The SARS-CoV-2 Alpha variant was associated with increased clinical severity of COVID-19 in Scotland

Citation for published version:

Digital Object Identifier (DOI):
10.1371/journal.pone.0284187

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
PLoS ONE

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
RESEARCH ARTICLE

The SARS-CoV-2 Alpha variant was associated with increased clinical severity of COVID-19 in Scotland: A genomics-based retrospective cohort analysis

David J. Pascall1,2*, Elen Vink3,4*, Rachel Blacow5,6, Naomi Bulteel6, Alasdair Campbell1, Robyn Campbell7, Sarah Clifford4, Chris Davis7, Ana da Silva Filipe3, Noha El Sakka7, Ludmila Fjodorova5, Ruth Forrest6, Emily Goldstein5, Rory Gunson6, John Haughney5, Matthew T. G. Holden8,9, Patrick Honour10, Joseph Hughes3, Edward James10, Tim Lewis5, Samantha Lycett11, Oscar MacLean6, Martin McHugh4, Guy Mollett5,6, Yusuke Onishi7, Ben Parcell12, Surajit Ray13, David L. Robertson5, Sharif Shaabani8, James G. Shepherd3, Katherine Smollett1, Kate Templeton4, Elizabeth Wastnedge5, Craig Wilkie13, Thomas Williams6,14, Emma C. Thomson3,5,15*, The COVID-19 Genomics UK (COG-UK) Consortium8

1 MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom, 2 Joint Universities Pandemic and Epidemiological Research (JUNIPER) Consortium, United Kingdom, 3 MRC–University of Glasgow Centre for Virus Research (CVR), Glasgow, United Kingdom, 4 NHS Lothian, Edinburgh, United Kingdom, 5 NHS Greater Glasgow and Clyde, Glasgow, United Kingdom, 6 NHS Fife, Kirkcaldy, Fife, United Kingdom, 7 NHS Grampian, Aberdeen, United Kingdom, 8 Public Health Scotland, Edinburgh, United Kingdom, 9 School of Medicine, University of St Andrews, St Andrews, Fife, United Kingdom, 10 NHS Borders, Melrose, Scottish Borders, United Kingdom, 11 The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom, 12 School of Life Sciences, University of Dundee, Dundee, United Kingdom, 13 School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom, 14 Royal Hospital for Children and Young People, University of Edinburgh, Edinburgh, United Kingdom, 15 London School of Hygiene and Tropical Medicine, London, United Kingdom

* These authors contributed equally to this work.
¶ Membership of the COVID-19 Genomics UK (COG-UK) Consortium is provided in the Acknowledgments section.
* emma.thomson@glasgow.ac.uk

Abstract

Objectives

The SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this.

Methods

In this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the Alpha variant became dominant in Scotland and modelled the association
between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death.

Results
Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus pre-Alpha variants).

Conclusions
The Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages.

Introduction
The Alpha variant of SARS-CoV-2 (Pango lineage B.1.1.7) was first identified in the UK in September 2020 and was subsequently reported in 183 countries [1]. It is defined by 21 genomic mutations or deletions, including 8 characteristic changes within the spike gene (S1 Table) [2]. These are associated with increased ACE-2 receptor binding affinity and innate and adaptive immune evasion [3–6] compared to preceding lineages. The Alpha variant, the first variant of concern (VOC), was estimated to be 50–100% more transmissible than other lineages present at the time of its emergence [7], explaining the transient dominance of this lineage globally.

The presence of a spike gene deletion (Δ69–70) results in spike-gene target failure (SGTF) in real-time reverse transcriptase polymerase chain reaction (RT-PCR) diagnostic assays and provided a useful proxy for the presence of the Alpha variant for epidemiological analysis during this time period [2]. Four large community analyses showed a positive association between the presence of SGTF and 28-day mortality, with hazard ratios of 1.55 (CI 1.39–1.72), 1.64 (CI 1.32–2.04), 1.67 (CI 1.34–2.09) and 1.73 (CI 1.41–2.13) [8–10]. Both SGTF (hazard ratios of 1.52 (CI 1.47–1.57), 1.62 (CI 1.48–1.78)) [11, 12] and confirmed Alpha variant infection (hazard ratios of 1.34 (CI 1.07–1.66) and 1.61 (CI 1.28–2.03) [12, 13] were associated with an increased risk of hospitalisation in community cases, and a smaller study of hospitalised patients found a greater risk of hypoxia at admission in those with confirmed Alpha variant infection [14]. In contrast, other smaller analyses of hospitalised patients found no association between confirmed Alpha variant infection and increased clinical severity based on a variety of indices [15–17]. Limited data are available on the full clinical course of disease with the Alpha variant in relation to co-circulating variants.

Understanding the clinical pattern of disease with new variants of concern is important for several reasons. Firstly, if a variant is more pathogenic than previous variants, this has implications for considering public health restrictions and the optimal functioning of health care systems. Secondly, large numbers of low- and middle-income countries still have less than 50% of their populations having been vaccinated against SARS-CoV-2 [18]. A better understanding of a variant with increased severity is important in modelling the impact of unmitigated infection in these settings. A clear understanding of the behaviour of the Alpha variant, which emerged as a dominant variant in Scotland in the winter of 2020/21, is needed as a baseline to compare the clinical phenotype of variants of concern that have subsequently emerged. Post-Alpha...
variants, such as Omicron (B.1.1.529), have been shown to be able to evade vaccine-induced immunity and therefore have the potential to spread even in immunised populations [19], so a historical understanding of severity remains important, as it seems unlikely that SARS-CoV-2 infections will be brought under control in the near future.

