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ABSTRACT

Motivation: Cancer is a complex disease, triggered by mutations
in multiple genes and pathways. There is a growing interest in the
application of systems biology approaches to analyze various types
of cancer-related data to understand the overwhelming complexity
of changes induced by the disease.

Results: We reconstructed a regulatory module network using
gene expression, microRNA expression and a clinical parameter, all
measured in lymphoblastoid cell lines derived from patients having
aggressive or non-aggressive forms of prostate cancer. Our analysis
identified several modules enriched in cell cycle-related genes as
well as novel functional categories that might be linked to prostate
cancer. Almost one-third of the regulators predicted to control the
expression levels of the modules are microRNAs. Several of them
have already been characterized as causal in various diseases,
including cancer. We also predicted novel microRNAs that have never
been associated to this type of tumor. Furthermore, the condition-
dependent expression of several modules could be linked to the
value of a clinical parameter characterizing the aggressiveness of the
prostate cancer. Taken together, our results help to shed light on the
consequences of aggressive and non-aggressive forms of prostate
cancer.

Availability: The complete regulatory network is available as
an interactive supplementary web site at the following URL:
http://bioinformatics.psb.ugent.be/webtools/pronet/

Contact: yves.vandepeer@psb.vib-ugent.be

1 INTRODUCTION

During the past century, the basic strategy to decypher biological
functions was essentially to concentrate efforts on a very limited
set of molecules of interest. This reductive or gene-centric approach
has had, and still has, an enormous success, producing immediately
applicable results in all areas of molecular biology knowledge.
However, it has become clear that biological function can rarely
be assigned to an individual molecule but is rather the result of
the interactions among a discrete set of various types of molecules
(proteins, RNA, metabolites, etc.). Those functional modules are a
critical level of biological organization that cannot be identified by
the study of their individual components (Hartwell et al., 1999).
One of the main goals of systems biology is to determine those
modules and their components, by data-mining and integrating
high-throughput ‘omics’ data.

Cancer is essentially a genetic disease, characterized by an
uncontrolled proliferation and survival of damaged cells, resulting
in tumor formation. Unlike other diseases, such as cystic fibrosis
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or muscular dystrophy, there is no single gene defect that directly
‘causes’ cancer. Cells have multiple safeguards to prevent the effects
of mutations appearing in various cancer genes, and it is only when
several of those genes are affected that an invasive and potentially
lethal tumor develops (Vogelstein and Kinzler, 2004). The picture
is further complicated by the fact that new classes of molecules
like microRNAs (miRNAs) have been shown to play a crucial
role in tumorigenesis, and therefore should be taken into account
(Esquela-Kerscher and Slack, 2006). Prostate cancer is the third
most common cancer in men worldwide and occurs principally in the
United States, Canada and northwestern Europe, but is uncommon
in Asian countries and South America (Quinn and Babb, 2002).
Prostate cancer is a complex disease, and finding the genetic causes
of this disease has proven to be difficult, even if genome-wide
association studies have recently detected a number of genetic
variants, gene fusions and expression signatures associated with
this disease (Witte, 2008). Furthermore, the progression of prostate
cancer is also complex, with ‘only’ 10% of the patients being
diagnosed with an aggressive form that can evolve to threaten their
life. The determinants of this outcome are largely unknown (Lu-Yao
et al., 2002).

There is an increasing interest in systems biology approaches
for the discovery of genes associated with cancer (Hood et al.,
2004; Hornberg et al., 2006). Those approaches help to simplify the
overwhelmingly complex picture that is often coming out of more
traditional approaches by constructing more easily interpretable
network representations of the underlying system and deriving
concrete, experimentally verifiable hypotheses. The integration
of clinical data in a robust framework that would allow the
identification of modules that are pathologically altered in disease
has been identified as one of the major challenges for network
biology (Barabdsi and Oltvai, 2004).

