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a b s t r a c t 

Background and Objective: Prediction of survival in patients diagnosed with a brain tumour is challeng- 

ing because of heterogeneous tumour behaviours and treatment response. Advances in machine learning 

have led to the development of clinical prognostic models, but due to the lack of model interpretabil- 

ity, integration into clinical practice is almost non-existent. In this retrospective study, we compare five 

classification models with varying degrees of interpretability for the prediction of brain tumour survival 

greater than one year following diagnosis. 

Methods: 1028 patients aged ≥16 years with a brain tumour diagnosis between April 2012 and April 2020 

were included in our study. Three intrinsically interpretable ‘glass box’ classifiers (Bayesian Rule Lists 

[BRL], Explainable Boosting Machine [EBM], and Logistic Regression [LR]), and two ‘black box’ classifiers 

(Random Forest [RF] and Support Vector Machine [SVM]) were trained on electronic patients records 

for the prediction of one-year survival. All models were evaluated using balanced accuracy (BAC), F1- 

score, sensitivity, specificity, and receiver operating characteristics. Black box model interpretability and 

misclassified predictions were quantified using SHapley Additive exPlanations (SHAP) values and model 

feature importance was evaluated by clinical experts. 

Results: The RF model achieved the highest BAC of 78.9%, closely followed by SVM (77.7%), LR (77.5%) 

and EBM (77.1%). Across all models, age, diagnosis (tumour type), functional features, and first treatment 

were top contributors to the prediction of one year survival. We used EBM and SHAP to explain model 

misclassifications and investigated the role of feature interactions in prognosis. 

Conclusion: Interpretable models are a natural choice for the domain of predictive medicine. Intrinsically 

interpretable models, such as EBMs, may provide an advantage over traditional clinical assessment of 

brain tumour prognosis by weighting potential risk factors and their interactions that may be unknown 

to clinicians. An agreement between model predictions and clinical knowledge is essential for establish- 

ing trust in the models decision making process, as well as trust that the model will make accurate 

predictions when applied to new data. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Glioblastomas (GBM) are the most common malignant brain tu- 

our and have the poorest outcomes. Average survival is 12-18 

onths and the 5-year survival rate is less than 5% [1] . Lower 

rade gliomas have an average survival of 7 years, but ultimately 

ost progress to GBM and death [2] . An accurate prediction of 

rognosis for patients would inform treatment planning and pa- 
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ient support, but this is challenging. Various factors impact prog- 

osis, but the precise contribution of each factor and their combi- 

ation toward outcomes appear to vary between patients. 

At the group level, basic statistical models are well-established 

n brain tumour survival analysis, but patient level survival predic- 

ion remains a challenge, possibly because of the well-known bi- 

logical heterogeneity of the disease and of treatment responses. 

achine learning (ML) approaches have recently demonstrated 

heir utility in brain tumour survival analyses [3] (see also Kourou 

t al. [4] a general review), but such studies often use genetic or 

maging data, with complex black box models to make prognostic 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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redictions. In clinical practice, though, this type of data is infre- 

uent, hence these models are of limited applicability. Fulop et al. 

5] used a large clinical and molecular brain tumour dataset to 

redict 40 0-, 90 0- and greater than 90 0-day survival after surgery, 

nding that a neural network achieved 63% accuracy, outperform- 

ng several other ML methods. Using the interpretability technique 

IME (Local Interpretable Model-Agnostic Explanations) [6] , the au- 

hors also investigated the main drivers behind miss-classified pre- 

ictions and emphasized the importance of model interpretability 

or clinical decision-making. Senders et al. [7] recently used demo- 

raphic, socioeconomic, clinical, and radiographic features for the 

reation of an online calculator for the prediction of glioblastoma 

urvival. The authors compared 15 ML and statistical algorithms 

nd an Accelerated Failure Time [8] algorithm was selected. How- 

ver, a follow-up Letter to the Editor in the same journal noted in- 

onsistencies in the model calculations and highlighted the danger 

f non-healthcare professionals using this online resource [9] . 

In data-driven healthcare, there is a desire for interpretable and 

xplainable AI/ML models to give end users (e.g. clinicians) the 

upport that will allow them to make informed judgements when 

t comes to high-stake medical decisions (see Ahmad et al. [10] for 

 review). However, there is no all-purpose definition of inter- 

retability since this is a subjective concept that is often domain- 

pecific [11] . One way to define interpretability is as the degree to 

hich a human can understand the cause of a decision [ 12 , 13 ]. In-

erpretability may be achieved by either using an intrinsically in- 

erpretable model whereby its simple structure allows end users 

o understand feature relationships and final predictions, or by ap- 

lying post-hoc explanation techniques to analyse and extract in- 

ormation from a trained model [14] . 

In this paper we investigate and compare the performance of 

hree intrinsically interpretable ‘glass box’ classifiers, Bayesian Rule 

ists (BRL) [15] , Explainable Boosting Machines (EBM) [16] and Lo- 

istic Regression (LR) [17] , and two ‘black box’ classifiers, Random 

orest (RF) [18] and Support Vector Machine (SVM) [19] , for the 

rediction of one year survival following a brain tumour diagno- 

is. We used SHapley Additive exPlanations (SHAP) values [20] to 

nfer global feature importance of black box models and to un- 

erstand misclassified predictions. Furthermore, clinical experts re- 

iewed model feature importance and evaluated clinical utility. 

. Methods 

The following section describes the raw dataset and its prepro- 

essing, and the modelling steps for the prediction of brain tu- 

our survival greater than one year. Brief explanations of the em- 

loyed machine learning algorithms and interpretability techniques 

re also provided. We adhered to the TRIPOD reporting guideline 

or prediction models (see supplementary materials) [21] . 

Data was analysed in Python 3.8.1 [22] . Standard data analy- 

is libraries, namely Pandas [23] , NumPy [24] , Matplotlib [25] and 

cikit-learn [26] were used, as well as SHAP [20] for global fea- 

ure importance. InterpretML [16] , an open-source Python package 

or state-of-the-art ML interpretability techniques, was used for 

BM and local-level SHAP implementation. LIME is another popu- 

ar post-hoc interpretability tool [6] , however due to the instability 

f the explanations [27] , and the superior robustness of SHAP [28] , 

his method was not investigated further. The BRL model was the 

riginal authors’ code [15] 1 . 

.1. The raw dataset 

In this retrospective study, we investigated an anonymised 

ataset collected from electronic patient records of consecutive 
1 https://users.cs.duke.edu/ ∼cynthia/papers.html 

m

t

S

2

atients identified by regional neuro-oncology multidisciplinary 

eams in Scotland, UK, between 1 April 2012 and 30 April 2020. 

ata collection was approved by Southeast Scotland Research 

thics Committee (reference 17/SS/0019). 

The raw dataset contained 1283 patient records and 225 pre- 

ictor variables. All patients were ≥ 16 years of age with a 

rain tumour diagnosis. Patients were excluded if they had in- 

omplete records ( n = 36) or lacked symptomatology informa- 

ion ( n = 219). Of the 225 predictor variables, the majority was 

parse, and pertained to specific symptom details (e.g. Symptom 1 

 Headache [choice = Worse on coughing/bending]; n = 107), blood 

est and treatment particulars (e.g. baseline haemoglobin, date of 

hemotherapy start; n = 75) and other irrelevant information (e.g., 

ocation of first imaging; n = 23) (see Appendix A.1: Data Prepro- 

essing for additional details). These variables were removed from 

he dataset. Based on exclusion criteria, the dataset was reduced 

o 1028 patients records, 20 predictor variables and one dependent 

ariable, namely patient survival in days. 