We aimed to quantify the clinical features and rate of spread of Alpha variant infections in Scotland in a comprehensive national dataset. We used whole genome sequencing data to analyse patient presentations between 1st November 2020 and 30th January 2021 as the variant emerged in Scotland and used cumulative generalised additive models to compare 28-day maximum clinical severity for the Alpha variant against co-circulating lineages.

Materials and methods

Sample collection and approvals

We included all Scottish COG-UK pillar 1 samples sequenced at the MRC-University of Glasgow Centre for Virus Research (CVR) and the Royal Infirmary of Edinburgh (RIE) between 1st November 2020 and 30th January 2021. These samples derived from both hospitalised patients (59%) and community testing (41%).

Residual nucleic acid extracts derived from the nose-throat swabs of SARS-CoV-2 positive individuals whose diagnostic samples were submitted to the West of Scotland Specialist Virology Centre and Edinburgh Royal Infirmary Virus laboratory and were sequenced following ethical approvals from the West of Scotland Biorepository (16/WS/0207NHS) and the Lothian Biorepository (10/S1402/33). These samples were sequenced without consent following HTA legislation on consent exemption. Use of Scottish anonymised clinical data linked to virus genomic data without informed consent was granted by the Caldicott guardian for each site and by the Scottish Public Benefit and Privacy Panel (PBPP) for Health and Social Care (2122–0130).

Sequencing and bioinformatics

Sequencing was performed as part of the COG-UK consortium using amplicon-based next generation sequencing [20, 21]. Sequence alignment, lineage assignment and tree generation were performed using the COG-UK data pipeline (https://github.com/COG-UK/datapipe) and phylogenetic pipeline (https://github.com/cov-ert/phylopipe) with pangolin lineage assignment (https://github.com/cov-lineages/pangolin) [22]. Lineage assignments were performed on 18/03/2021 and phylogenetic analysis was performed using the COG-UK tree generated on 25/02/2021. Estimates of growth rates of major lineages in Scotland were calculated from time-resolved phylogenies for lineages B.1.1.7 (Alpha), B.177 and the sub-clades B.177.5, B.177.8, and another minor B.177 sub-clade (W.4). The estimates were carried out utilising sequences from November 2020 –March 2021 in BEAST (Bayesian Evolutionary Analysis by Sampling Trees) with an exponential growth rate population model, strict molecular clock model and TN93 with four gamma rate distribution categories. Each lineage was randomly subsampled to a maximum of 5 sequences per epiweek (resulting in 52 to 103 sequences per subsample, depending on the lineage), and 10 subsamples replicates analysed per lineage in a joint exponential growth rate population model.

Clinical data

Core demographic data (age, sex, partial postcode) were collected via linkage to electronic patient records at the 7 of 14 scottish health boards (covering 78% of the scottish population) for which we had clinical data access approval, and a full retrospective review of case notes was
undertaken. Collected data included residence in a care home; occupation in care home or healthcare setting; admission to hospital; date of admission, discharge and/or death and maximum clinical severity at 28 days sample collection date via a 4-point ordinal scale (1. No respiratory support; 2. Supplemental low flow oxygen; 3. Invasive ventilation, non-invasive ventilation or high-flow nasal canula (IV/NIV/HFNO); 4. Death) as previously used in Volz et al 2020 and Thomson et al 2021 [23, 24].

Where available, PCR (Polymerase Chain Reaction) cycle threshold (Ct) and the PCR testing platform were recorded. Nosocomial COVID-19 was defined as a first positive PCR occurring greater than 48 hours following admission to hospital, individuals meeting this criterion were excluded from the study. Discharge status was followed up until 15th April 2021 for the hospital stay analysis. For the co-morbidity sub-analysis, delegated research ethics approval was granted for linkage to National Health Service (NHS) patient data by the Local Privacy and Advisory Committee at NHS Greater Glasgow and Clyde. Cohorts and de-identified linked data were prepared by the West of Scotland Safe Haven at NHS Greater Glasgow and Clyde.

Severity analyses
Four level severity data was analysed using cumulative (per the definition of Bürkner and Vuorre (2019)) generalised additive mixed models (GAMMs) with logit links, specifically, following Volz et al (2020) [23, 25]. We analysed three subsets of the data: 1. the full dataset, 2. the dataset excluding care home patients, and 3. exclusively the hospitalised population. Further details regarding these analyses are provided in S1 Appendix.

Ct analysis
Ct value was compared between Alpha variant and pre-Alpha variant infections for those patients where the TaqPath assay (Applied Biosystems) was used. This platform was used exclusively for this analysis because different platforms output systematically different Ct values, and this was the most frequently used in our dataset (n = 154, Alpha = 38, pre-Alpha = 116). We used a generalised additive model with a Gaussian error structure and identity link, and the same covariates used as in the severity analysis to model the Ct value. The model was fitted using the brms (v. 2.14.4) R package [26]. The presented model had no divergent transitions and effective sample sizes of over 200 for all parameters. The intercept of the model was given a t-distribution (location = 20, scale = 10, df = 3) prior, the fixed effect coefficients were given normal (mean = 0, standard deviation = 5) priors, random effects and spline standard deviations were given exponential (mean = 5) priors.

Hospital length of stay analysis
Hospital length of stay was compared for Alpha variant and pre-Alpha variant patients while controlling for age and sex using a Fine and Gray model competing risks regression using the crr function in the cmprsk (v. 2.2–10) R package [27, 28]. Nosocomial infections were excluded. In total, this analysis had 521 cases (Alpha = 187, pre-Alpha = 334), of which 4 were censored; 352 patients were discharged from hospital and 165 died.