Here, we used the LeMoNe algorithm to reconstruct a regulatory
module network linked to prostate cancer using a large dataset
of lymphoblastoid cells samples for which expression levels were
measured for genes as well as miRNAs. LeMoNe uses ensemble-
based probabilistic optimization techniques to identify clusters
of co-expressed genes and their putative regulators (Joshi et al.,
2008, 2009; Michoel ef al., 2007). The algorithm has been validated
and applied on various biological data sets (Michoel et al., 2009;
Vermeirssen et al., 2009). Recently, we applied it to a set of cancer
samples of various origins, for which expression data were available
for both genes and a limited set of miRNAs. A couple of miRNAs
were identified as high-scoring regulators for several modules of
co-expressed genes, and a miRNA was validated experimentally
as a regulator of a module linked to epithelial homeostasis, with
a possible role in epithelial to mesenchymal transition (Bonnet
et al., 2010). So far, we used expression data measurements to
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assign regulators to clusters of co-expressed genes, but in this study
we further extended the algorithm to simultaneously evaluate a
heterogeneous set of candidate regulators which can be continuous-
valued or discrete. In addition to combining transcription factors and
miRNAs as regulators, we have also associated a clinical parameter
to the condition-dependent expression levels of a module, gaining
further insight in the regulatory processes.

2 METHODS

2.1 Data sets

We used datasets generated for a previous study (Wang et al., 2009b), where
blood samples were taken from 90 male patients having a median age of
68 years. The lymphocytes were then transformed with Epstein—Barr virus
to create lymphoblastoid cell lines. Total RNA was extracted and profiled
for mRNA transcripts and miRNAs for the 90 samples using the Illumina
human-6 V2 BeadChip and Illumina microRNA expression profiling panel,
respectively. We downloaded normalized expression data sets and sample
information from the Gene Expression Omnibus repository (GSE14794)
using the package GEOquery (Davis and Meltzer, 2007) from the R statistical
package (R Development Core Team, 2009).

2.2 LeMoNe module network algorithm

We designed and tested the LeMoNe (Learning Module Networks) algorithm
in previous studies (Joshi er al., 2008, 2009; Michoel et al., 2007). The
algorithm extends the method of Segal et al. (2003) to infer regulatory
modules and their specific regulators from gene expression data by using
a more representative solution extracted from an ensemble of possible
statistical models to explain the data. LeMoNe infers a module network
in two major stages. The first one is a two-way clustering of genes and
conditions, using a Gibbs sampling procedure (Joshi et al., 2008). In
order to avoid local optima, multiple clustering solutions are generated
and subsequently integrated in a final set of so-called tight clusters,
corresponding to sets of genes that are frequently associated across all the
clustering solutions. In the second stage, the algorithm infers a prioritized
list of regulators for each cluster of co-expressed genes. More precisely,
a hierarchical tree is build by grouping sets of conditions (corresponding
in this case to samples taken from different patients) having similar means
and standard deviation. Regulators are assigned to each node of the tree
by logistic regression on the regulator expression values to predict the
assignment of conditions to each side of the tree node (Joshi er al.,
2009). Regulators having a distinct expression pattern on each side of a
given tree node will get a high probabilistic score. Multiple statistically
equivalent partitions of conditions are generated for each cluster of co-
expressed genes and an ensemble approach is used to sum the strength
with which a regulator participates in each regulatory tree. A global score
is calculated which reflects the overall statistical confidence, and which
is used for prioritizing the whole list of regulators for a given set of co-
expressed genes. The mathematical details of the algorithm can be found
in Joshi et al. (2009). The LeMoNe software package can be downloaded
from our website, is open-source and free of charge for academic use
(http://bioinformatics.psb.ugent.be/software/details/lemone).

