correct for variations in contrast load surrounding the valve (48, 49). Recent studies have demonstrated good inter-observer reproducibility and confirmed that valve fibrosis is more prominent in women than men (50). Moreover, indexed fibrocalcific volumes have shown a close association with echocardiographic measures of valve hemodynamics(33). Further work is now required to establish a rapid and generalisable methodology as well as identifying appropriate severity thresholds to guide clinical decision making.

Contrast-enhanced CT can also provide advanced assessment of the myocardium, including the measurement of extracellular volume and global longitudinal strain. These demonstrate good agreement with cardiac magnetic resonance (CMR) and echocardiographic measurements respectively, may highlight dual pathology of AS and cardiac amyloidosis (51) and correlate with adverse outcomes (52-54). Importantly these myocardial CT approaches require delayed imaging or retrospective image acquisition across the full cardiac cycle, involving additional radiation exposure. More research is required to validate these emerging CT methods.
5. **CARDIAC MAGNETIC RESONANCE**

The ability of CMR to characterise the aortic valve, the myocardium and the aorta make it an attractive imaging modality in AS (Fig. 5). The major limitations of CMR compared to echocardiography include its lack of portability, length of scan and relative expense although rapid image acquisition protocols have already improved the latter two issues (55).

5.1 **Assessment of the aortic valve**

CMR allows direct and multi-planar visualisation of the aortic valve for accurate assessment of valve morphology (tricuspid or bicuspid subtypes) (56). CMR can help assess AS severity via direct planimetry of valve area (57) with good agreement with TOE. Importantly, both CMR and TOE planimetry measure the anatomic orifice area (i.e maximum instantaneous valve area), which is different to the calculated aortic valve area derived from the continuity equation, the effective orifice area. This is important, because standard aortic valve area severity thresholds are based on the continuity equation and therefore not applicable to planimetered aortic valve area measurements which are generally larger as they are not affected by the physical contraction of flow when blood passes through the stenotic orifice (58).

AS severity can be assessed using phase-contrast velocity mapping which allows visualisation and quantification of blood flow through the valve (57). Velocities are used to assess AS severity similar to echocardiographic Doppler measurements and can also accurately quantify regurgitant volume, when present. Whilst CMR offers better jet alignment compared to echocardiography, however lower temporal and spatial resolution means CMR may underestimate the peak velocity (59). These limitations mean that CMR is only used as a third-line imaging technique to assess AS severity after echocardiography and CT, although it can prove of particular value in patients with multivalvular involvement.

5.2 **Assessment of the aorta**
CMR is an excellent clinical tool for the assessment and serial monitoring of the thoracic aorta. Like CT, it provides accurate diameter measurements but without radiation exposure, allowing the identification of aortic dilatation, aneurysm formation and coarctation (24).

5.3 Transcatheter aortic valve implantation planning and follow-up

CMR can be used as an alternative to CT for TAVI-planning, in patients with an allergy to iodine-based contrast agents or severe renal impairment (60). Post-TAVI, CMR provides accurate quantification of paravalvular regurgitation (61) and may be useful in those with uncertain regurgitation severity on echocardiography.

5.4 Assessment of the Myocardium

CMR provides reference standard assessments of left ventricular structure (wall thickening, hypertrophy dilatation, mass-volume-ratio) (62) and function (ejection fraction and myocardial strain using feature-tracking) and should be used in cases where echocardiographic windows are poor and ventricular assessments uncertain.

5.5 Developing applications

Myocardial fibrosis

The unique strength of CMR is myocardial tissue characterisation. Non-infarct patterns of late gadolinium enhancement (LGE) can be identified in patients with AS as a marker of focal replacement fibrosis, demonstrating a close association with increased collagen deposition and microscars on histology (63). The prevalence of non-infarct LGE in severe AS ranges from 27% to 51% (64) and is associated with multiple other markers of left ventricular decompensation including impairment in systolic and diastolic function, the ECG-strain pattern, elevated serum biomarkers (e.g. B-type natriuretic peptide and cardiac troponin) reduced exercise capacity and symptomatic status (65). Once established, further LGE appears to accumulate rapidly over time (66) and to be irreversible following aortic valve replacement (67). The myocardial scar burden that patients develop whilst waiting for aortic
valve replacement therefore persists into the long-term, an important observation given that it also serves as a powerful independent predictor of long-term outcomes (64). The ongoing EVOLVED randomised controlled trial is investigating whether prompt valve replacement in asymptomatic patients with severe AS and myocardial scarring improves patient outcomes (68) (Clinicaltrials.gov identifier: NCT03094143). Furthermore, distinct patterns of non-ischaemic LGE make it possible to identify concomitant pathology such as cardiac amyloidosis which is also associated with a higher risk of all-cause mortality (69, 70).