Results
Emergence of the Alpha variant in Scotland
Between 01/11/2020 and 31/01/2021 1863 samples from individuals tested in pillar 1 facilities in Scotland underwent whole genome sequencing for SARS-CoV-2. Of these, 1475 (79%)
could be linked to patient records from participating Scottish health boards, and were included in the analysis. The contribution of patients infected with the Alpha variant increased over the course of the study, in line with dissemination across the UK during the study period (Fig 1A and 1B). At the time of data collection, two peaks of SARS-CoV-2 infection had occurred in the UK: the first (wave 1) in March 2020 [15] and the second in summer 2020 [29], both in association with hundreds of importations following travel to Central Europe [30]. The second peak incorporated two variant waves (waves 2 and 3), initially of B.1.177 (Fig 1C) and then B.1.1.7/Alpha, radiating from the South of England (Fig 1E). This Alpha variant “takeover” (Fig 1D) corresponded to a five-fold increase in growth rate on an epidemiological scale relative to pre-Alpha lineages (Fig 1F).

Demographics of the clinical cohort

The age of the clinical cohort ranged from 0–105 years, (mean 66.8 years) and was slightly lower in the Alpha group (65.6 years vs. 67.2 years). Overall, 59.1% were female; this preponderance occurred in both subgroups and was higher in the Alpha subgroup (60.4% vs 58.6%). In the full cohort, 3.0% were care-home workers and 10.4% were NHS healthcare workers. 5.5% and 5.8% of those infected with the Alpha variant were care-home and other healthcare workers respectively, compared with 2.2% and 12.0% of those infected with pre-Alpha lineages. 12.9% of those in the Alpha subgroup were care-home residents, compared with 21.7% in pre-Alfa. There was also a difference in the proportion of cases admitted to Intensive Care Units: 6.3% of the Alpha group compared with 3.4% for pre-Alfa. Full details of the demographic data of the cohort can be found in Table 1 and full lineage assignments can be found in S2 Table.

Clinical severity analysis

Within the clinical severity cohort there were 364 Alpha cases, 1030 B.1.177 cases, and 81 cases due to one of 19 other pre-Alpha lineages (Fig 2), of which 185 Alpha cases (51%) and 440 pre-Alpha cases (38%) received oxygen or died. Consistent with previous research comparing mortality and hospitalisation in SGTF detected by PCR versus absence of SGTF, we found that Alpha variant viruses were associated with more severe disease on average than those from other lineages circulating during the same time period. In the full dataset, we observed a positive association with severity (posterior median cumulative odds ratio: 1.40, 95% CI: 1.02–1.93). In both the subsets, excluding care-home patients or limiting to hospitalised patients only, the mean estimate of the increase in severity of the Alpha variant was smaller, and the variance in the posterior distribution higher likely due to the smaller sample sizes. Given this uncertainty, we cannot determine whether the association of the Alpha variant with severity in the populations corresponding to these subsets is the same as that in the population described by the full dataset, but in all cases, the most likely direction of the effect is positive. Comorbidity data were not available for the full dataset, a sub-analysis on those cases where it could be linked indicated that comorbidities did not substantially affect relative severity estimates (S3 Appendix). Model estimates from severity models from all subsets can be found in S3–S5 Tables.

Bernoulli models looking at sequential severity categories provided weak evidence that the proportional odds assumption of the cumulative logistic model was violated. The odds ratios for the no oxygen versus low flow oxygen, and low flow oxygen versus IV/NIV/HFNC were similar to those estimated under the cumulative model (posterior median odds ratio for no oxygen versus low flow oxygen: 1.77, CI: 1.12–2.80; posterior median odds ratio for low flow oxygen versus IV/NIV/HFNC: 1.26, CI: 0.43–3.67) but with correspondingly higher posterior
Fig 1. Introduction and growth of the Alpha variant (lineage B.1.1.7) in the UK, 2020/21. A) Waves of SARS-CoV-2 confirmed cases in the UK. B) Seven-day rolling average of daily PCR positive cases (orange) and total number of patients hospitalised (dark blue) with COVID-19 in Scotland during the study period. Grey shaded area represents the period of lockdown beginning 26/12/2020. C) Variants in the UK. D) Proportion of cases by lineage in the clinical severity cohort. E) Variants in Scotland showing three distinct waves in winter and early spring 2020, summer 2020 and autumn/winter, attributed to the shifts from B1 and other variants (light blue) to B.1.177 (dark blue) and then B.1.1.7/Alpha (orange). Waves one and two closely mirror the broader UK situation as they are linked to both continental European and introductions from England. Wave three has a single origin in Kent so Scotland lags England in numbers of cases. F) Estimates of growth rates of major lineages in Scotland from time-resolved phylogenies. Estimates were carried out on a subsample of the named lineages using sequences from Scotland only from November 2020-March 2021 using BEAST and an exponential growth effective population size model.

https://doi.org/10.1371/journal.pone.0284187.g001
variances given the smaller sample size. The odds ratios for the IV/NIV/HFNC versus death model suggested that the preponderance of evidence was in favour of Alpha infection associated with lower risk of death, conditional on having received IV, NIV or HFNC (posterior median odds ratio: 0.64, CI: 0.22–1.90). However, the credible intervals here are wide, given the sample size, and do include the estimated global effect. A similar but more extreme effect