2.3 Integrating discrete and heterogeneous
continuous-valued regulators

As explained above, regulators are assigned to a co-expression cluster by
using logistic regression on the binary splits of a set of hierarchically linked
condition clusters. More precisely, let Cp and C; be two disjoint sets of
conditions. Given a regulator with expression value x in some condition, our
model assumes there is a (hidden) binomially distributed random variable Y
such that ¥ =0 if the condition is assigned to Cyp and Y =1 if it is assigned

to Cy, with probability
1
p¥Y=1|x)= TreFo—2

For a continuous-valued regulator, the training data for a regulator R
consists of a set of expression values x,, across all measured conditions
m. Furthermore, given the partition of conditions and their hierarchical tree,
we know at each tree node which conditions m belong to Cy and which to C;.
Hence, using Bayes’ rule, we can determine the parameters 8 and z which
maximize the posterior probability of assigning regulator R. This posterior
probability is then used as the score for R at this particular tree node and
combined with the scores at other nodes to compute a global assignment
score. The parameter z is interpreted as a split value, meaning if R is highly
expressed (x;,; > z) the condition is assigned to one side of the split and if R is
lowly expressed (x,, <z) to the other side. The parameter 8 is determined by
how well a regulator fits the separation of conditions: if x,, > z for all m € C;
and x,, <z for all meCy (or vice versa), we can take §=+o00 and obtain
a maximal posterior probability. If there is no split value which achieves a
good separation of conditions, B will be close to 0 leading to low values of
the posterior probability. See Joshi et al. (2009) for more details.

Clearly, there is no need for the values x to be comparable in absolute
terms to the expression values determining the co-expression clusters. This
is exploited to assign miRNA regulators. Furthermore, there is also no need
for the values x to be continuous. In this article, we considered discrete
regulators which can take two values, say O and 1. Then the parameter z
becomes redundant and we set it to z=0.5, while 8 is determined as before
by maximizing the posterior probability. As we are using a probabilistic
model and the final regulator score is defined by a posterior probability, the
scores of mMRNA, miRNA and discrete regulators can all be integrated and
compared on the same scale to determine the final module network with
heterogeneous regulators.

2.4 Supplementary data web site

In order to facilitate the analysis and the browsing of the results
of this study, we have set up a dedicated supplementary web site
(http://bioinformatics.psb.ugent.be/webtools/pronet/). The user can search
for a gene of interest by his Illumina gene code, common gene name (HUGO
symbol) and gene description. Each search will return a list of modules where
the search term was found. The user can then click on the module name to
have a detailed list of the module genes and regulators. Users also have the
possibility to leave one (or more) comments on each module of interest.

3 RESULTS AND DISCUSSION

3.1 Inference of a module network linked to prostate
cancer

In this study, we used the LeMoNe algorithm (see Section 2) to
build a regulatory module network from gene expression profiles
generated from immortalized lymphoblastoid cell lines produced
from blood cell samples of 90 patients having aggressive or
nonaggressive prostate cancer (Wang et al., 2009a, b). The output
of the algorithm is a set of clusters of co-expressed genes, with a
prioritized list of high-scoring regulators attached to each cluster.
A cluster of co-expressed genes plus its list of regulators constitute
a module, and the ensemble of modules and their relationships
compose the module network.

For the first stage of the algorithm, we selected genes showing a
differential expression (SD <0.2) across the set of samples, resulting
in a set of 2192 genes that was used as input for the clustering
procedure. We generated 50 different clustering solutions that were
integrated to identify tight clusters of genes that are consistently
clustered together. The result was a set of 43 tight clusters having
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Fig. 1. Boxplot representation of the size of the 43 tight clusters inferred
by LeMoNe (A). Number (Nb) of clusters per regulator for high scoring
regulators (B). The proportion of miRNAs is indicated in light grey.

more than five genes, that do not overlap and represent a total of
1259 genes. The clusters have a variable number of genes, with a
median size of 24 genes. Twenty-five percent of the clusters have
less than 11 genes and 75% have less than 41 genes (Fig. 1).