Beyond LGE, T1 mapping and extracellular volume fraction (ECV) quantification can identify extracellular matrix expansion: a surrogate for fibrosis (both replacement and diffuse interstitial fibrosis) or infiltration (e.g. amyloidosis) (71). Diffuse fibrosis increases with more severe AS and left ventricular hypertrophy (66). Unlike the focal fibrosis detected by LGE, diffuse fibrosis is largely reversible after aortic valve replacement. Indeed, patients with more extensive diffuse fibrosis derive a larger benefit in symptoms and left ventricular function following aortic valve replacement (72). Several recent large multicentre studies of patients with severe AS imaged prior to aortic valve replacement, demonstrated ECV% was associated with markers of left ventricular decompensation and both cardiovascular and all-cause mortality (73, 74).

Myocardial perfusion

Stress CMR allows assessment of myocardial ischaemia and measurement of myocardial blood flow at rest and stress. The ratio of stress and rest myocardial blood flow, known as the myocardial perfusion reserve, represents the ability of the myocardium to increase blood flow during stress. In patients with AS, left ventricular hypertrophy and unobstructed coronary arteries, perfusion CMR often demonstrates global subendocardial perfusion defects and reduction in myocardial perfusion reserve due to supply-demand-mismatch and a relative reduction in capillary density (75). Myocardial perfusion reserve is an independent predictor of exercise capacity (76) and symptom onset in asymptomatic patients with AS (77). Automated quantification techniques producing absolute myocardial blood flow maps have
recently overcome complex post-processing and may make this technique more accessible (78).

Reverse left ventricular remodelling after aortic valve replacement
Reverse remodelling after aortic valve replacement is associated with early normalisation in left ventricular function within 6 months (79) and 20-30% left ventricular mass regression in the first 6 to 12 months (80, 81). Mass decreases most in those with more left ventricular hypertrophy and no scar (80). ECV quantification is able to discern cellular from matrix volume regression although more research into this area is required. (67, 74). De-novo LGE is found in a fifth of patients, highlighting that new peri-operative myocardial injury may also contribute to prognosis (82, 83).

Other approaches
Other CMR tissue parameters under investigation that may emerge for clinical use are T2 mapping for inflammation (84), CMR spectroscopy investigating myocardial energetics (85), manganese-enhanced CMR as a marker of myocardial calcium handling (86) and 4-dimensional flow to assess the complex flow patterns in the aorta that may contribute to aortopathy (87).
6. **NUCLEAR IMAGING**

6.1 **Bone Scintigraphy and Concomitant Cardiac Amyloid**

Bone scintigraphy holds potential clinical value in the detection of concomitant cardiac amyloidosis in patient (70, 88). The most frequent type of amyloidosis in the AS population is ATTR. If clinical, electrocardiogram or echocardiographic features of amyloidosis are identified, bone scintigraphy and light chain analysis in blood and urine should be performed to confirm the presence and type of concomitant amyloidosis (i.e. exclusion of light chain [AL] amyloidosis which requires different management to ATTR) (89). Although this may have prognostic or treatment implications, non-randomised data suggest that TAVI should not be withheld purely on the basis of concomitant cardiac amyloidosis, since outcomes in cohorts have been better following valve intervention compared to medical therapy alone (88, 90). Diagnostic algorithms typically include 99mTc-pyrophosphate (PYP), 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) or 99mTc-hydroxymethylene diphosphonate (HMDP) scintigraphy alongside other clinical, biomarker and imaging investigations (91).

