Ctrl-TNDM: Decoding feedback-driven movement corrections from motor cortex neurons

Citation for published version:
Kudryashova, N, Perich, MG, Miller, LE & Hennig, MH 2023, 'Ctrl-TNDM: Decoding feedback-driven movement corrections from motor cortex neurons', Computational and Systems Neuroscience (Cosyne) 2023, Montréal, Canada, 9/03/23 - 12/03/23.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Other version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Motivation:
- Manifold hypothesis [1]: a low number of latent dynamical factors explain a large fraction of neural variability;
- Do these factors contain information about movement corrections during the trial?

Approach:
- Disentangle sources of variability in behavioral data: instructed vs. uninstructed
- Find dynamic factors in neural recordings from PMd/M1 of monkeys engaged in a center-out reaching task with perturbations that explains the uninstructed behavior

Classic \(R^2 \): quantifies the total behavioral variability, which is dominated by the task instruction

- Instructed
- Uninstructed

Target direction
- Temporal variability
- Spatial variability

Problem: a classic variance explained \(R^2 \) is insensitive to uninstructed variability

Solution: quantify the uninstructed variance explained \(R^2_{\text{uninstructed}} \)

\[
R^2_{\text{uninstructed}} = 1 - \frac{\sum_{n=1}^{N} (y_n - \bar{y})^2}{\sum_{n=1}^{N} (x_n - \bar{x})^2}
\]

Without supervision, LFADS fails to capture the phase of the oscillations

Conclusion

Movement corrections during adaptation to the force field can be decoded from PMd/M1 neuronal activity. Yet, only a small portion of neuronal variability corresponds to movement corrections. Thus, unsupervised models (LFADS) discard this uninstructed variability, modeling it as noise. A weak supervision with behavioral output (velocity) enables detection of neuronal latent dynamics that corresponds to movement corrections.

References