The set of 43 tight clusters was used as input for the second stage
of the algorithm, the assignment of regulators. The probabilistic
score calculated for each regulator reflects how well its expression
profile predicts the condition-dependent expression level of the
genes in a cluster. Furthermore, we can use this score on
heterogeneous types of regulators, including ones having discrete
values (see Section 2). For this study, we have used three different
types of regulators . First, we selected all transcription factors and
signal transducers from the gene expression dataset, using the GO
categories ‘transcription factor activity’ (GO:0003700) and ‘signal
transducer activity’ (GO:0004871). This selection resulted in a set
of 1558 genes. Second, we added a set of 735 microRNA expression
profiles that were measured on the same samples, but using a distinct
microarray platform (Wang et al., 2009a, b). Third, we also used as
a ‘regulator’ a clinical parameter, the Gleason grade, a discrete score
assigned by a pathologist based on the microscopic appearance of
prostate tissue biopsies. High values of Gleason grade are linked to
more aggressive forms of prostate cancer characterized by a worse
prognosis for the patient. The 90 samples in the dataset have been
classified as ‘high’ or ‘low’ Gleason score.

A total of 77374 regulator—-module assignments were made
by the algorithm, from which we selected the top 1% as high-
scoring candidate regulators (774 regulator—-module pairs). For each
regulator assigned to a module, the algorithm is also selecting
another one at random, thus defining a distribution of randomly
assigned regulators. In this study, the distribution of all random
regulators has a median score of 9.37, with a maximal score of
60.11. On the other hand, the top regulators (i.e. the top 1% of all
assigned regulators) have a median score of 228, with a minimum
value of 107.47. Therefore the minimum score for a top regulator is

still 3.8 times higher than the maximal score for a randomly assigned
regulator, thereby demonstrating that the top regulators score is far
greater from what could be expected by chance. There are 496
unique regulators in the top 1% selection. Most of the regulators
are assigned to one cluster (68%), but some are assigned to two or
more (Figs 1 and 2). Within this set, a total of 148 miRNAs have
been selected (30% of all high-scoring regulators). Some miRNAs
are also assigned to more than one cluster (Figs 1 and 2).

3.2 Modules are enriched with specific gene ontology
categories

We calculated enrichment of GO (Gene Ontology) categories for the
43 tight clusters using the BiNGO tool (Maere et al., 2005). A total
of 29 tight clusters have at least one GO category overrepresented
at the 0.05 significance level (corrected P-values). There are
580 different GO categories overrepresented. A selection of GO
categories overrepresented for various modules is shown in Table 1.
Several modules are enriched for cell cycle-related categories (for
example modules 0, 2, 4, 11, 41). This result is highly consistent
with previous analyses that also found cell-cycle enrichment in gene
clusters inferred on the same dataset but using different statistical
approaches (Wang et al., 2009a, b). As an example, module 4 is
highly enriched in cell cycle-related genes (corrected P-value 2.4E-
20, Table 1). It has a list of 13 high-scoring regulators, including five
miRNAs. Several of those are known regulators of the cell cycle. The
top regulator, HMGB?2, is a DNA-bending/looping protein that is
known to bind p53, the well-known tumor suppressor gene inducing
cell cycle arrest and apoptosis (Stros et al., 2004). The second
regulator in the list is one of the core regulators of the cell cycle,
E2F2 (Trimarchi and Lees, 2002). The third regulator is UHRF1, a
member of a subfamily of RING-finger type E3 ubiquitin ligases that
binds to specific DNA sequences and recruits a histone deacetylase
to regulate gene expression. UHRF1 is playing a crucial role at
the G1/S transition of the cell cycle (Jeanblanc et al., 2005). The
fourth regulator is also a well-characterized regulator of the cell
cycle. FOXM1, a member of the FOX family of transcription factors,
regulates a large set of G2/M specific genes (Laoukili et al., 2005).
FOXMI1 was characterized as a proto-oncogene, and was found to
be upregulated in many types of cancer, including prostate tumors
(Kalin et al., 2006). Amongst the miRNAs selected as regulators of
module 4 is miR-320d, which affects the cell cycle G1/S transition
through CDKG6 under specific conditions (Duan et al., 2009).
Several modules are statistically enriched for other functional
categories like nucleosome and chromatin assembly (module 18,
P-value 4.74E-19 and 7.18E-19, respectively), translation
(module 22, P-value 7.53E-09), immune response (module 2,
P-value 1.55E-02, module 7, P-value 8.23E-04), response to stress
(module 8, P-value 6.85E-04), cytoskeleton organization and
biogenesis (module 38, P-value 1.22E-02), cell communication and
signal transduction (module 12, P-values 2.85E-03 and 3.60E-03,
respectively), response to stress (module 8, P-value 6.85E-04) and
alcohol metabolic process (module 14, P-value 1.06E-02). Previous
studies on the same dataset have also identified cell communication
and signal transduction (Wang et al., 2009b), but our approach
enriches the results with several new functional categories. For
example, module 18 is enriched for nucleosome and chromatin
assembly, which could be linked to the cell cycle, but might also
point to chromatin modifications linked to epigenetic changes.
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Fig. 2. (A) Simplified representation of the module network inferred by the LeMoNe algorithm. Clusters of co-expressed genes have diamond shapes, while
regulators are symbolized by circles. The color of the circle correspond to a given type of regulator. The thickness of the edges is proportional to the score of
a regulator for a given module. For clarity, some clusters are not represented and we have limited the regulators to six per module. (B) Zoom on the module
network representation. The yellow regulator labeled GL represent a clinical parameter, the Gleason score, which is connected to three different clusters.