6.2 **Developing Applications**

Assessing Disease Activity with Positron Emission Tomography

Molecular cardiac imaging with positron emission tomography (PET) remains largely investigational for cardiovascular applications but has a broad range of potential uses. Hybrid scanners permit combined assessments of disease activity provided by PET, with anatomical and functional information from CT or CMR. Radiotracers are injected intravenously and localise in areas where the disease process of interest is active. In principle, the activity of any pathological process can be investigated, subject to the availability of a relevant radiotracer. In practice these studies have largely focused on assessment of valve calcification activity in AS using the tracer 18F-fluoride. Such studies remain in the research arena but have
provided important insights into the pathobiology underlying AS. Initial reports demonstrated that calcification is the predominant active pathological process in AS, particularly in patients with more advanced stenosis where inflammation activity assessed by 18F-Fluorodeoxyglucose was comparatively lower (92). Subsequent studies have demonstrated that valve 18F-fluoride activity can be measured with excellent repeatability (93) and provides powerful prediction of subsequent disease progression and the need for aortic valve replacement (Fig.6) (94, 95). They have also helped highlight the role that lipoprotein(a) plays in both the initiation and propagation phases of AS, thereby identifying it as a potential treatment target (96). Whilst the clinical role of 18F-fluoride PET may be limited in AS (CT provides similar diagnostic and prognostic information at lower expense and radiation exposure), this technique is increasingly being used as an endpoint in clinical trials assessing the ability of potential novel treatments to reduce valve calcification activity (97).
7. INTEGRATING CURRENT CLINICAL MODALITIES

Echocardiography remains the mainstay of diagnosis and monitoring in patients with AS. It provides vital information on the valve and myocardium and is both widely available and cost-effective. In many patients no further imaging is required. However, in certain patient groups additional imaging approaches can improve patient assessment and should be given due consideration. An integrated approach, facilitated by a dedicated Heart Valve Team is proposed in Figure 7.

In patients with discordant echocardiography, additional imaging using either CT calcium scoring or stress echocardiography in patients with a low flow state, helps clarify AS severity and aids decision making. In patients with suspected aortopathy, CT or CMR should be used to provide a comprehensive assessment of the thoracic aorta. In patients with suspected concomitant amyloidosis, CMR or bone scintigraphy (both with exclusion of light chain disease) is recommended in the latest ESC guidelines. Similarly in patients with left ventricular systolic dysfunction, CMR can clarify whether the impairment is due to the valve disease (and might therefore improve following aortic valve replacement) or other irreversible process including myocardial infarction. This can help decision making around the need for valve intervention. Finally in those patients being considered for valve intervention, CT angiography is now routinely used to assess the suitability and access options for the majority of patients prior to TAVI.
8. THE FUTURE OF MULTIMODALITY IMAGING IN AS

Novel multimodality imaging approaches provide the opportunity to phenotype patients with AS in exquisite detail. The challenge will be to harness this powerful information in order to improve patient assessment, treatment and outcomes in a cost-effective manner. There are several areas where these new approaches may have an impact.

Initial Diagnosis / Screening

Early identification of patients with AS is important. Traditionally, AS is identified as an incidental finding upon stethoscope auscultation. However, this strategy is limited by the diagnostic accuracy of auscultation, particularly when performed by non-specialists, and also by the reduction in direct face-to-face patient contact observed since the emergence of COVID-19. Automated stethoscope technology may help with this issue, but novel imaging approaches also hold promise. The development of handheld echocardiography might facilitate screening programmes in the community to identify patients with AS, although the cost-effectiveness of such approaches would have to be carefully assessed (98). With smart phone-associated imaging probes and artificial intelligence-directed imaging, self-directed patient echocardiography may also one day become a reality. The use of artificial intelligence to identify patients with AS on even simpler tests, such as the ECG, also holds promise (99, 100). A more immediate strategy would be the reporting of incidental aortic valve calcification identified on CT scans performed for other purposes, providing an opportunity to identify patients with calcific aortic valve disease that is frequently overlooked in current clinical practice (101).