Table 1. Demographic characteristics of Scottish patients infected with SARS-CoV-2 by lineage.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Overall Group (n = 1475)</th>
<th>B.1.1.7 (Alpha) (n = 364)</th>
<th>Other (Pre-Alpha) (n = 1111)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>66.8±20.8</td>
<td>65.6±20.6</td>
<td>67.2±20.8</td>
</tr>
<tr>
<td>Range</td>
<td>0–105</td>
<td>0–105</td>
<td>0–100</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>604</td>
<td>40.9%</td>
<td>144</td>
</tr>
<tr>
<td>Female</td>
<td>871</td>
<td>59.1%</td>
<td>220</td>
</tr>
<tr>
<td>Admitted to hospital</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>876</td>
<td>59.4%</td>
<td>238</td>
</tr>
<tr>
<td>No</td>
<td>599</td>
<td>40.6%</td>
<td>126</td>
</tr>
<tr>
<td>Care home worker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>44</td>
<td>3.0%</td>
<td>20</td>
</tr>
<tr>
<td>No</td>
<td>1305</td>
<td>88.5%</td>
<td>305</td>
</tr>
<tr>
<td>Unknown</td>
<td>126</td>
<td>8.5%</td>
<td>39</td>
</tr>
<tr>
<td>Non-care home healthcare worker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>154</td>
<td>10.4%</td>
<td>21</td>
</tr>
<tr>
<td>No</td>
<td>1193</td>
<td>80.9%</td>
<td>305</td>
</tr>
<tr>
<td>Unknown</td>
<td>128</td>
<td>8.7%</td>
<td>38</td>
</tr>
<tr>
<td>Nursing home resident</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>288</td>
<td>19.5%</td>
<td>47</td>
</tr>
<tr>
<td>No</td>
<td>1187</td>
<td>80.5%</td>
<td>317</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>Diagnosis >48 hours post-admission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>346</td>
<td>23.5%</td>
<td>46</td>
</tr>
<tr>
<td>No</td>
<td>1040</td>
<td>70.5%</td>
<td>289</td>
</tr>
<tr>
<td>Unknown</td>
<td>89</td>
<td>6.0%</td>
<td>29</td>
</tr>
<tr>
<td>Travel outside Scotland</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>0.1%</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>317</td>
<td>21.5%</td>
<td>20</td>
</tr>
<tr>
<td>Unknown</td>
<td>1157</td>
<td>78.4%</td>
<td>302</td>
</tr>
<tr>
<td>Immunosuppressed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>42</td>
<td>2.9%</td>
<td>4</td>
</tr>
<tr>
<td>No</td>
<td>474</td>
<td>31.1%</td>
<td>60</td>
</tr>
<tr>
<td>Unknown</td>
<td>959</td>
<td>65.0%</td>
<td>300</td>
</tr>
<tr>
<td>Visited Intensive Care Unit?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>61</td>
<td>4.1%</td>
<td>23</td>
</tr>
<tr>
<td>No</td>
<td>1413</td>
<td>95.8%</td>
<td>341</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>0.1%</td>
<td>0</td>
</tr>
<tr>
<td>Patient alive/deceased?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alive</td>
<td>1115</td>
<td>75.6%</td>
<td>273</td>
</tr>
<tr>
<td>Deceased</td>
<td>360</td>
<td>24.4%</td>
<td>91</td>
</tr>
</tbody>
</table>

https://doi.org/10.1371/journal.pone.0284187.t001
was observed for the effect of biological sex, with male sex being associated with more severe outcomes for the first two sequential category models (posterior median odds ratio for no oxygen versus low flow oxygen: 1.32, CI: 0.96–1.80; posterior median odds ratio for low flow oxygen versus IV/NIV/HFNC: 3.10, CI: 1.37–7.08), but with less severe outcomes for the last (posterior odds ratio for IV/NIV/HFNC vs death: 0.62, CI: 0.19–0.99). Given other research on the topic has consistently identified male sex as a risk factor, this potentially indicates the existence of an important unmeasured confounder only relevant for those requiring invasive ventilation, non-invasive ventilation or high flow nasal cannula oxygen.

Estimates of the severity across the phylogeny are visible in Fig 3; see S2 Appendix for more discussion of this analysis. An analysis including comorbidities for the subset of patients where they were available implied that the inclusion of comorbidities had no impact on the results obtained, see S1 and S3 Appendices.

We also found that the Alpha variant was associated with lower Ct values than infection with pre-Alpha variants (posterior median Ct change: -2.46, 95% CI: -4.22 - -0.70) as previously observed [8]. Model estimates for all parameters can be found in S6 Table.

We found no evidence that the Alpha variant was associated with longer hospital stays after controlling for age and sex (HR: -0.02; 95% CI: -0.23–0.20; p = 0.89).

Discussion

In this analysis of hospitalised and community patients with Alpha variant and pre-Alpha variant SARS-CoV-2 infection, carried out as the Alpha variant became dominant in Scotland, we...
provide evidence of increased clinical severity associated with this variant at this time, after adjusting for age, sex, geography and calendar time, as well as testing for sensitivity to number of comorbidities. This was observed across all adult age groups, incorporating the spectrum of COVID-19 disease; from no requirement for supportive care, to supplemental oxygen requirement, the need for invasive or non-invasive ventilation, and to death. This analysis is the first to assess the full clinical severity spectrum of confirmed Alpha variant infection in both community and hospitalised cases in relation to other prevalent lineages circulating during the same time period.

Our study supports the community testing analyses that have reported an increased 28-day mortality associated with SGTF as a proxy for Alpha variant status [8–10]. Smaller studies found no effect of lineage on various measures of severity [15–17], but these were studies of patients already admitted to hospital and therefore would not pick up the granular detail of increasing disease severity resulting in a need for increasing levels of respiratory support and consequently admission to hospital.
The association between higher viral load, higher transmission and lineage may reflect changes in the biology of the virus; for example, the Alpha variant asparagine (N) to tyrosine (Y) mutation at position 501 of the spike protein receptor binding domain (RBD) was associated with an increase in binding affinity to the human ACE2 receptor [32]. In addition, a deletion at position 69–70 may have increased virus infectivity [33]. The P681H mutation found at the furin cleavage site is associated with more efficient furin cleavage, enhancing cell entry [34]. An alternative explanation for the higher viral loads observed in Alpha variant infection may be that clinical presentation occurs earlier in the illness. Further modelling, animal experiments and studies in healthy volunteers may help to unravel the mechanisms behind this phenomenon.