Module 2 and 7 are linked to immune response, which has been
characterized as playing a role in tumor initiation and promotion
(Pollard, 2004).

Wang et al. (2009a) performed a computational analysis on the
same dataset. By using a weighted gene co-expression network
analysis, they identified a set of four modules, with one of them being
highly enriched in various cell cycle-related GO categories. Our
approach, based on a different algorithm, has also clearly identified
cell cycle-related modules as well as novel GO categories, like
immune response, and therefore is enriching the results obtained
previously. This become particularly evident when comparing the
top GO categories identified in the study of (Wang et al., 2009a)
(Table 2), where most categories identified in their study are clearly
related to the cell cycle, while in this analysis we have not only
many cell cycle-related categories, but also novel categories like the
immune response. Further analysis of those novel modules could
help to identify key genes or markers related to prostate cancer.

3.3 MiRNAs are selected as high-scoring regulators

Almost 30% of the high-scoring regulators are miRNAs. Even if we
restrict the selection to the three best regulators for each module,
there are still 17 miRNAs, including six that are selected as best
regulators (having the highest score) for a module (miR-451 for
module 7, miR-125a-5p for module 18, miR-221 for module 24,
miR-767-3p for module 32, miR-132 for module 33 and miR-181a*
for module 35). From this restricted list of 17 miRNAs, three were
also identified in the study by Wang et al. (2009a) (miR-221, miR-
222 and miR-551) as having a significant association with prostate
cancer.

From the 148 unique miRNAs selected as high-scoring regulators
in this study, 64 have already been implicated in various diseases,
mostly cancer (Jiang et al., 2009). For example, miR-451 has been
implicated as causal in colorectal cancer (Bandres et al., 2009),

breast cancer (Kovalchuk et al., 2008), glioblastoma (Gal et al.,
2008) and gastric cancer (Bandres et al., 2009). MiR-221 has been
identified in the previous analysis of this dataset (Wang et al., 2009a)
and is also selected as a high-scoring regulator in our study. This
miRNA has been identified as a causal factor in numerous forms of
cancer (Jiang et al., 2009), including prostate cancer (Galardi et al.,
2007; Sun et al., 2009; Tong et al., 2008). MiR-132, selected as the
best regulator for module 33, has been linked to various diseases,
including colorectal cancer (Xi et al., 2006), pituitary adenoma
(Bottoni et al., 2007) and B-cell chronic lymphocytic leukemia
(Calin et al., 2004). In conclusion, our analysis confirms miRNAs
that have been previously identified from the same dataset (e.g. miR-
221), finds miRNAs that have been characterized as causal in various
forms of cancer (e.g. miR-451), and predicts novel miRNAs that
have not been previously reported to be involved in a disease (e.g.
miR-767-3p).