Improved Pathological Understanding

A major priority in AS is the development of an effective medical therapy. This will require an improved understanding of the underlying pathophysiology. Molecular imaging now allows us to investigate the activity of a range of pathological process underlying cardiovascular disease.
In AS, future studies may inform the exact contribution of inflammation (\(^{8}\)F-Fluorodeoxyglucose, \(^{68}\)Ga-DOTATATE), calcification (\(^{18}\)F-fluoride), thrombus (\(^{18}\)F-GP1) and fibrosis (\(^{68}\)Ga-fibroblast activation protein inhibitor) activity at the different stages of the disease process and how their relative contributions vary between patient groups. Initial PET studies have already identified novel targets for therapy in AS and identified important sex differences, suggesting that these approaches may help accelerate the development of novel treatments as part of a precision medicine approach.

Valve and Myocardial Assessments

The anatomic assessment provided by CT may come to play a greater role in how we assess and track AS severity, particularly in patients with discordant echocardiography or suboptimal echo windows. As has been observed in coronary artery disease, there is a natural progression from non-contrast to contrast CT angiography, allowing more detailed assessment of fibrotic as well as calcific valve thickening. As novel medical therapies emerge targeting valve calcification or fibrosis these contrast CT assessments may allow us to tailor optimal therapies for individual patients and provide an imaging technique able to track the effects of new therapies on anatomic disease progression in phase 2 clinical trials. This can then inform which therapies should proceed to phase 3 clinical end-point trials\(^{(102)}\).

Advanced multi-modality myocardial assessments by echocardiography, CMR and CT may also be increasingly used to track mild to moderate AS and the effects of AS on the myocardium and to identify more precisely when the left ventricle is starting to decompensate in the face of AS, thereby optimising the timing of aortic valve replacement. Finally, the impact of artificial intelligence is likely to be felt in daily clinical practice across all the imaging modalities, optimising and standardising cardiac imaging \(^{(73, 103)}\). Figure 8 demonstrates a potential model for the future identification and management of patients with AS.
9. CONCLUSION

The diagnosis and management of AS continues to evolve and to improve, with many exciting imaging techniques in development. Echocardiography remains the most important imaging test, playing an indispensable role in the diagnosis and monitoring of patients with this condition and in clinical decision making. However, other imaging modalities provide complementary information and are increasingly being used in complex patients where echocardiographic assessments are inconclusive or in the planning of TAVI procedures. A multidisciplinary approach with a Heart Valve Team is recommended by the latest ESC guidelines to ensure the appropriate use of multimodality imaging and to optimise the care provided to our AS patients.
REFERENCES

discordance between aortic valve calcification and hemodynamic severity of aortic
Identifying Cardiac Amyloid in Aortic Stenosis: ECV Quantification by CT in TAVR Patients.
of Myocardial Extracellular Volume Fraction Assessment Using Dual & Energy Computed
Tomography in Patients Treated With Aortic Valve Replacement for Severe Aortic
myocardial strain measurement in patients with advanced cardiac valve
longitudinal strain by computed tomography is associated with post transcatheter aortic
55. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E.
Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update.
56. Keane MG, Wiegier SE, Pappert T, Polettino A, Bavaria JE, Sutton MG. Bicuspid
aortic valves are associated with aortic dilatation out of proportion to coexistent valvular
57. Myerson SG. Heart valve disease: investigation by cardiovascular magnetic
58. Clavel MA, Malouf J, Messika-Zeitoun D, Araoz PA, Michelena HI, Enriquez-Sarano
M. Aortic valve area calculation in aortic stenosis by CT and Doppler echocardiography.
Peak flow measurements in patients with severe aortic stenosis: a prospective comparative
study between cardiovascular magnetic resonance 2D and 4D flow and transthoracic
60. Chaturvedi A, Hobbs SK, Ling FS, Chaturvedi A, Knight P. MRI evaluation prior to
Transcatheter Aortic Valve Implantation (TAVI): When to acquire and how to interpret.
Haemodynamic evaluation of aortic regurgitation after transcatheter aortic valve implantation
62. Lorell BH, Carabello BA. Left ventricular hypertrophy: pathogenesis, detection, and
Reappraising myocardial fibrosis in severe aortic stenosis: an invasive and non-invasive
Scar and Mortality in Severe Aortic Stenosis: Data from the BSCMR Valve Consortium.
subclinical ventricular deterioration in aortic stenosis with cardiovascular magnetic
Progression of Hypertrophy and Myocardial Fibrosis in Aortic Stenosis: A Multicenter
Myocardial Remodeling Following Valve Replacement in Patients With Aortic Stenosis. J Am
30