Our data indicate an association between the Alpha variant and an increased risk of requiring supplemental oxygen and ventilation compared to per-Alpha variants. These two factors are critical determinants of healthcare capacity during a period of high incidence of SARS-CoV-2 infection, and this illustrates the importance for countries, in particular those with less robust health care systems and lower vaccination rates of factoring the requirement for supportive treatment into models of clinical severity and pandemic response decision planning for future SARS-CoV-2 variants of concern. This granular analysis of disease severity based on genomic confirmation of diagnosis should be used as a baseline study for clinical severity analysis of the inevitable future variants of concern.

There are some limitations to our study. Our dataset is drawn from first-line local NHS diagnostic (Pillar 1) testing which over-represents patients presenting for hospital care (59%) while those sampled in the community represented 41% of the dataset. The effect of working in the healthcare sector on severity, driven by systematically different exposures faced by frontline caregivers, could not be adjusted for, due to incompleteness of the data regarding this variable. Further, the analysis dataset employed a non-standardised approach to sampling across the study period as sequencing was carried out both as systematic randomised national surveillance and sampling following outbreaks of interest. Additionally, we did not have information about the vaccination status of the individuals in the study. However, our inability to adjust for this variable is not likely to have had a great impact on our conclusions, as, at the time of the study, the vaccination campaign had recently begun, with only over 75 year olds and high-risk groups eligible. Finally, the cumulative model used and the usage of a single (not location varying) spine for the effect of time in this analysis assumes a homogenous application of therapeutic intervention across the population. Despite these limitations, our results remain consistent with previous work on the mortality of Alpha, and this study provides new information regarding differences in infection severity.

In summary, the Alpha variant was found to be associated with a rapid increase in COVID-19 cases in Scotland in the winter of 2020/21, and an increased risk of severe infection requiring supportive care. This has implications for planning for future variant driven waves of infection, especially in countries with low vaccine uptake or if variants evolve with significant vaccine-escape. Our study has shown the value of the collection of higher resolution patient outcome data linked to genetic sequences when looking for clinically relevant differences between viral variants.

Supporting information

S1 Table. Characteristic mutations of the Alpha variant.
(DOCX)

S2 Table. Full lineage characterisation of clinical severity dataset.
(DOCX)
S3 Table. Parameter estimates (on the linear predictor scale) from the severity model from the full dataset.

S4 Table. Parameter estimates (on the linear predictor scale) from the severity model from the data subset excluding patients in nursing homes.

S5 Table. Parameter estimates (on the linear predictor scale) from the severity model from the data subset only including hospitalised patients.

S6 Table. Parameter estimates from the Ct value model.

S1 Appendix. Further methods.

S2 Appendix. Phylogenetic severity model.

S3 Appendix. Comorbidities.

Acknowledgements

We would like to thank all NHS staff that looked after patients during the COVID-19 pandemic in Scotland. The authors would like to acknowledge that this work uses data provided by patients and collected by the National Health Service (NHS) as part of their care and support. The authors would also like to acknowledge the work of the West of Scotland Safe Haven team in supporting extractions and linkage to de-identified NHS patient datasets. The authors would also like to acknowledge the work of the COG-UK consortium whose members are listed below:

Dr Samuel C Robson PhD 13, 84, Dr Thomas R Connor PhD 11, 74, Prof Nicholas J Loman PhD 43, Dr Tanya Golubchik PhD 5, Dr Rocio T Martinez Nunez PhD 46, Dr David Bonsall PhD 5, Prof Andrew Rambaut DPhil 104, Dr Luke B Snell MSc, MBBS 12, Rich Livett MSc 116, Dr Catherine Ludden PhD 20, 70, Dr Sally Corden PhD 74, Dr Eleni Nastouli FRCPATH 96, 95, 30, Dr Gaia Nebbia PhD, FRCPATH 12, Ian Johnston BSc 116, Prof Katrina Lythgoe PhD 5, Dr M. Estee Torok FRCP 19, 20, Prof Ian G Goodfellow PhD 24, Dr Jacqui A Prieto PhD 97, 82, Dr Kordo Saeed MD, FRCPATH 97, 83, Dr David K Jackson PhD 116, Dr Catherine Houlihan PhD 96, 94, Dr Dan Frampton PhD 94, 95, Dr William L Hamilton PhD 19, Dr Adam A Witney PhD 41, Dr Giselda Bucca PhD 101, Dr Cassie F Pope PhD 40, 41, Dr Catherine Moore PhD 74, Prof Emma C Thomson PhD, FRCP 53, Dr Teresa Cutino-Moguel PhD 3, Dr Ewan M Harrison PhD 116, 102, Prof Colin P Smith PhD 101, Fiona Rogan BSc 77, Shaun M Beckwith MSc 6, Abigail Murray Degree 6, Dawn Singleton HNC 6, Dr Kirstine Eastick Phd, FRCPATH 37, Dr Liz A Sheridan PhD 96, Paul Randell MSc, PGD 99, Dr Leigh M Jackson PhD 105, Dr Cristina V Ariani PhD 116, Dr Sónia Gonçalves PhD 116, Dr Derek J Fairley PhD 3, 77, Prof Matthew W Loose PhD 18, Joanne Watkins MSc 74, Dr Samuel Moses MD 25, 106, Dr Sam Nicholls PhD 43, Dr Matthew Bull PhD 74, Dr Roberto Amato PhD 116, Prof Darren L Smith PhD 36, 65, 66, Prof David M Aanensen PhD 14, 116, Dr Jeffrey C Barrett PhD 116, Dr Beatrix Kele PhD 5, Dr Dinesh Aggarwal MRCP 20, 116, 70, Dr James G Shepherd MBCHB, MRCP 53, Dr Martin D Curran
Alpha variant was associated with increased COVID-19 severity in Scotland