3.4 Assignment of a clinical parameter as a regulator

Only a minority of the patients (~10%) that do show histologic
evidence of prostate cancer will develop a clinically significant form,
potentially severe. Distinguishing the factors that are relevant and
crucial for the characterization of the degree of aggressiveness of the
disease is thus a key question that novel approaches, like systems
biology, might help to tackle. More specifically, it might be useful to
integrate various types of data, like clinical parameters, to try to shed
some light on this problem. The Gleason grade system has proven
to be a reliable indicator of the aggressiveness of prostate cancer.
We have included this clinical parameter as a binary variable (either
low or high for all samples) as a ‘regulator’, along with transcriptions
factors, signal transducers and miRNAs.

This parameter has been selected as a high-scoring regulator
for four different modules (Fig. 2B and Supplementary web site).
For example, it is assigned as the fifth best regulator for
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Table 1. Selected GO categories for various modules of the prostate cancer network inferred in this study

Module ID Ng GO category Corrected P-value Description

0 59 GO0:0043170 1.45E-02 Macromolecule metabolic process
GO:0006374 1.45E-02 Nuclear mRNA splicing
GO:0006395 1.45E-02 RNA splicing
GO0:0006397 1.45E-02 mRNA processing
GO:0008152 3.21E-02 Metabolic process
GO0:0022402 3.62E-02 Cell cycle process

2 54 GO0:0048002 3.68E-03 Antigen processing and presentation of peptide antigen
GO:0006955 1.55E-02 Immune response
G0:0002376 1.56E-02 Immune system process
GO0:0008283 4.05E-02 Cell proliferation

4 46 GO0:0007067 8.42E-24 Mitosis
GO0:0007049 2.42E-20 Cell cycle
G0:0022402 2.51E-17 Cell cycle process
GO:0000074 9.25E-09 Regulation of cell cycle
GO:0000075 2.30E-07 Cell cycle checkpoint
G0:0008283 1.77E-04 Cell proliferation

7 29 GO:0009615 4.72E-05 Response to virus
GO0:0051707 7.30E-04 Response to other organism
GO:0006955 8.23E-04 Immune response
GO:0009607 1.92E-03 Response to biotic stimulus
GO0:0002376 3.31E-03 Immune system process

8 46 GO:0007243 4.55E-04 Protein kinase cascade
GO:0006950 6.85E-04 Response to stress
GO:0006915 2.60E-03 Apoptosis
G0:0012501 2.60E-03 Programmed cell death
GO0:0007242 1.16E-02 Intracellular signaling cascade

11 42 G0:0000245 3.67E-03 Spliceosome assembly
G0:0000074 2.37E-02 Regulation of cell cycle
GO:0048523 2.37E-02 Negative regulation of cellular process
GO:0006374 2.37E-02 Nuclear mRNA splicing

12 31 GO:0007154 2.85E-03 Cell communication
GO:0007165 3.60E-03 Signal transduction
GO0:0045767 9.42E-03 Regulation of anti-apoptosis
G0:0007242 3.73E-02 Intracellular signaling cascade

14 16 GO:0006066 1.06E-02 Alcohol metabolic process
GO0:0019318 1.37E-02 Hexose metabolic process
G0:0005996 1.37E-02 Monosaccharide metabolic process
GO:0005975 2.19E-02 Carbohydrate metabolic process
GO0:0002252 3.62E-02 Immune effector process

18 13 GO:0006334 4.74E-19 Nucleosome assembly
GO0:0031497 7.18E-19 Chromatin assembly
GO0:0006323 6.53E-18 DNA packaging
GO0:0006333 7.42E-18 Chromatin assembly or disassembly
GO0:0006952 6.54E-03 Defense response

21 9 GO0:0019882 1.30E-14 Antigen processing and presentation
GO:0006955 3.38E-10 Immune response

22 23 GO0:0006416 7.53E-09 Translation
GO0:0010467 6.55E-05 Gene expression

29 32 GO0:0008652 3.08E-04 Amino acid biosynthetic process
GO0:0019752 6.73E-04 Carboxylic acid metabolic process

38 11 GO0:0007010 1.22E-02 Cytoskeleton organization and biogenesis
GO0:0046907 1.80E-02 Intracellular transport
GO:0007067 1.98E-02 Mitosis