Table 1: Echocardiographic parameters of severe and very severe aortic stenosis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Non-Severe AS</th>
<th>Discordant AS (with low flow defined as SVI < 35 ml/m²)</th>
<th>Severe AS</th>
<th>Very severe AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak jet velocity (m/s)</td>
<td><4.0</td>
<td>3.0 to 4.0</td>
<td>≥ 4.0</td>
<td>≥ 5.0</td>
</tr>
<tr>
<td>Mean gradient (mmHg)</td>
<td><40</td>
<td>20 to 40</td>
<td>≥ 40</td>
<td>≥ 60</td>
</tr>
<tr>
<td>AVA (cm²)</td>
<td>>1.0</td>
<td>≤ 1.0</td>
<td>≤1.0</td>
<td><0.6</td>
</tr>
<tr>
<td>Indexed AVA (cm²/m²)</td>
<td>>0.6</td>
<td>≤ 0.6</td>
<td>≤0.6</td>
<td><0.4</td>
</tr>
</tbody>
</table>

AVA: aortic valve area; AS: Aortic stenosis. Patients may have discordant echocardiographic assessments where the above parameters do not agree on the true severity of AS. Most commonly this is encountered in patients with an AVA < 1.0 cm² and a peak velocity of < 4.0 m/s.)
Echocardiography has the ability to assess the valve morphology and haemodynamics as well as myocardial remodelling and function. **A:** Bicuspid aortic valve (top) and 3-D echocardiography assessment of a stenotic aortic valve (bottom). **B:** Measurement of peak velocities through the valve (top) and left ventricular outflow tract (bottom) **C:** Assessment of myocardial structure and function on cine imaging.
Table 2: Essential echocardiographic parameters to report in patients with AS

<table>
<thead>
<tr>
<th>Aortic valve morphology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic valve phenotype</td>
<td>Bicuspid</td>
</tr>
<tr>
<td></td>
<td>Trileaflet</td>
</tr>
<tr>
<td>Severity of valve calcification (mild, moderate, severe)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aortic stenosis severity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak aortic jet velocity (Vmax)</td>
<td></td>
</tr>
<tr>
<td>Mean gradient (Mean PG)</td>
<td></td>
</tr>
<tr>
<td>Aortic valve area</td>
<td></td>
</tr>
<tr>
<td>Doppler velocity index</td>
<td></td>
</tr>
<tr>
<td>Grade of AS severity</td>
<td>Mild</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Very severe</td>
</tr>
<tr>
<td></td>
<td>Discordant (inconclusive on resting TTE)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment of structure and function of the left ventricle and other cardiac structures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LV volumes (EDVi and ESVi) and wall thickness measurements</td>
<td></td>
</tr>
<tr>
<td>Qualitative LV hypertrophy assessment (mild, moderate severe)</td>
<td></td>
</tr>
<tr>
<td>Degree of LV diastolic dysfunction</td>
<td></td>
</tr>
<tr>
<td>LV ejection fraction (3D or 2D Biplane method)</td>
<td></td>
</tr>
<tr>
<td>Stroke volume index (low flow < 35 ml/m2)</td>
<td></td>
</tr>
<tr>
<td>LV global longitudinal strain</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other echocardiographic data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Indexed left atrial volume</td>
<td></td>
</tr>
<tr>
<td>Aorta dimensions</td>
<td>Sinus of Valsalva</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Sinotubular junction</td>
<td>Ascending aorta</td>
</tr>
</tbody>
</table>

- Estimated systolic pulmonary arterial pressure
- Degree of right ventricular dysfunction
- Severity of any valvular regurgitation or other valve lesions

AS: aortic stenosis; LV: Left ventricular; EDVi: Indexed end-diastolic volume; ESVi: Indexed end-systolic volume;
Figure 2: Integrated echocardiographic assessment of the cardiac chambers to aid in risk stratification in patients with AS (Généreux P, Eur Heart J. 2017)

Stage 1
- LV hypertrophy
- LV diastolic dysfunction
- LV systolic dysfunction

Stage 2
- Left atrial dilatation
- Atrial fibrillation
- Significant mitral regurgitation

Stage 3
- Pulmonary arterial hypertension
- Tricuspid regurgitation

Stage 4
- Right ventricular dysfunction
Figure 3: Computed tomography aortic valve calcium scoring

AS: Aortic stenosis; AU: Agatston units; CT: Computed tomography; ECV: Extracellular volume; Vmax: Peak velocity.

