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Coupling field simulation of soft capacitive
sensors towards soft robot perception
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Abstract— Simulation is a standard tool for robot design, control and per-
formance analysis. Numerous mature, thoroughly validated methods exist
to build fast and reliable simulation models for traditional rigid robotics
platforms. However, when it comes to novel soft robotics systems, most
existing models concern themselves with the dynamics of the soft bodies
during actuation, largely disregarding the sensory system. Simultaneous
simulation of sensors and actuators is essential to establishing a realistic
and accurate robot model in the virtual environment. This paper proposes a
pipeline to implement Coupling Field Simulation (CFS) of capacitive sensors
deployed on a square soft arm and a pneumatic manipulator. The CFS
approach can seamlessly integrate mechanical and sensing components,
enabling us to understand sensor behaviour better by simulating sensor
responses to various deformations including bending, inflation and the
combinations of bending, twisting and elongation. We also demonstrate CFS
is an effective and costly manner to acquire a large number of annotated data that can be used for pre-training in soft
robot perception tasks through two case studies (i.e., applied force estimation and deformation classification).

Index Terms— Coupling field simulation, soft capacitive sensor array, soft robots

I. INTRODUCTION

IN the past decades, robotics applications have become
ubiquitous, spreading widely across fields that range from

large-scale industrial manufacturing [1] to search and rescue
in hazardous environments [2] and relieving human operators
from heavy physical labour and unsafe working conditions.
The rigid mechanical nature that guarantees accurate discrete
kinematics is essential to the aforementioned success. How-
ever, as robots become more deeply involved with humans’
activities, this property limits their flexibility and manoeu-
vrability. It poses potential safety risks to users, preventing
their adoption in crucial applications such as biomedicine and
human-robot interaction [3]. The emergence of soft robots
promises to address this major limitation of traditional systems
by exploiting their own bodily compliance and therefore
enabling them to interact with users and environments in a
more lifelike, effective and safer manner [4].

In order to achieve closed-loop control and autonomy,
robots are required to possess perception ability, providing
sensory feedback for both geometric variations of their bodies
and other external stimuli (e.g., physical contact). Perception
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of soft robots remains challenging as the high deformability
not only places new challenges to sensor design, fabrication
and deployment but also dramatically increases the complexity
of sensing data analysis. Coupling field simulation (CFS)
which combines mechanical and sensing components can play
a critical role in developing perception systems in soft robots.
The benefits include the following aspects.

• The feasibility of proposed perception methods can be
verified in a fast and cost-effective manner through CFS
compared with implementing experiments on physical
platforms.

• The response of proposed sensors on various soft robots
with different deformations and external stimuli can be
characterized using CFS, which assists to understand sen-
sor behaviour, quantitatively evaluate sensor performance
and optimize sensor design.

• Deep learning approaches are frequently employed to in-
terpret sensing data to target parameters (e.g. deformation
class, applied force and coordinates of the end-effector)
due to the difficulty of mathematically modelling the
behaviour of soft sensors and robots. It normally requires
a large number of labelled data as training samples to
optimize network parameters. However, data annotation
is extremely time and labour-consuming. Applying data
generated by CFS to pre-train the network can signifi-
cantly reduce the burden of data acquisition.

However, to our knowledge, most existing simulation mod-
els only concern themselves with the dynamics, morphology
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Fig. 1. Flowchart of Coupling Field Simulation (CFS) of a 16-electrode soft capacitive sensor array deployed on a square soft arm.

and actuation of soft robots, largely neglecting the sensory
systems embedded in the mechanical structure [5]–[11]. For
example, in [6], Finite Element Method (FEM) is employed
to simulate the deformations of soft robots and their surround-
ings, which then helps achieve locomotion and manipulation
for physical soft robots. Model Order Reduction [12] can
simplify the computation of FEM-based simulations through
snapshot-proper orthogonal decomposition, thus allowing a
real-time simulation of soft robots with higher complexity. [9]
explores shapes and gaits that adapt to different environments
for a soft robot using simulation and successfully transfers
the result to a physical platform. [10] attempts to optimize
geometric configurations of soft locomotion robots in simu-
lated environments via evolutionary algorithms. Recently, soft
sensor design and placement optimization using simulation
methods have been reported. In [11], a neural architecture
for co-learning of general robotic tasks (e.g., tactile sensing
and proprioception) and sensor placement is developed and
demonstrated in a simulated environment. However, instead
of simulating sensor behaviour under robot deformation and
actuation, the study assumes the sensor has perfect perfor-
mance (e.g., 100% accuracy, no latency, deployable to every
location on the robot body), which is far from the practical
conditions. Therefore, CFS methods which can combine sens-
ing and mechanical components in soft robots and benefit the
development of soft robot perception need to be investigated.