Patient survival was measured in days from radiological diag- 

osis of a brain tumour and in our dataset, 35% of patients were 

till alive (i.e. no death date is recorded). All predictive models (see 

ection 2.4 ) performed binary classification of survival greater than 

ne year since this is a medically relevant timepoint: only around 

0% of patients with a brain tumour survive beyond this. One year 

urvival labels were thus created from the dependent variable i.e., 

atient survival in days. Our resulting dataset was (as expected) 

elatively even split: 443 patients (43%) survived less than a year 

nd 585 patients (57%) survived more than a year. 

.2. Pre-processing 

Following the removal of irrelevant variables, various prepro- 

essing steps were needed to get the narrowed-down dataset of 

028 patient records into a state suitable for our analyses. To pre- 

ent data leakage, all preprocessing was embedded within the 

ested cross-validation (CV) procedure (see Section 2.3 ), hence all 

ata preprocessing methods were prepared on the training set and 

pplied to the train and test sets. 

Given the small dataset size, imputation rather than dele- 

ion was employed to manage missing data. 11 of the 20 fea- 

ures had missing data, with a mean missingness of 7% ± 4%. 

ll missing data was believed to be missing at random (see 

ppendix A.1.1:Missing Data ). Multivariate imputation was imple- 

ented through the iterative imputer in Scikit-learn [26] , which 

erforms multiple imputation rounds whereby each feature with 

issing values is modelled as a function of other features and 

he final estimate is used for imputation. The iterative imputer 

annot handle categorical variables, thus missing nominal vari- 

bles ( n = 2) were first imputed using the most frequent value. 

issing ordinal variables ( n = 7) were encoded as integer values 

nd a Bayesian ridge regression estimator [29] with 10 imputation 

ounds was used for multivariate imputation. Missing values were 

nitialized using the feature mean and the feature with the fewest 

issing values was imputed first. This method is similar to the R 

ICE package (Multivariate Imputation by Chained Equations) [30] , 

owever the iterative imputer differs by returning a single imputa- 

ion instead of multiple imputations. 

Following imputation, we tested for statistically correlated vari- 

bles. Two sets of features, Tumour Type and Likely Grade, as well 

s First Treatment and Extent of Resection, were combined into a 

ingle feature called Diagnosis and First Treatment , respectively, to 

educe feature collinearity (see Appendix A.1.2: Feature Correlations 

or more details). Finally, in order to support the association rule 

ining employed by the BRL algorithm (see Section 2.4.1 ), all con- 

inuous variables ( Age, Symptom 1 Duration , and Maximum Tumour 

ize ) were discretised. Most rule-mining approaches make the (re- 

https://users.cs.duke.edu/~cynthia/papers.html
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trictive) assumption that all features are binary or categorical, al- 

hough some approaches automatically attempt to discretise con- 

inuous features [31] . Automatic discretisation of the continuous 

eatures was attempted, however the results did not agree with ex- 

ert knowledge and literature, hence continuous features were dis- 

retised based on meaningful manually defined cut-points (see Ap- 

endix A.1.3: Feature Discretization ). The other ML algorithms con- 

idered in this study (RF, LR, SVM and EBM) do not make this as- 

umption, so the original continuous features were used in these 

ases. All continuous and ordinal variables were normalized into 

he range [0,1]. 

The final dataset contained 18 predictor variables including pa- 

ient demographics (e.g., sex, age), medical history (e.g., history of 

ancer, comorbidity, Karnofsky performance score (KPS) - a mea- 

ure of a patient’s general well-being [32] ), symptom features (e.g., 

ymptom types and duration), radiological tumour analysis (e.g., 

iagnosis, maximum tumour size) and treatment details (e.g., first 

reatment, post-op performance status). A detailed overview of 

ach feature, including their descriptions, values and proportion, 

s provided in Appendix A.2: Description of Dataset Variables . 

.3. Modelling pipeline 

Since the EBM, LR, RF and SVM models cannot directly han- 

le categorical variables (a technical constraint imposed by scikit- 

earn toolkit), a combination of binary ( n = 3), ordinal ( n = 5) and

ne-hot encoding ( n = 7) was used for the 15 categorical features, 

hich resulted in a total of 58 different f eature types. Due to the 

mall dataset size, nested CV [33] was implemented for prepro- 

essing, hyperparameter tuning and model assessment (see Ap- 

endix A.3: Hyperparameter Tuning for description of hyperparam- 

ter searches). The outer loop, which was responsible for assessing 

odel performance, used 5-fold stratified CV resulting in an 80% 

raining set (n = 822) and 20% test set (n = 206). The inner loop,

hich was responsible for hyperparameter tuning and model se- 

ection, used 3-fold stratified CV, resulting in a further split of the 

uter training set, into a 66% train set (n = 543) and 33% valida-

ion set (n = 279). Stratified CV ensures the training and test data 

n each fold reflect the distribution of the outcome variable (i.e., 1- 

ear Survival) from the dataset. Nested CV was repeated for three 

ifferent random seeds resulting in a 3 × 5 × 3 setup. For each 

odel, the average balanced accuracy (BAC), macro-F1 [34] , sensi- 

ivity, specificity and area under the receiver operating characteris- 

ic curve (AUROC) [35] were reported. 

.4. Machine learning 

.4.1. Bayesian rule lists 

BRLs are a type of rule list classification model that produce 

 series of if-then rules, also known as decision (or production) 

ules, where the goal is to learn P(Y = 1|X). Y is binary, and in this

nalysis, Y = 1 would indicate survival greater than one year and 

 would represent a patient’s features. The conditional probability 

istribution is represented as a decision list consisting of a series 

f decision rules. 

The creation of a BRL roughly follows these steps: first, an- 

ecedents are extracted from the data using the frequent item- 

et mining technique FP-Growth [36] and second, a set of rules 

nd their order are learned using Bayesian statistics. BRLs create 

 posterior distribution over rule lists, given the observed data and 

ser specified priors, which are often used to favour concise rule 

ists with a small number of conditions. Using a generative model, 

n initial decision list is selected and iteratively modified using 

arkov chain Monte Carlo sampling [37] to generate many sam- 

les of decision lists from the posterior distribution. For each rule, 
3 
5% credible intervals are estimated using the Dirichlet distribu- 

ion function [38] (see Letham et al., [15] for technical details). 

his procedure ensures the production of a variety of lists that are 

ot dependent on one initial decision list. Given this posterior dis- 

ribution of decision lists, new observations are classified using a 

oint estimate (a single decision list) or the posterior predictive 

istribution (multiple decision lists). The point estimate is chosen 

s the list with the highest posterior probability from all the sam- 

les with posterior mean list length and posterior mean average 

ule cardinality. 

.4.2. Explainable boosting machine 

EBM is a glass box model designed to have accuracy on-par 

ith state-of-the-art ML methods while remaining highly explain- 

ble [16] . EBMs are a type of Generalised Additive Model (GAM) 

39] with automatic interaction detection. GAMs model the impact 

f each predictive feature through smooth feature functions which, 

epending on the underlying data pattern, can be linear or nonlin- 

ar. However, GAMs use each feature individually, missing any re- 

ation between two features. EBMs improve upon traditional GAMs 

y utilizing modern ML techniques, namely bagging and gradient 

oosting, to learn the best feature function, and automatically de- 

ect and include pairwise feature interactions through round-robin 

ycles (such models are called GA 

2 M: Generalized Models with In- 

eractions). 