Left panel: Non-contrast enhanced cardiac computed tomography images of a male patient with discordant aortic valve measurements on echocardiography. Areas in yellow are areas of calcium identified by the software (bone, coronary arteries, aortic valve, aorta and mitral valve). Areas labelled in pink were manually selected for calculation of aortic valve calcification which was scored at 2,747 AU (severe aortic stenosis).

Middle and right panels A-C: Contrast-enhanced computed tomography of 3 patients identifying regions of valve fibrosis (red, also termed non-calcific leaflet thickening) and calcification (green) with calculated fibrocalcific volumes and ratios.
Figure 4: Parameters to measure on computed tomography angiography

CT: Computed tomography; TAVI: Transcatheter aortic valve implantation
Figure 5: Cardiac magnetic resonance imaging in the assessment of the aortic valve and myocardium

Patient with critical aortic stenosis. 4-chamber bSSFP-cine image (A) showing normal left ventricular cavity size with concentric hypertrophy. Short axis bSSFP-cine image (B) en-face view of the aortic valve demonstrating fusion of the left and right coronary cusp and a planimetered aortic valve area of 0.6cm². Phase-contrast imaging just above the aortic valve (C+D) demonstrating a peak velocity of nearly 5 m/s. Bright blood late gadolinium enhancement images demonstrating patchy, non-infarct scar in the lateral wall (E). A native T1 map (F) and extracellular volume fraction map (G) demonstrate no evidence of myocardial infiltration.
Figure 6: 18F-sodium fluoride Positron emission tomography-computed tomography for aortic valve calcification

CA Score = 2460 AU
TBRmax = 2.57
Ca Score = 3397 AU

CA Score = 3141 AU
TBRmax = 2.07
Ca Score = 5270 AU

AU: Agatston units; CT: Computed tomography; PET-CT: Positron emission tomography-Computed tomography; TBR$_{\text{max}}$: Maximum tissue-to-background ratio

Areas of red and yellow show 18F-sodium fluoride uptake on the aortic valve. Areas of maximal uptake at baseline correspond to the development of visible calcification on CT at 14 months. *Taken from Fletcher & Dweck. 2021. Journal of Nuclear Cardiology*
Figure 7: The current patient pathway in diagnosing and monitoring AS with the use of multi-modality imaging

AVA: Aortic valve area; AS: aortic stenosis; ATTR: transthyretin; BNP: Beta-natriuretic peptide; CMR: Cardiac Magnetic resonance; CT: computed tomography; LV: Left ventricular; TAVI: Transcatheter aortic valve implantation. *Features of amyloidosis including but not limited to features of heart failure, carpal tunnel syndrome, neuropathy, low voltage QRS complex on electrocardiogram, left ventricular hypertrophy, left ventricular diastolic dysfunction, granular speckling effect of myocardium on echocardiography

*Figure created on Biorender
18F-NaF: 18F- Sodium fluoride; 68Ga-FAPI: 68-Gallium labelled fibroblast activation protein inhibitor; AI: Artificial intelligence; ATTR: transthyretin; AVA: Aortic valve area; BNP: Beta-natriuretic peptide; CMR: Cardiac Magnetic resonance; CT: computed tomography; ECV: Extracellular volume; LGE: late gadolinium enhancement LV: Left ventricle; LVEF: Left ventricular ejection fraction; GLS: global longitudinal strain; EF1: first-phase ejection fraction; PET: Positron emission tomography; TAVI: Transcatheter aortic valve implantation.

*Features of amyloidosis including but not limited to features of heart failure, carpal tunnel syndrome, neuropathy, low voltage QRS complex on electrocardiogram, left ventricular hypertrophy, left ventricular diastolic dysfunction, granular speckling effect of myocardium on echocardiography. Figure created on Biorender.