PhD 71, Dr Surendra Parmar PhD 71, Dr Matthew D Parker PhD 109, Dr Catryn Williams PhD 74, Dr Sharon Glaysher PhD 68, Dr Anthony P Underwood PhD 14, 116, Dr Matthew Bashton PhD 36, 65, Dr Nicole Pacchiariini PhD 74, Dr Katie F Lovesey PhD 84, Matthew Byott MSc 95, 96, Dr Alessandro M Carabelli PhD 20, Dr Kate E Templeton PhD 56, 104, Prof Sharon J Peacock PhD 20, 70, Dr Thushan I de Silva PhD 109, Dr Dennis Wang PhD 109, Dr Cordelia F Langford PhD 116, John Sillitoe BEng 116, Prof Rory N Gunson PhD, FRCP, PhD, Dr Simon Cottrell PhD 74, Dr Justin O’Grady PhD 75, 103, Prof Dominic Kwiatkowski PhD 116, 108, Dr Patrick J Lillie PhD, FRCP 37, Dr Nicholas Cortes MBCHB 33, Dr Nathan Moore MBCHB 33, Dr Claire Thomas DPhil 33, Phillipa J Burns MSc, DipRCPath 37, Dr Tabitha W Mahungu FRCP 80, Steven Liggett BSc 86, Angela H Beckett MSc 13, 81, Prof Matthew TG Holden PhD 73, Dr Lisa J Levett PhD 34, Dr Husam Osman PhD 70, 35, Dr Mohammed O Hassan-Ibrahim PhD, FRCP 99, Dr David A Simpson PhD 77, Dr Meera Chand PhD 72, Prof Ravi K Gupta PhD 102, Prof Alistair C Darby PhD 107, Prof Steve Paterson PhD 107, Prof Oliver G Pybus DPhil 23, Dr Erik M Volz PhD 39, Prof Daniela de Angelis PhD 52, Prof David L Robertson PhD 53, Dr Andrew J Page PhD 75, Dr Inigo Martincorena PhD 116, Dr Louise Aigrain PhD 116, Dr Andrew R Bassett PhD 116, Dr Nick Wong DPhil, MRCP, FRCP 50, Dr Yusri Taha MD, PhD 89, Michelle J Erkier BA 99, Dr Michael H Spencer Chapman MBBS 116, 102, Dr Rebecca Dewar PhD 56, Martin P McHugh MSc 56, 111, Siddharth Mookerjee MPH 38, 57, Stephen Aplin 97, Matthew Harvey 97, Thea Sass 97, Dr Helen Unpleby FRCP 97, Helen Wheeler 97, Dr James P McKenna PhD 3, Dr Ben Warne MRCP 9, Joshua F Taylor MSc 22, Yasmin Chaudhry BSc 24, Rhys Izuagbe 24, Dr Aminu S Jahun PhD 24, Dr Gregory R Young PhD 36, 65, Dr Claire McMurray PhD 43, Dr Clare M McCann PhD 65, 66, Dr Andrew Nelson PhD 65, 66, Scott Elliott 68, Hannah Lowe MSc 25, Dr Anna Price PhD 11, Matthew R Crown BSc 65, Dr Sara Rey PhD 74, Dr Sunando Roy PhD 96, Dr Ben Temperton PhD 105, Dr Sharif Shaaban PhD 73, Dr Andrew R Hesketh PhD 101, Dr Kenneth G Laing PhD 41, Dr Irene M Monahan PhD 41, Dr Judith Heaney PhD 95, 96, 34, Dr Emanuela Pelosi FRCP 97, Siona Silviera MSc 97, Dr Eleri Wilson-Davies MD, FRCP 97, Dr Helen Fryer PhD 5, Dr Helen Adams PhD 4, Dr Louis du Plessis PhD 23, Dr Rob Johnson PhD 39, Dr William T Harvey PhD 53, 42, Dr Joseph Hughes PhD 53, Dr Richard J Orono PhD 53, Dr Lewis G Spurgin PhD 59, Dr Yann Bourgeois PhD 81, Dr Chris Ruis PhD 102, Áine O’Toole MSc 104, Marina Gourtovaia MSc 116, Dr Theo Sanderson PhD 116, Dr Christophe Fraser PhD 5, Dr Jonathan Edgeworth PhD, FRCP 12, Prof Judith Breuer MD 96, 29, Dr Stephen L Michell PhD 105, Prof John A Todd PhD 115, Michaela John BSc 10, Dr David Buck PhD 115, Dr Kavitha Gajee MBBS, FRCP 37, Dr Gemma L Kay PhD 75, David Heyburn 74, Dr Themoula Charalampous PhD 12, 46, Adela Alcolea-Medina 32, 112, Katie Kitchman BSc 37, Prof Alan McNally PhD 43, 93, David T Pritchard MSc, CSci 50, Dr Samir Dervisevic FRCPath 58, Dr Peter Muir PhD 70, Dr Esther Robinson PhD 70, 35, Dr Barry B Vipond PhD 70, Newara A Ramadan MSc, CSci, FIIBMS 78, Dr Christopher Jeanes MBBS 90, Danni Weldon BSc 116, Jana Catalan MSc 118, Neil Jones MSc 118, Dr Ana da Silva Filipe PhD 53, Dr Chris Williams MBBS 74, Marc Fuchs BSc 77, Dr Julia Miskelly PhD 77, Dr Aaron R Jefries PhD 105, Karen Oliver BSc 116, Dr Naomi R Park PhD 116, Amy Ash BSc 1, Cherian Koshy MSc, CSci, FIIBMS 1, Magdalena Barrow 7, Dr Sarah L Buchanan PhD 5, Dr Anna Mantzouratou PhD 7, Dr Gemma Clark PhD 15, Dr Christopher W Holmes PhD 16, Sharon Campbell MSc 17, Thomas Davis MSc 21, Ngee Keong Tan MSc 22, Dr Julianne R Brown PhD 29, 2, Kathryn A Harris PhD 29, 2, Stephen P Kidd MSc 33, Dr Paul R Grant PhD 34, Dr Li Xu-Mccrae PhD 35, Dr Alison Cox PhD 38, 63, Pinglawathree Madona 38, 63, Dr Marcus Pond PhD 38, 63, Dr Paul A Randell MBCHB 38, 63, Karen T Withell FIIBMS 48, Cheryl Williams MSc 51, Dr Clive Graham MD 60, Rebecca Denton-Smith BSc 62, Emma Swindells BSc 62, Robyn Turnbull BSc 62, Dr Tim J Sloan PhD 67, Dr Andrew Bosworth PhD 79, 35, Stephanie Hutchings 70, Hannah M Pymont MSc 70, Dr Anna Casey PhD 76, Dr Liz Ratcliffe PhD 76, Dr Christopher R Jones PhD
Alpha variant was associated with increased COVID-19 severity in Scotland.
Alpha variant was associated with increased COVID-19 severity in Scotland.
Alpha variant was associated with increased COVID-19 severity in Scotland