.4.3. Other ML algorithms 

Finally, the following three popular ML algorithms were utilized 

or brain tumour survival prediction: a LR classifier [17] , a RF clas- 

ifier [18] and an SVM classifier [19] with a radial basis function 

ernel [40] . All models were implemented using the scikit-learn 

ackage [26] . 

.5. Model interpretability 

Measuring the interpretability of a model is often difficult due 

o the subjective nature of the task. Unlike classification perfor- 

ance, there is no standard metric for interpretability that can be 

sed across all models making model comparison challenging. In 

edicine, where human decision making governs the process of 

atient treatment, a survey over domain experts is a valuable mea- 

ure of interpretability. The interpretability of all our models was 

valuated based on the clinical expertise of two of the authors 

M.P. and P.B.). To mitigate any potential bias, the models were 

onstructed without the expert’s input and only the final mod- 

ls were presented for qualitative feedback. For the interpretabil- 

ty analysis, all ML models were trained on the same dataset 

i.e. train/validation/test split) to ensure interpretability methods 

ere consistently evaluated on the same training examples and lo- 

al predictions could be fairly compared. Specifically, model inter- 

retability was evaluated in the following ways: 

BRL: The experts were given five BRL point-estimates 

Appendix B for review and asked to consider whether: 

i) the rules produced were sensible, ii) any rules were 

surprising or unrealistic, and iii) the potential employability 

of such a model in a clinical setting. 

EBM: These models are highly explainable because the contri- 

bution of each feature to a final prediction can be visual- 

ized and understood by plotting the feature function (see 

Section 2.4.2 ). To understand individual predictions, each 

feature function serves as a lookup table per feature and re- 

turns a contribution term which can be sorted and visual- 

ized to understand individual feature importance. Features 

with larger positive or negative scores have a greater effect 

on the resulting prediction than features that have scores 

closer to zero. 
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Table 1 

Performance metrics were assessed using nested cross-validation for three different random seeds. Mean and, 

in parenthesis, the standard deviation (SD) for 15 models are given. BRL: Bayesian Rule List, EBM: Explainable 

Boosting Machine, LR: Logistic Regression, RF: Random Forest, SVM: Support Vector Machine, AUROC: area 

under the receiver operating characteristic curve. 

BRL (SD) EBM (SD) LR (SD) RF (SD) SVM (SD) 

Balanced Accuracy 0.726 (0.041) 0.771 (0.041) 0.775 (0.045) 0.789 (0.033) 0.777 (0.047) 

Macro-F1 0.718 (0.040) 0.770 (0.040) 0.772 (0.042) 0.790 (0.033) 0.773 (0.049) 

AUROC 0.780 (0.031) 0.864 (0.034) 0.867 (0.032) 0.878 (0.022) 0.865 (0.037) 

Sensitivity 0.706 (0.078) 0.811 (0.046) 0.810 (0.067) 0.844 (0.036) 0.806 (0.078) 

Specificity 0.746 (0.130) 0.731 (0.107) 0.740 (0.137) 0.734 (0.081) 0.748 (0.136) 
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RF, LR and SVM : SHAP, a post-hoc explainability tool, was used 

to assess global feature importance and individual predic- 

tions [20] . SHAP is a model-agnostic method that calculates 

the contribution of each feature using game theoretically op- 

timal Shapley values [41] , which are the average marginal 

contribution of a feature across all possible permutations. 

In other words, Shapley values considers all possible fea- 

ture combinations for all possible model predictions. Due to 

this exhaustive search, SHAP can be computationally expen- 

sive, but provides theoretical guarantees for the consistency 

and accuracy of explanations, often making SHAP a preferred 

post-hoc explainability method [14] . 

Note that LR interpretability can be assessed using the odds ra- 

io [42] , or by taking the exponent of the model’s learned feature 

eights. However, the interpretation of these weights is multiplica- 

ive and dependent on the feature type (e.g. numerical, binary cat- 

gorical, categorical with more than two categories), making model 

nterpretation challenging. For ease of model comparison, we re- 

ort LR feature importance based on SHAP values only. 

. Results 

.1. Model evaluation 

The mean classification performance of the five modelling ap- 

roaches on the brain tumour dataset are summarised in Table 1 . 

ll models performed above the no-information rate of 56.9%, or 

he accuracy achieved by always predicting the majority outcome 

abel. RF narrowly performed the best, with a BAC of 78.9%, closely 

ollowed by SVM (77.7% BAC), LR (77.5% BAC) and EBM (77.1% BAC). 

RL performed slightly worse with a BAC of 72.6%. 

.2. Model interpretability 

We compared interpretability across all models at a global 

odel level and if possible, a local prediction level, going from 

he most-interpretable glass box models to the least-interpretable 

lack box models. 

.2.1. Bayesian rule list interpretability 

Fig. 1 shows a BRL point-estimate that obtained a BAC of 78.2%, 

he highest from the first random seed. For a given rule list, once a 

atient has satisfied a rule they will not be taken into account by 

he cases further down the list. The final rule in the list will only 

onsider the subset of patients that were not classified by the pre- 

ious ones. The BRL point-estimates from the four other folds are 

iven in Appendix B , for a total of five BRL estimates that were pre-

ented to the experts. Despite the different point-estimates, there 

s significant overlap in the rules. Due to the iterative construction 

f BRLs, multiple equally good rule lists may be produced and it 

s not determinable which will be returned by the model ahead of 

ime [15] . 
4

The given BRL point-estimate ( Fig. 1 ) indicates that if a patient 

ith a brain tumour has a KPS < = 70 and tumour on the right side

f their brain, the probability they will survive more than one year 

s 25.5%. However, if this is not true, and the patient is diagnosed 

ith a benign meningioma, the probability they will survive more 

han one year is 98.9%. Otherwise, if the patient is diagnosed with 

 benign glioma, this is indicative of survival greater than one year 

ith a probability of 98.3%. 

According to the qualitative evaluation by the experts, there 

s no gold standard of expected feature rankings, but the com- 

ination of features used by the rule lists for survival prediction 

re informative and in-line with domain knowledge. The rule lists 

e-produced feature combinations that are well-established in the 

iterature [ 43 , 44 , 45 ], and although the rule lists did not uncover

ovel feature relationships, an agreement between model predic- 

ions and clinical knowledge is essential for establishing trust in 

he models decision making process, as well as trust that the 

odel will make accurate predictions when applied to new data. 

urthermore, the rule lists simple IF-THEN structure was easy to 

nterpret and classification of a patient likely to be fast, since only 

 few statements need to be reviewed. However, each statement 

witches between feature types, and the probability of survival 

oes not follow a linear order, making the interpretation more 

umbersome. Finally, the integration of additional clinical informa- 

ion, such as blood tests or genetic data, was suggested to improve 

he clinical validity of rule list models. Blood tests are now being 

nvestigated as a means for brain tumour diagnosis [46] and ge- 

etic alterations have shown to be effective predictors for tumour 

rognosis [ 5 , 45 ]. 

.2.2. Global model interpretability 

The interpretability of the remaining four models, EBM, LR, 

F and SVM, was evaluated using global explainability methods, 

hrough which the average behaviour of the model is described. 