In this work, we propose CFS models for capacitive sensors
deployed on two types of soft manipulators respectively (i.e.,
a square soft arm and a pneumatic soft actuator). The general
framework of the proposed method is shown in Fig. 1. In the
case of the square soft arm, solid mechanic field simulation
is used to compute the deformation caused by a force load,
while the sensor readouts corresponding to the deformation are

obtained through electrostatic field simulation. The proposed
CFS models can generate annotated data costly and effectively,
benefiting the development loop for soft perception systems in
many aspects as discussed above.

The contribution of this work is as follows.
• CFS models of a soft arm equipped with a 16-electrode

capacitive sensor array and a pneumatic manipulator
equipped with an 8-electrode capacitive sensor array are
developed and implemented.

• The behaviours of sensors under various deformations
including bending, the compound deformation of bending
and twisting, the compound deformation of elongation
and twisting and inflation are characterized and discussed.

• A large volume of annotated data is generated using the
proposed method. Two neural architectures for different
perception tasks (deformation classification and applied
force estimation) are trained with the synthesis data. The
trained networks can be used as per-trained models for
real-world scenarios to reduce the burden of collecting
data on physical platforms.

II. METHODOLOGY

This section introduces the fundamental principles of ca-
pacitive sensor arrays and CFS, with a focus on the coupling
between solid mechanic, electrostatic, and fluid mechanic
fields.

A. Capacitive sensor array

A planar capacitive sensor array consisting of several elec-
trodes (e.g., 8 or 12) deployed on the outer surface of the
Region Of Interest (ROI) can record the capacitance formed by
different electrode combinations. In the non-deformable setup,
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Fig. 2. Schematic illustration of the soft robot arm. Note that the other
8 electrodes are deployed on the two hidden surfaces.
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Fig. 3. Schematic illustration of the pneumatic actuator. Note that the
other 4 electrodes are deployed on the hidden surface.

the permittivity distribution within the ROI can be inferred
through the capacitance measurements by solving a dedicated
inverse problem [13]. This technique is known as electrical
capacitance tomography (ECT) and is frequently applied in
industrial processes to non-invasively monitor the dynamic
behaviours of multiphase flows. The relationship between the
capacitance and its influencing factors can be described as
[13], [14]

C =
Q

V
= − 1

V

∫∫
Γ

ϵ(x, y, z)∇ϕ(x, y, z)dΓ (1)

where V is the potential difference between two electrodes
that constitute the capacitor; ϵ(x, y, z) denotes the permittivity
distribution in the ROI; ϕ(x, y, z) represents the potential
distribution and Γ is the area of the electrode surface.

Conventional ECT utilizes rigid electrodes and aims to
reconstruct the permittivity distribution based on a series of
capacitance measurements. Here we consider capacitive sensor
arrays made of soft materials. In this case, the capacitance is
not only determined by the electrical properties of the internal
medium, but also affected by the geometries of the objects
under investigation. Notably, the two target manipulators have
a constant permittivity while their 3D domain deforms. There-

fore, the capacitance variation primarily reflects the geometric
variation in the proximity of the electrode pair, enabling to
infer the boundary deformation through capacitance readouts.

In the case of parallel plate capacitors with homogeneous
material inside, the determining equation for capacitance can
be simplified to

C = ϵ0ϵr
S

l
(2)

where ϵ0 is the permittivity of vacuum; ϵr is the relative
permittivity of the filling material; S is the area of the electrode
and l is the distance between two electrodes. The capacitance
is then positively correlated with S and negatively correlated
with l. This is an intuitive observation that can assist quali-
tative understanding of the sensor response to deformation in
the latter section.