BSc, Jenna Nichols BSc, Dr Kyriaki Nomikou PhD, Dr Lily Tong PhD, Ioulia Tsatsani MSc, Prof Sarah O’Brien PhD, Prof Steven Rushton PhD, Dr Roy Sanderson PhD, Dr Jon Perkins MBCHB, Seb Cotton MSc, Abbie Gallagher BSc, Dr Elias Allara MD, PhD, Clare Pearson MSc, Dr David Bibby PhD, Dr Gavin Dabrera PhD, Dr Nicholas Ellaby PhD, Dr Eileen Gallagher PhD, Dr Jonathan Hubb PhD, Dr Angie Lackenby PhD, Dr David Lee PhD, Nikos Manesis, Dr Tamyo Mbisa PhD, Dr Steven Platt PhD, Katherine A Twohig, Dr Mari Morgan PhD, Alp Aydin MSc, David J Baker BEng, Dr Ebenezer Foster-Nyarko PhD, Dr Sophie J Prosolek PhD, Steven Rudder, Chris Baxter BSc, Silvia F Carvalho MSc, Dr Deborah Lavin PhD, Dr Arun Mariappan PhD, Dr Clara Radulescu PhD, Dr Aditi Singh PhD, Miao Tang MD, Helen Morcette BSc, Nadua Bayzid BSc, Marius Cotic MSc, Dr Carlos E Balcazar PhD, Dr Michael D Gallagher PhD, Dr Daniel Maloney PhD, Thomas D Stanton BSc, Dr Kathleen A Williamson PhD, Dr Robin Manley PhD, Michelle L Michelsen BSc, Dr Christine M Sambles PhD, Dr David J Studholme PhD, Joanna Warwick-Dugdale BSc, Richard Eccles MSc, Matthew Gemmell MSc, Dr Richard Gregory PhD, Dr Margaret Hughes PhD, Charlotte Nelson MSc, Dr Lucille Rainbow PhD, Dr Edith E Vamos PhD, Hermione J Webster BSc, Dr Mark Whitehead PhD, Claudia Wierzbicki BSc, Dr Adrienn Angyal PhD, Dr Luke R Green PhD, Dr Max Whiteley PhD, Emma Betteridge BSc, Dr Iraad F Bronner PhD, Ben W Farr BSc, Scott Goodwin MSc, Dr Stefanie V Lensing PhD, Shane A McCarthy, Dr Michael A Quail PhD, Diana Rajan MSc, Dr Nicholas M Redshaw PhD, Carol Scott, Lesley Shirley MSc, Scott AJ Thurston BSc, Dr Will Rowe PhD, Amy Gaskin MSc, Dr Thanh Le-Viet PhD, James Bonfield BSc, Jennifer Liddle and Andrew Whitham BSc.