BM’s absolute global feature importance was assessed using the 

odel’s learned feature function and the global feature importance 

or LR, RF and SVM was assessed using SHAP. Fig. 2 depicts the 

op 12 informative features used by the respective models. In gen- 

ral, all models found age, diagnosis, functional features (Karnof- 

ky Performance Status [KPS] and post-op performance status) and 

rst treatment to be the most influential. Other informative fea- 

ures included comorbidity, Scottish Index of Multiple Deprivation 

SIMD), Symptom 1 duration and tumour side, although this var- 

ed between models. Fig. 3 takes this a step further and visualises 

he impact of different feature values on the model’s output. For 

xample, across all models, a younger age (blue) has a positive im- 

act on survival, or higher post-op performance scores (red) - i.e., 

orse functional state following surgery - have a negative impact 

n survival. In Fig. 3 , for model comparison, EBM feature impor- 

ance was also evaluated with SHAP. 

.2.3. Local model interpretability 

EBM, LR, RF and SVM models were also evaluated using local 

xplainability methods, which are beneficial for understanding in- 
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Fig. 1. BRL-point estimate with the highest balanced accuracy of 78.2% obtained from the first random seed. The credible interval refers to the 95% probability that given the 

data the outcome variable (survival > 1 year) falls within the interval. Support refers to the number of patient records supporting the given rule. KPS: Karnofsky Performance 

Score. 

Fig. 2. Top 12 influential features for each model. (A) Explainable Boosting Machine’s absolute global feature importance is based on feature scores determined by individual 

feature functions. Global feature importance for (B) Logistic Regression (C) Random Forest and (D) Support Vector Machine was based on the mean absolute SHAP (SHapley 

Additive exPlanation) value. All features are described in Appendix A.2 : Description of Dataset Variables. KPS: Karnofsky Performance Score, SIMD: Scottish Index of Multiple 

Deprivation, PMH: Previous medical history. 
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ividual predictions, especially misclassified predictions. EBM local 

eature importance was assessed using the model’s learned fea- 

ure function and LR, RF and SVM local feature importance was 

ssessed using SHAP. In the interest of brevity, only one patient 

ecord is discussed here, and an additional example is provided in 

ppendix A.4.1: Local Feature Importance . Fig. 4 . illustrates the 10 

ost influential features for the classification of a single patient. 

or the given patient, EBM, LR and SVM correctly classified the pa- 

ient, and RF did not. One-hot encoded data was used by the mod- 

ls to make predictions thus both the presence (value = 1) and 

bsence (value = 0) of a feature is used to make a prediction. 

Across all models, influential features found by the global in- 

erpretability methods, such as diagnosis, first treatment and func- 

ional status, were also informative for local predictions. Additional 
5

nformative features for the given patient include age, symptom in- 

ormation and the presence of a comorbidity. We can investigate 

F’s misclassification by evaluating SHAP’s explanation. One inter- 

retation of this result is as follows: the patient was older (age 

5) with a malignant glioma and able to carry on normal activi- 

ies with effort (KPS 80), all of which had a negative impact on 

urvival. However, the patient had no comorbidities, underwent a 

umour resection of 90-99%, and was capable of light work and 

ctivity (post-op status of 1) following surgery, conceivably leading 

o survival greater than one year. By referring back to Fig. 2 C and

ig. 3 C, we know that RF places the greatest importance on age, di- 

gnosis and KPS, potentially leading to the overweighing of these 

egative features for the given patient. 
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Fig. 3. SHAP (SHapley Additive exPlanation) value summary plots of the top 15 most influential features for each model. For each feature, one dot corresponds to a single 

patient. The dot’s position along the x-axis represents the impact the feature had on the model’s output for that specific patient. A patient with a higher SHAP value has 

a higher change of survival greater than one year, compared to a patient with a lower SHAP value. Features are ordered along the y-axis based on their average absolute 

importance (see Fig. 2 ). KPS: Karnofsky Performance Score, SIMD: Scottish Index of Multiple Deprivation, PMH: Previous medical history. 

Fig. 4. Top 10 influential features for each model for a single test instance (patient). Negative (blue) features favour survival less than one year, and positive (orange) features 

favour survival greater than one year. The model baseline value (i.e. the average value of all predictions), is shown in grey. (A) Explainable Boosting Machine’s (EBM) local 

feature importance based on individual feature functions. Both individual features and pairwise interactions (depicted as feature 1 x feature 2) are shown. Local feature 

importance for (B) Logistic Regression (LR) (C) Random Forest (RF) and (D) Support Vector Machine (SVM) determined by SHAP (SHapley Additive exPlanation). EBM, LR and 

SVM correctly classified the patient and RF incorrectly classified the patient. 
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As seen in Fig. 4 , EBM also models feature interactions (de- 

icted as feature 1 x feature 2 ) thus further refining the interpre- 

ation of the model’s prediction. For example, in the given test in- 

tance ( Fig. 4 A), the interaction between symptom 1 duration and 

etastatic brain tumour positively influences survival. Fig. 5 visu- 

lises this pairwise interaction as a heat map. We can see that 

aving a metastatic tumour with a primary symptom less than ∼8 
6 
eeks negatively influences survival greater than a year (score ∼ - 

.17), having a metastatic tumour with symptoms between 8 to 25 

eeks has a minimal effect on survival (score ∼ -0.01) and symp- 

oms longer than 25 weeks have a positive effect on survival (score 

0.31). One interpretation is that more aggressive tumours may 

ause symptoms to present more rapidly, causing individuals to 

eek out medical attention faster and leading to a shorter recorded 
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Fig. 5. Pairwise feature interaction, determined by the Explainable Boosting Machine model, between the features Symptom 1 Duration and Diagnosis: Metastasis. A score 

above zero positively influences survival greater than one year and a score below zero negatively influences survival greater than one year. 
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uration of the primary symptom. However, due to the aggressive 

ature of the tumour, this ultimately leads to a shorter survival 

ime. This is in-line with EBM SHAP values ( Fig. 3 A), which show

hat shorter Symptom 1 durations negatively influence survival. 

urthermore, according to the heatmap, not having a metastatic tu- 

our positively influences survival despite the primary symptom 

uration. However, as we do not know the type of tumour the pa- 

ient may have, a meaningful interpretation is restricted. Additional 

eat maps of pairwise interactions determined by EBM are shown 

n Appendix A.4.2: Explainable Boosting Machine Pairwise Feature In- 

eractions . 

. Discussion 

The results summarized in Table 1 show that RF outperformed 

ll models, with a BAC of 78.9%. However, glass box models, EBM 

nd LR, performed comparably well, and despite the lesser perfor- 

ance by BRL (72.6% BAC), the model achieved a specificity in a 

imilar range of the other models (73%-75%). In comparison, EBM, 

R, RF and SVM achieved a sensitivity above 80%, compared to 

RL which attained a sensitivity of 70.6%. A high sensitivity en- 

ures fewer false negatives, and thus correctly identifies individu- 

ls who will survive greater than one year, but a low specificity 

uggests the model may incorrectly identify individuals as surviv- 

ng more than one year. For a patient, correctly predicting poor 

urvival may be more important than correctly predicting long- 

erm survival [47] and similar to the ML models, clinicians often 

verestimate survival time [48] . Interestingly, positive SHAP val- 

es, which favour survival greater than one year (see Fig. 3 ), reach 

igher values compared to negative SHAP values, thus having a 

reater impact on model predictions. 