41 6 GO0:0000075 1.63E-02 Cell cycle checkpoint
GO0:0007050 1.63E-02 Cell cycle arrest
GO:0051242 3.55E-02 Positive regulation of cellular process
G0:0000074 3.55E-02 Regulation of cell cycle
G0:0042127 3.95E-02 Regulation of cell proliferation

Ng, number of genes in the module.
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Table 2. Top GO categories enriched in the analysis of Wang et al. (2009a)
and this study

Wang et al. (2009a) This study
GO category P GO category P
Cell cycle 3.4E-26 Mitosis 8.4E-24
DNA replication 1.6E-13 Cell cycle 2.4E-20
Chromosome 2.1E-13 Chromatin assembly or

Disassembly 7.4E-18
Interphase 2.4E-06 Immune response 3.4E-10
Regulation of mitosis 7.7E-07 Translation 7.5E-09
DNA metabolic process 1.9E-07 DNA metabolic process 2.8E-07
Chromosome segregation 2.2E-07 Chromosome segregation 3.3E-07

Microtubule-based process 1.1E-05 Cellular biosynthetic process 2.7E-05

DNA replication factor C Response to stimulus 3.5E-05
Complex 3E-03
Condensed chromosome ~ 7.2E-03 Organic acid metabolic

process 6.7E-04
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Fig. 3. Module 5. The upper panel represent the high-scoring regulators,
ordered by decreasing score. The GL is the fifth regulator in the list. The
lower panel represent the module genes. Each column represent a different
sample. For clarity, only the five best regulators and a selection of the module
genes are represented. The expression of the genes and regulators is color
coded, with the dark blue representing low expression, while bright yellow
indicates highly expressed genes. The hierarchical tree on top of the figure is
one of the trees used to assign the regulators. The vertical red line represent
the partition of samples defined by the first node of the tree.

module 5 (Fig. 3). The figure shows that the Gleason score values
are inversely correlated with the expression levels of the module,
defined by the first node of the hierarchical tree (red line on the
figure), just like the four other regulators. Although this module
does not have any statistically enriched functional category, there
are several genes annotated for cell proliferation, cell growth and
mitosis. Furthermore, amongst the top regulators are the well-known
regulators of cell cycle and cell proliferation E2F2 and HMGB2
(Stros et al., 2004; Trimarchi and Lees, 2002). The Gleason score
is also linked to module 38, which is enriched in genes involved in
mitosis (Table 1). Of course, this parameter is not a regulator per se,
and the result should not be interpreted as having a causal regulatory
role. Instead, we can postulate that the degree of aggressiveness
of the disease might trigger subtle changes in expression in the
biological functions represented by these modules.

For the current dataset, only one clinical parameter was publicly
available, but usually many more are measured. This type of data
integration might therefore be extremely valuable for a better
comprehension of the clinical aspects of various cancers by linking
molecular data such as gene and miRNA expression to specific
disease phenotypes.

4 CONCLUSION

In this study, we have applied a module network algorithm to a
large expression data set measured on lymphoblastoid cell lines
coming from patients having different forms of prostate cancer.
Compared to our previous applications of the algorithm, we have
further extended it to simultaneously evaluate a heterogeneous set
of candidate regulators which can be continuous-valued or discrete.

We predicted a module network of 43 modules of co-expressed
genes with their associated high-scoring regulators. Most of the
modules show enrichment for specific GO categories. Several of
those categories are related to cell cycle and mitosis activities, which
is consistent with previous studies on the same dataset. Almost 30%
of the predicted regulators are miRNAs, and many of them have
been characterized as causal in many diseases, including cancer. Our
results also suggest novel miRNA candidates that could be linked
to prostate cancer. This study also associate the Gleason score, a
clinical parameter to modules enriched in cell growth and mitosis.

Our study clearly demonstrate the interest of systems biology
approaches to study cancer and its consequences, more particularly
by the integration of heterogeneous sets of candidate regulators. This
type of analysis can be applied to various cancer types and tissues
for which relevant expression data for mRNA, miRNA and various
clinical parameters are available.
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