1 Barking, Havering and Redbridge University Hospitals NHS Trust, 2 Barts Health NHS Trust, 3 Belfast Health & Social Care Trust, 4 Betsi Cadwaladr University Health Board, 5 Big Data Institute, Nuffield Department of Medicine, University of Oxford, 6 Blackpool Teaching Hospitals NHS Foundation Trust, 7 Bournemouh University, 8 Cambridge Stem Cell Institute, University of Cambridge, 9 Cambridge University Hospitals NHS Foundation Trust, 10 Cardiff and Vale University Health Board, 11 Cardiff University, 12 Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy’s and St Thomas’ NHS Foundation Trust, 13 Centre for Enzyme Innovation, University of Portsmouth, 14 Centre for Genomic Pathogen Surveillance, University of Oxford, 15 Clinical Microbiology Department, Queens Medical Centre, Nottingham University Hospitals NHS Trust, 16 Clinical Microbiology, University Hospitals of Leicester NHS Trust, 17 County Durham and Darlington NHS Foundation Trust, 18 Deep Seq, School of Life Sciences, Queens Medical Centre, University of Nottingham, 19 Department of Infectious Diseases and Microbiology, Cambridge University Hospitals NHS Foundation Trust, 20 Department of Medicine, University of Cambridge, 21 Department of Microbiology, Kettering General Hospital, 22 Department of Microbiology, South West London Pathology, 23 Department of Zoology, University of Oxford, 24 Division of Virology, Department of Pathology, University of Cambridge, 25 East Kent Hospitals University NHS Foundation Trust, 26 East Suffolk and North Essex NHS Foundation Trust, 27 East Sussex Healthcare NHS Trust, 28 Gateshead Health NHS Foundation Trust, 29 Great Ormond Street Hospital for Children NHS Foundation Trust, 30 Great Ormond Street Institute of Child Health (GOS ICH), University College London (UCL), 31 Guy’s and St. Thomas’ Biomedical Research Centre, 32 Guy’s and St. Thomas’ NHS Foundation Trust, 33 Hampshire Hospitals NHS Foundation Trust, 34 Health Services Laboratories, 35 Heartlands Hospital, Birmingham, 36 Hub for Biotechnology in the Built Environment, Northumbria University, 37 Hull University Teaching Hospitals NHS Trust, 38 Imperial College Healthcare NHS Trust, 39 Imperial College London, 40 Infection Care Group, St George’s University Hospitals NHS
Foundation Trust, 41 Institute for Infection and Immunity, St George’s University of London, 42 Institute of Biodiversity, Animal Health & Comparative Medicine, 43 Institute of Microbiology and Infection, University of Birmingham, 44 Isle of Wight NHS Trust, 45 King’s College Hospital NHS Foundation Trust, 46 King’s College London, 47 Liverpool Clinical Laboratories, 48 Maidstone and Tunbridge Wells NHS Trust, 49 Manchester University NHS Foundation Trust, 50 Microbiology Department, Buckinghamshire Healthcare NHS Trust, 51 Microbiology, Royal Oldham Hospital, 52 MRC Biostatistics Unit, University of Cambridge, 53 MRC-University of Glasgow Centre for Virus Research, 54 Newcastle University, 55 NHS Greater Glasgow and Clyde, 56 NHS Lothian, 57 NIHR Health Protection Research Unit in HCAI and AMR, Imperial College London, 58 Norfolk and Norwich University Hospitals NHS Foundation Trust, 59 Norfolk County Council, 60 North Cumbria Integrated Care NHS Foundation Trust, 61 North Middlesex University Hospital NHS Trust, 62 North Tees and Hartlepool NHS Foundation Trust, 63 North West London Pathology, 64 Northumbria Healthcare NHS Foundation Trust, 65 Northumbria University, 66 NU-OMICS, Northumbria University, 67 Path Links, Northern Lincolnshire and Goole NHS Foundation Trust, 68 Portsmouth Hospitals University NHS Trust, 69 Public Health Agency, Northern Ireland, 70 Public Health England, 71 Public Health England, Cambridge, 72 Public Health England, Colindale, 73 Public Health Scotland, 74 Public Health Wales, 75 Quadram Institute Bioscience, 76 Queen Elizabeth Hospital, Birmingham, 77 Queen’s University Belfast, 78 Royal Brompton and Harefield Hospitals, 79 Royal Devon and Exeter NHS Foundation Trust, 80 Royal Free London NHS Foundation Trust, 81 School of Biological Sciences, University of Portsmouth, 82 School of Health Sciences, University of Southampton, 83 School of Medicine, University of Southampton, 84 School of Pharmacy & Biomedical Sciences, University of Portsmouth, 85 Sheffield Teaching Hospitals NHS Foundation Trust, 86 South Tees Hospitals NHS Foundation Trust, 87 Southwest Pathology Services, 88 Swansea University, 89 The Newcastle upon Tyne Hospitals NHS Foundation Trust, 90 The Queen Elizabeth Hospital King’s Lynn NHS Foundation Trust, 91 The Royal Marsden NHS Foundation Trust, 92 The Royal Wolverhampton NHS Trust, 93 Turnkey Laboratory, University of Birmingham, 94 University College London Division of Infection and Immunity, 95 University College London Hospital Advanced Pathogen Diagnostics Unit, 96 University College London Hospitals NHS Foundation Trust, 97 University Hospital Southampton NHS Foundation Trust, 98 University Hospitals Dorset NHS Foundation Trust, 99 University Hospitals Sussex NHS Foundation Trust, 100 University of Birmingham, 101 University of Brighton, 102 University of Cambridge, 103 University of East Anglia, 104 University of Edinburgh, 105 University of Exeter, 106 University of Kent, 107 University of Liverpool, 108 University of Oxford, 109 University of Sheffield, 110 University of Southampton, 111 University of St Andrews, 112 Viapath, Guy’s and St Thomas’ NHS Foundation Trust, and King’s College Hospital NHS Foundation Trust, 113 Virology, School of Life Sciences, Queens Medical Centre, University of Nottingham, 114 Watford General Hospital, 115 Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, 116 Wellcome Sanger Institute, 117 West of Scotland Specialist Virology Centre, NHS Greater Glasgow and Clyde, 118 Whittington Health NHS Trust

*Consortium lead–email: sjp97@medschl.cam.ac.uk

Author Contributions

Conceptualization: Elen Vink, Rachel Blacow, Chris Davis, Ana da Silva Filipe, Guy Mollett, David L. Robertson, James G. Shepherd, Thomas Williams, Emma C. Thomson.

Formal analysis: David J. Pascall, Elen Vink, Joseph Hughes, Samantha Lycett, James G. Shepherd.

Funding acquisition: Emma C. Thomson.

Project administration: David J. Pascall, Elen Vink, John Haughney, Emma C. Thomson.

Resources: Emma C. Thomson.

Supervision: Emma C. Thomson.

Visualization: David J. Pascall, Joseph Hughes, Samantha Lycett, James G. Shepherd.

Writing – original draft: David J. Pascall, Guy Mollett, James G. Shepherd, Emma C. Thomson.

References

18. Understanding vaccine progress. Accessed 07/02/2023. Published online (https://coronavirus.jhu.edu/vaccines/international)