The innate interpretability of the glass box models, specifically 

BM, may mitigate potential performance loss, especially in health- 

are where model transparency is essential for its integration into 

nd influence on clinical decision making [11] . The superior perfor- 

ance of EBMs has been reliably shown [ 16 , 49 ], and here we have

emonstrated that it creates interpretable results without signifi- 

ant compromise in model performance. Additionally, EBM has the 

dded benefit of considering feature interactions. Although LR in- 

ate interpretability can be assessed using the odds ratio, this met- 

ic is associated with the relative risk of an event, and does not 

eaningfully describe a feature’s ability to classify subjects [50] . A 

ecent systematic review found that prognostic models for predict- 

ng survival in glioblastoma patients using clinical, imaging and/or 

enomics data, achieved accuracies between 69-98% [51] . However, 

he authors highlight the importance of including secondary met- 

ics, such as interpretability and ease of model use, that are rele- 

ant for the clinical deployment of models. 

The findings of our feature importance analysis show that age, 

iagnosis, functional features (KPS and post-op performance sta- 
7 
us) and first treatment are ranked highly across all models. Ac- 

ording to the experts, there is no gold standard of expected fea- 

ure rankings, however the aforementioned variables would not be 

isputed and are reliably reported across clinical and epidemiolog- 

cal studies [ 43 , 44 , 45 ]. Furthermore, the experts suggest that mul-

imorbidities and SIMD can effect survival, however these features 

re not as influential across models compared to other features. 

onetheless, by looking at SHAP global feature importance ( Fig. 3 ), 

or all models the presence of a comorbidity (value of 1) nega- 

ively effects survival, while the absence of a comorbidity (value 

f 0) positively impacts survival. Furthermore, lower SIMD scores 

 corresponding to areas of greater deprivation - indicates poorer 

urvival, while higher SIMD scores positively contribute to survival. 

espite these features not being the most influential, we can see 

hat the model’s learn the expected feature contribution in-line 

ith domain knowledge. 

At both the global and local level, EBM and SHAP emphasized 

imilar features. We can compare feature methods by looking at 

ig. 2 A, which illustrates EBM absolute global feature importance 

ased on the learned feature functions, and Fig. 3 A, which illus- 

rates EBM feature importance based on SHAP values. Both meth- 

ds highlight similar feature types with slightly different orderings, 

he most noticeable being First Treatment: Surgery 100% . EBM ranks 

his feature in position 6, while SHAP ranks this feature in position 

5. However, given there are 58 different feature types, both meth- 

ds produce similar results. Nonetheless, the difference in method- 

logies may be due to SHAP’s assumption of feature independence. 

HAP permutes feature values, sampled from the features marginal 

istribution, and makes predictions based on these permutations. 

hen features are dependent, predictions may be based on unre- 

listic feature values leading to unreliable SHAP values. In compari- 

on, EBM has the added benefit of considering feature interactions. 

oth methods are computationally expensive, making them some- 

hat slower than other interpretability methods. Although SHAP 

as the advantage of being model-agnostic, SHAP explanations can 

e manipulated to create intentionally misleading interpretations 

52] and the credibility of post-hoc explanation methods continues 

o be debated [ 11 , 53 , 54 ]. A model which is interpretable by de-

ign, such as EBMs, may provide more faithful explanations, how- 

ver this approach is model-specific making the comparison of in- 

erpretability between algorithms more difficult. 

Finally, the various interpretability techniques highlight the 

echnical differences in model construction. As illustrated in Fig. 2 , 

F and EBM both favour Age as the most informative feature and 

ymptom 1 Duration as moderately informative. In comparison, LR 

nd SVM view Age as moderately informative, and do not consider 

ymptom 1 Duration to be important. Both RF and EBM are tree- 

ased algorithms, and may favour the selection of features with 

any possible splits (e.g. continuous variables or categorical vari- 

bles with high cardinalities) over variables with fewer splits [55] . 
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R and SVM find binary features to be of higher value, including 

omorbidity and Previous Medical History (PMH) of Cancer . Interest- 

ngly, SVM finds a wider range of features to be informative, pos- 

ible due to its effectiveness in high dimensional spaces, including 

he presence of a brain tumour on the left side. BRL also finds tu- 

our side to be relevant (see first IF statement in Fig. 1 ) which

ay be overlooked by the other models. Previous studies have 

ound that patients with a tumour on the right side had poorer 

uality of life than those with a tumour on the left side [56] . Fur-

hermore, each ML model comes with its own unique advantages. 

or example, rule lists produce simple IF-THEN statements that are 

asy to interpret while tree-based algorithms such as RF and EBM, 

re beneficial for capturing interactions in the data. LR is quick to 

rain and returns class probabilities while SVM is favourable for 

igh-dimensional data. The advantages and disadvantages of vari- 

us ML methods, along with the level of interpretability, are essen- 

ial considerations when building high-stake prognostic models. 

.1. Limitations 

To our knowledge, this is the first study to compare intrinsic 

nd post-hoc interpretability methods for the assessment of pre- 

ictive brain tumour survival models. Nonetheless, several impor- 

ant limitations remain. In the present study, only clinical prognos- 

ic factors were used for the prediction of survival. As previously 

entioned, blood tests and molecular genetic alterations have 

een recognised as powerful prognostic and predictive markers in 

rain tumour survival [ 45 , 46 , 57 ]. The integration of the different

ata types may improve current survival predictions, but additional 

linical testing may be costly, time consuming and increase patient 

urden (e.g., invasiveness), compared to readily available electronic 

atient records. In addition, the data used in this study was hetero- 

eneous and an external validation dataset would be required to 

onfirm the generalizability and reproducibility of our results. Fur- 

hermore, our dataset required imputation and discretization (for 

RL). There is the potential for imputation to introduce bias into 

he data and the chosen discretisation method can influence the 

nal results. However, multivariate imputation has been shown to 

utperform other techniques [ 58 , 59 ], while feature discretization 

as based on current literature and expert opinion, and is only 

elevant for BRL. Finally, rule-lists currently require categorical fea- 

ures and are limited to binary classification (although there has 

een some recent effort toward multi-class rule lists [60] ). Ex- 

ension of the rule list algorithm for multi-class classification or 

egression is an important next step for improving rule-list per- 

ormance and constructing a competitive intrinsically interpretable 

ule list classifier. 

. Conclusion 

In this study, we found that EBM performance was compara- 

le to black box models, with RF outperforming EBM by less than 

% BAC (see Table 1 ), for the prediction of one year survival fol-

owing a brain tumour diagnosis. EBMs provided valuable infor- 

ation on relevant prognostic factors (e.g. age, diagnosis, post-op 

erformance status) and their interactions (e.g. Symptom 1 dura- 

ion x diagnosis: metastasis). More generally, informative model 

eatures such as age, diagnosis, functional status (KPS and post-op 

erformance status) and first treatment, were in-line with domain- 

nowledge and current literature. Our results also confirm that 

HAP was beneficial for understanding model behaviour, although 

s explained in the literature, post-hoc explainability methods can 

e vulnerable to failures, so our results should also be interpreted 

ith care. Interpretability is crucial for the implementation of ML 

lgorithms in healthcare, and whether the model is innately inter- 

retable or post-hoc methods are used, the validation and integra- 
8 
ion of such models into clinical practice is an important next step 

or improving patient outcomes in a trusted way. 
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ppendix A 

.1. Data preprocessing 

Initially, the raw brain tumour dataset contained 1283 patient 

ecords and 225 predictor variables. A preliminary exploratory 

nalysis of the data found a large number of features ( n = 179) 

ad more than 60% of their entries not recorded. A large portion 

f these absent entries pertained to symptom and sign related fea- 

ures ( n = 110). For example, the raw dataset included informa- 

ion on the first symptom type a patient presented with, up to the 

enth symptom (e.g., Symptom 1, Symptom 2, Symptom 3, etc.). 

he same pattern occurred for signs. However, a patient may only 

resent with one symptom thus leaving the remaining nine symp- 

om features empty. Hence an entry for a feature may be absent, 

ut this does not imply that the entry is truly missing. Further- 

ore, there was significant duplication amongst the symptom and 

ign features. For example, features included: Symptom 1, Symp- 

om 1 - Headache (choice = Worse on coughing/bending), Symptom 

 - Headache (choice = Worse on waking), Symptom 1 - Headache 

choice = Associated with nausea/vomiting), etc. This was repeated 

or symptoms 1 though 10. Taken together, this created the ap- 

earance of missing data, but in fact the empty entries are cor- 

ectly missing. In the raw dataset, 91% of patient presented with at 

east one symptom, only 62% of patients presented with two symp- 

oms, and less than 26% of patients presented with three symp- 

oms. Given the amount of absent symptom and sign entries, only 

ymptom 1 (i.e. the first symptom a patient presents with), symp- 

om 2 and sign 1 were used as features in the final dataset, and 

he remaining features were removed ( n = 107). 

Furthermore, a large number of features pertained to treat- 

ent details, including features related to blood tests (e.g., base- 

ine count of white blood cells, neutrophils, lymphocytes, platelets, 

tc.), chemotherapy protocol (e.g., date of chemotherapy start, 

hemotherapy drug, type of 2nd line chemotherapy, etc.) and other 

etails (e.g., location of first imaging, clinician ordering CT [open 

ccess CT], contrast agent). However, if a patient did not receive a 

pecific treatment (e.g., chemotherapy), a large number of features 

ere again, correctly missing. The majority of treatment features, 

nd other unrelated details (e.g. speciality referring for first scan, 

ischarge destination), were sparse and removed from the dataset 

 n = 98). 

https://doi.org/10.1016/j.cmpb.2023.107482
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Fig. A1. Percentage of incomplete patient records in the final dataset. Only features with missing records are shown. 52% of subjects had no missing variables, 31% of subjects 

had one missing variable, 9% of subjects had two missing variables, 3% of subjects had three missing variables, 4% of subjects had four missing variables and < 1% of subjects 

had five missing variables. See Appendix A.2: Description of Dataset Variables for description of features. SIMD: Scottish Index of Multiple Deprivation. 
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Additionally, a number of patients were removed due to incom- 

lete records (i.e. a patient is missing more than 40% of the re- 

uced predictor variables) ( n = 36) or because of a lack of symp-

omatology information (i.e. a patient did not present with any 

ymptoms or signs) ( n = 219). 

.1.1. Missing data 

Of the remaining 20 features, 11 had missing data as illustrated 

n Fig. A1 . The feature Symptom 1 Duration, had the largest num- 

er of missing variables, with 15% of the records missing, followed 

y Urgency of Referral (11%) and Maximum Tumour Size (10%). 

Through discussions with the experts, the 11 features were 

eemed missing at random. Although post-op performance status 

ould only be relevant for patients who had surgery, and similarly, 

he extent of resection would only be relevant for those who had 

esective surgery (not biopsy), it was confirmed through dataset in- 

estigation, that these individuals did undergo surgery hence these 

ariables were missing at random. 

.1.2. Feature correlations 

As mentioned in Section 2.2 , correlation between variables was 

etermined through statistical testing and discussion with the ex- 

erts. An appropriate measure of association was selected based 

n the type of variable we were assessing (i.e., continuous, ordinal 

r nominal). The six possible feature combinations and the chosen 

tatistical test were chosen as follows: 

• Continuous-continuous: Pearson correlation coefficient (r pcc ) 
• Continuous-ordinal: Kendall’s tau ( τ b ) 
• Continuous-nominal: Point-biserial correlation coefficient (r pb ) 
• Ordinal-ordinal: Kendall’s tau ( τ b ) 
• Ordinal-nominal: Point-biserial correlation coefficient (r pb ) 
• Nominal-nominal: Cramer’s V ( ϕc ) 

Note, Spearman correlation coefficient was also assessed as an 

lternative to Kendall’s tau, but the results did not differ greatly. 

Of the original 21 variables, we found Morphology to be highly 

orrelated with Tumour Type and Likely Grade ( ϕc = 0.77 and 

 pb = -0.71, respectively). Due to the high correlation, Morphology 

as removed from the dataset and dataset preprocessing was re- 

un (see Section 2.2 ). Tumour Type and Likely Grade were combined 

nto a single feature called Diagnosis. Tumour type refers to the 

ind of tumour a patient is diagnosed with, while likely grade is 

n indicator of how quickly a tumour is likely to grow or spread. 

or example, by definition, a glioblastoma is a grade IV (fast grow- 

ng) glioma tumour. Despite Tumour Type and Likely Grade having 
9 
 minimal correlation overall ( ϕc = -0.38), to reduce collinearity 

n the data, the two features were concatenated. Tumour types 

ere separated into benign (or low-grade) and malignant (or high- 

rade) categories (e.g. Glioma Benign and Glioma Malignant). 

Additionally, we found Post-op Performance Status to be highly 

orrelated with Extent of Resection (EOR) and First Treatment 

 τ b = -0.64 and r pb = 0.62, respectively). EOR refers to the amount 

f cancerous cells removed during surgery (e.g. 90-99%) and is only 

elevant if the first treatment a patient receives is surgery, which is 

ot always the case. For example, if a person received chemother- 

py as their first treatment, an entry for Extent of Resection would 

e absent, but the data was correctly missing. Thus we integrated 

OR information into First Treatment (e.g. Surgery 100%, Surgery 

0-99%) to create a more informative feature - the feature name 

emained First Treatment . Following feature concatenation, Post-op 

erformance Status and the new variable First Treatment had a min- 

mal correlation (r pb = -0.29). Hence the final dataset contained 

028 patient records and 18 predictor variables and one dependent 

ariable, namely patient survival in days. Of the final 18 features, 

ll features had correlations below 0.5, with the exception of Di- 

gnosis and Post-op Performance Status , which had a correlation of 

.56. 

.1.3. Feature discretisation 

For the BRL model, continuous variables were discretised into 

eaningful categories based on current literature and expert opin- 

on. As the overall aim of these models is to be maximally in- 

erpretable, manual discretisation was based on well-defined cut 

oints was used. The variables were discretized as follows: 

• Age: < 45, 45-59, 60-74 and 75 + 

• Symptom 1 Duration: < 2 weeks, 3-4 weeks, 5-8 weeks, 9- 

20 weeks, 21 + weeks 
• Maximum Tumour Size: < 20 mm, 21-40 mm, 41-60 mm, 

60 + mm 

Fig. A2 provides additional information on the distribution of 

he continuous features. See Table A2 for continuous feature sum- 

ary statistics. 

.1.4. Other feature preprocessing steps 

Finally, we briefly discuss some of the salient features below 

nd some final processing of the features. 

KPS: This is a standard way of assessing a patient’s ability to 

erform everyday tasks [32] . The scale is a ‘gold standard’ in clini- 

al oncology and is commonly used to determine a cancer patient’s 
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Table A1 

Overview of dataset variables including their descriptions, value and percentage of each value present in the final dataset. Imputation was performed over the whole dataset 

thus providing an approximation of the values present in the individual train test splits. 

Name Description Value Proportion (%) 

Age the age of a patient 16-97 

Sex the sex of the patient Male 50.3 

Female 49.7 

History of Cancer whether the patient has a past medical history of cancer Yes 18.1 

No 81.9 

Comorbidity the presence of another illness or disease occurring in a 

patient 

Yes 47.5 

No 52.5 

Scottish Index of Multiple Deprivation 

(SIMD) 

a measure of deprivation of the area a patient lives from 

most deprived (ranked 1) to least deprived (ranked 5) 

1 13.8 

2 22.9 

3 21.6 

4 18.5 

5 23.2 

Karnofsky Performance Score (KPS) a common measure in oncology to assess the functional 

state of a patient 

100 36.8 

90 29.1 

80 15.6 

≤ 70 18.5 

Symptom 1 the first symptom type a patient presented with 

(reported by the patient) 

Focal Neurology 34.6 

Headache 28.4 

Behavioural/Cognitive 16.8 

Fits/Faints/Falls 16.8 

Other/Non-specific 2.4 

Non-specific Neurological 1.0 

Symptom 1 Duration the length of time of a patient’s first symptom 0 – 52 weeks 

Symptom 2 the second symptom type a patient presented with 

(reported by the patient) 

Focal Neurology 31.4 

No Symptoms 30.1 

Behavioural/Cognitive 19.1 

Fits/Faints/Falls 8.9 

Headache 6.7 

Other/Non-specific 3.9 

Sign 1 the first sign type a patient presented with (observed by 

the physician) 

No Signs 42.1 

Neurological 36.4 

Cognitive 15.2 

Cranial Nerve 5.1 

Other 0.7 

Behavioural 0.5 

Urgency of Referral the patient’s urgency of referral from primary care Emergency 61.5 

Suspicion of Cancer (within 2 weeks) 22.8 

Soon (up to 3-4 weeks) 5.9 

Routine (up to 12 weeks) 9.8 

Diagnosis (or Tumour Type) the type of brain tumour a patient was diagnosed with Glioma Malignant 45.6 

Metastasis 18.9 

Meningioma Benign 11.9 

Glioma Benign 7.7 

Rare Tumour Benign 5.5 

Lymphoma Benign 4.4 

Meningioma Malignant 4.2 

Hemangioblastoma Benign 1.2 

Rare Tumour Malignant < 0.01 

Max Size a measure of the tumour size 1-120 

Side the side of the brain the tumour is located Left 42.2 

Right 40.9 

Both Left and Right 11.4 

Midline 5.5 

Lobe the lobe where the tumour is located Frontal 36.8 

Temporal 21.4 

Parietal 14.2 

Multiple 12.1 

Cerebellar 7.0 

Brainstem 4.3 

Occipital 4.2 

Midline Shift a measure of the tumour’s horizontal shift from the mid 

(centre) line 

0 40.9 

< 5mm 28.2 

5-10mm 19.3 

> 10mm 11.6 

First Treatment the type of first cancer treatment Surgery Removal 100% 15.2 

Surgery Removal 90-99% 23.2 

Surgery Removal 50-89% 8.4 

Surgery Removal < 50% 5.1 

Biopsy 16.6 

Radiotherapy 5.4 

Chemotherapy 0.9 

Other (e.g. steroids) 2.6 

No Treatment 22.6 

( continued on next page ) 
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Table A1 ( continued ) 

Name Description Value Proportion (%) 

Post-operative Performance Status a measure of a patient’s level of functioning following 

surgery in terms of their ability for self-care, daily 

activity, and physical ability 

0 29.6 

1 27.0 

2 7.6 

3 2.7 

4 1.5 

5 < 0.1 

No Surgery 31.5 

1-Year Survival > 1-Year 43 

≤ 1-Year 57 

Table A2 

Description of continuous variables including mean, and in 

parenthesis standard deviation (SD), median and mode. 

Mean (SD) Median Mode 

Age 59 (15) 61 54 

Maximum Tumour Size 39 (18) 39 40 

Symptom 1 Duration 11 (17) 4 0 
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xpected tolerance to treatments (e.g. chemotherapy). The scores 

anges from 0 (dead) to 100 (normal) and is scored in deciles, al- 

hough the values are ordinal (see Appendix A.2 : Table A3 for the 

riginal definition of the KPS). This means that a value assigned to 

 patient is based on a ranking but the numerical value associated 

ith this rank is not meaningful. Thus the difference between the 

alues 70 and 90 is not equivalent to the difference between the 

alues 40 and 60. Furthermore, the KP scale may be subject to bias 

61] . A patient’s KPS is determined by clinicians, and when compil- 

ng a dataset this can result in inter-observer subjectivity [62] . To 

educe the bias associated with the KPS and based on the advice of 

he consulting clinical experts, values of 70 and below were aggre- 

ated due to their negative association with survival [63] (a KPS 

f 70 reflects someone who can ‘care for self, but who is unable 

o carry on normal activity or to do active work’). KPS of 80 and

bove remained separate allowing for a more fine-grained analysis 

f the values associated with survival. 

ymptom 1. : A symptom is observed by the patient themselves 

subjective) and is often what drives a patient to consult a physi- 

ian. Symptom 1 refers to the first symptom a patient presents 

ith. The symptom data in the raw dataset had a high cardinal- 

ty of 37 different symptom types, with many of these types per- 

aining to a small number of patients. Thus we decided to group 

ymptom types into six overarching categories – e.g. Headache, 

its/Faints/Falls and Behavioural/Cognitive – based on work by 

zama et al. [64] to create a more homogeneous set of symptom 

ypes. An outline of the symptom groupings are summarised in 

ppendix A.2 : Table A4 . 

ign 1. : A sign is observed by a physician (objective). Sign 1 refers

o the first sign a patient presents with. The sign data in the raw
Fig. A2. Frequency histogram based on 15 bins f

11
ataset also had a high cardinality (26 different types), thus the 

ata was additionally grouped into six larger domains – e.g. neuro- 

ogical and cognitive– based on the advice of the consulting clinical 

xperts (see Appendix A.2 : Table A5 ). Although all patients in the 

nal reduced dataset presented with at least one symptom, 43% of 

atients did not present with any signs. 

Diagnosis (Tumour Type): Brain tumours are broadly named 

ased on the type of normal cell that they most resemble, and 

heir location in the brain [65] . In the raw dataset the tu- 

our types had a high cardinality with many entries referring to 

he same general tumour type (e.g. meningioma suprasellar and 

eningioma at cerebellopontine [CP] angle). Tumour types that 

ppeared in less than 10 patients were grouped into a “Rare Tu- 

our” category. Additionally, the tumour type may be benign (i.e. 

rade I/II), or malignant (i.e. grade III/IV). In the final dataset, the 

rain tumour types were reorganised based on type and malig- 

ancy (e.g. Glioma Benign, Glioma Malignant), and reduced to a 

ardinality of 9. 

First Treatment : The first type of cancer treatment a patient 

eceives is based on the presumed type based on imaging, loca- 

ion of the tumour, and the patient’s overall health (e.g. KPS ≤
0). Surgery, for example, may be the only treatment necessary de- 

ending on the grade of the tumour and extent of resection. Infor- 

ation on extent of resection was included in the first treatment 

ypes (e.g. Surgery 100%, Surgery 90-99%, Biopsy, etc.). Other treat- 

ent types include radiotherapy and chemotherapy. 

.2. Description of Dataset Variables 

A detailed overview of each feature, including their descrip- 

ions, values and proportion, is provided in Table A 1 . 

Summary statistics of the continuous features, including mean, 

edian and mode, is provided in Table A2 . 

A description of the Karnofsky performance status is provided 

n Table A3 . 

A summary of symptom domain groupings is provided in 

able A4 . 

A summary of sign domain groupings is provided in Table A5 . 

The Eastern Cooperative Oncology Group Performance Status 

cale is provided in Table A6 . 
or all continuous variables in the dataset. 
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Table A3 

The original description of the Karnofsky performance status given by Karnofsky and Burchenal [32] . 

Condition Percentage Comments 

A: Able to carry on normal activity and to work. No 

special care is needed. 

100 Normal, no complaints, no evidence of disease. 

90 Able to carry on normal activity; minor signs or 

symptoms of disease 

80 Normal activity with effort; some signs or symptoms of 

disease. 

B: Unable to work; able to live at home and care for most 

personal needs; varying amount of assistance needed. 

70 Cares for self; unable to carry on normal activity or to do 

active work. 

60 Requires occasional assistance, but is able to care for 

most of his personal needs 

50 Requires considerable assistance and frequent medical 

care. 

C: Unable to care for self; requires equivalent of 

institutional or hospital care; disease may be progressing 

rapidly. 

40 Disabled; requires special care and assistance. 

30 Severely disabled; hospital admission is indicated 

although death not imminent 

20 Very sick; hospital admission necessary; active 

supportive treatment necessary. 

10 Moribund; fatal processes progressing rapidly. 

0 Dead. 

Table A4 

Symptom domain classifications based on Ozawa et al. [64] , with examples of symptom 

types in the brain tumour dataset. 

Group Symptom Domain Symptom Examples 

1 Headache Headache 

2 Behavioral/Cognitive Confusion, memory loss, strange behaviour 

3 Focal Neurology Ataxia, vertigo, vision problems 

4 Fits, faints or falls Seizure, collapse, convulsion 

5 Non-specific neurological Poor balance, dizziness, gait abnormality 

6 Other/non-specific Vomiting, lethargy, sweating 

Table A5 

Sign domain classifications based on clinical expertise of some of the current authors. All examples are 

from the Brain Tumour dataset. 

Group Sign Domain Sign Examples 

1 No Signs No Signs 

2 Behavioral Behaviour signs anxiety (e.g. fast speech, tremor, voices anxiety, crying) 

Behaviour signs depression (e.g. voices low mood, crying) 

Behaviour (withdrawn/apathetic) - not depressed 

Behaviour (aggressive/paranoid) - not anxious 

3 Cognitive Cognitive - problems performing tasks (e.g. calculation, planning, VF) 

Cognitive - problems with memory (forgetfulness) 

Cognitive - reduced conscious level/drowsiness (reduced GCS) 

Cognitive - other non-specific confusion 

4 Neurological Ataxia, vertigo, vision problems 

Dysphasia - Receptive 

Dysphasia - Expressive 

Dysarthria - slurred or slow or staccato 

Unilateral weakness (UMN type > = 2 of arm/leg/face) 

Unilateral numbness ( > = 2 of arm/leg/face, or spinothalamic type) 

Problems with dexterity/fine manipulation 

Problems walking/unsteadiness (weakness/numbness) 

Problems walking/ataxia 

Problems with visual acuity (unilateral or bilateral) 

Problems with visual field (unilateral or bilateral) 

5 Cranial 

Nerve 

Papilloedema 

Diplopia CN problems 3, 4 or 6 

Nystagmus (unilateral or bilateral) 

Facial numbness/tongue numbness (CN 5) 

Facial weakness (CN 7) 

Reduced smell/taste (CN 1 or 7) 

Deafness (unilateral/bilateral) (CN 8) 

Problems swallowing (dysphagia) (CN 9, 10) 

Problems with volume of speech (dysphonia) (CN 10) 

6 Other Other 

12 
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Table A6 

Description of a patient’s performance status (or functional state) developed by the Eastern Cooperative Oncology Group [66] . 

Grade Description 

0 Fully active, able to carry on all pre-disease performance without restriction. 

1 Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature, e.g., light house work, office work. 

2 Ambulatory and capable of all self-care but unable to carry out any work activities; up and about more than 50% of waking hours. 

3 Capable of only limited self-care; confined to bed or chair more than 50% of waking hours. 

4 Completely disabled; cannot carry on any self-care; totally confined to bed or chair. 

5 Dead. 

Table A7 

The range of values the hyperparameters could take during hyperparamter op- 

timisation within the nested cross validation. 

Model Hyperparameter Search Distribution 

Bayesian Rule List listlengthprior 5, 10 

maxcardinality 2, 3 

Explainable Boosting 

Machine 

min_samples_leaf 1, 2, 4, 8 

max_leaves 2, 3, 5 

learning_rate 0.01, 0.05 

Logistic Regression C (regularization 

parameter) 

2 −4 , 2 −2 ,…, 2 4 

Random Forest max_depth 10, 20, 30, None 

min_samples_leaf 1, 2, 4, 8 

min_samples_split 2, 5, 10 

Support Vector Machine C (regularization 

parameter) 

2 −4 , 2 −2 ,…, 2 4 

gamma scale, auto 
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.3. Hyperparameter Tuning 

A description of the hyperparameter space is provided in 

able A7 . 
ig. A3. Top 10 influential features for each model for a single test instance (patient). 

eatures favour survival greater than one year. The model baseline value (i.e. the average 

ocal feature importance based on individual feature functions. Both individual features an

mportance for (B) Logistic Regression (LR) (C) Random Forest(RF) and (D) Support Vector

lassified the patient and EBM, LR and SVM incorrectly classified the patient . 

13 
.4. Modelling Results 

.4.1. Local Feature Importance 

Fig. A3 illustrates the 10 most influential features for the classi- 

cation of a single patient from the EBM, LR, RF and SVM models. 

.4.2. Explainable Boosting Machine Pairwise Feature Interactions 

Pairwise feature interactions, determined by EBM, are visual- 

zed as heatmaps in Figure A4 . 
Negative (blue) features favour survival less than one year, and positive (orange) 

value of all predictions), is shown in grey. (A) Explainable Boosting Machine (EBM) 

d pairwise interactions (depicted as feature 1 x feature 2) are shown. Local feature 

 Machine (SVM) determined by SHAP (SHapley Additive exPlanations). RF correctly 
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Fig. A4. Heat maps of all pairwise feature interactions determined by explainable boosting machine. A value above zero favors survival greater than one year. Abbreviations: 

SIMD: Scottish Index of Multiple Deprivation. 

A

v

14 
ppendix B 

Additional BRL point estimates provided to the experts for re- 

iew are shown in Figs. B1,B2,B3 and B4 . 
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Fig. B1. BRL-point estimate with a balanced accuracy of 76.5% obtained from the first random seed. 

Fig. B2. BRL-point estimate with a balanced accuracy of 76.2% obtained from the first random seed. 
15 



C.E. Charlton, M.T.C. Poon, P.M. Brennan et al. Computer Methods and Programs in Biomedicine 233 (2023) 107482 

Fig. B3. BRL-point estimate with a balanced accuracy of 73.3% obtained from the first random seed. 

Fig. B4. BRL-point estimate with a balanced accuracy of 61.2% obtained from the first random seed. 
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