B. Dynamics of the mechanical component
We first couple the solid mechanic and electrostatic fields to

simultaneously simulate the dynamic deformation and capac-
itive sensor response of the first manipulator (see Fig. 2). To
simulate the deformation, an external force is exerted at the
endpoint of the manipulator. The relationship between stress
and strain of an elastomer can be characterized by Hooke’s
law [15]

ξ =
1 + ν

E
σ − ν

E
tr(σ)I (3)

where ξ is the strain tensor; σ is the stress tensor; ν denotes
the Poisson’s ration; E is the Young’s modulus; tr(·) represents
trace operator and I represents second-order identity tensor.

We use Eq. (3) to infer the deformation of the manipulator
and then apply Eq. (1) to calculate capacitances formed by a
series of electrode pairs following the conventional 3D ECT
sensing protocol under the deformation.

For the pneumatic manipulator in Fig. 3, the fluid, mechanic
and electrostatic fields are coupled to acquire deformations
and capacitance measurements. In this case, the motion of the
viscous fluid is governed by Navier-Stokes equations [16], [17]

ρ
Du

Dt
= −∇p+∇ · τ + ρg (4)

where ρ is the fluid density, u is the velocity vector, t is
time, p is the pressure, τ is the deviatoric stress tensor and
g is the body accelerations. Hence, at quasi-static equilibrium
the fluid-solid coupling occurs via σ ∼ pδ, with δ being the
Kronecker delta, thus enabling to relate driving pressure in Eq.
(4) with body deformation in Eq. (3), and then solving Eq. (1)
to obtain capacitance readouts.

III. COUPLING FIELD SIMULATION

A. Case 1: soft robot arm
The first case involves a soft robot arm made of silicone

(see Fig. 2 for the geometric structure). For computational
simplicity, the robot arm is set as a square cylinder with the
size of 100×100×1000 mm. It is actuated by external forces,
which allows to generate complex deformations such as the
compound deformation of elongation and twisting. Sixteen
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planar electrodes are uniformly distributed on the surface of
the manipulator to form the capacitive sensor array (4 layers
and each consists of 4 electrodes). Each electrode is a 105×30
mm surface. The material parameters are set as Tab I. The
results from this test case can be readily extended to a broader
spectrum of manipulators with different sizes, shapes and
actuation types.

TABLE I
MATERIAL PARAMETERS

Density 1.28×103 kg m−3

Relative permittivity 3
Poisson’s ratio 0.022
Young’s modulus 4.15

We simulate three episodes of pseudo-continuous deforma-
tions with different external loads using solid mechanics and
electrostatics CFS in COMSOL Multiphysics®. Each episode
contains n = 40 discrete time frames. We compute the
stationary solution in each time frame to mimic the contin-
uous deformation by gradually increasing the magnitude of
the external loads applied to the manipulator. We focus on
the relationships between sensor signals and deformations in
quasi-static conditions rather than in actual dynamics. This
significantly simplifies the construction of simulation models
and minimizes computational effort without affecting sensor
characterization.

The first episode models a bending deformation (see Fig.
4), which is achieved by applying a force load in the x-y
plane to the bottom of the structure, regarded here as the
end-effector of the manipulator. The top is computationally
treated as a fixed boundary and physically regarded as the
base frame of the robotic artefact (the same settings are also
adopted in the following episodes). The increase rate for the
force is (−0.613,−3.953, 0), i.e., the force in time frame
t is (−0.613t,−3.953t, 0) N. Note that the increase rate is
generated randomly and we can modify its value to produce
different bending deformations.

The second episode includes 2 stages (see Fig. 6). During
the first stage (the first 13 time frames), the manipulator is
twisted with the axis of (−0.194, 0.004,−1). The increase rate
for the twisting angle is −6.846, i.e., the twisting in time frame
t is −6.846t◦. During the second stage, a force load with the
increase rate of (−1.667, 3.636, 0) is added, i.e., the force in
time frame t is (−1.667(t − 13), 3.636(t − 13), 0) N, while
the twisting component remains constant.

The third episode models the compound deformation of
twisting and elongation (see Fig. 7), which is achieved by
simultaneously applying a rotation and a displacement along
the z-axis to the bottom of the manipulator. The rotation axis
is (0.048,−0.069. − 1). The increase rates for the rotation
angle and the displacement are −2 and (0, 0,−6), i.e., the
rotation angle and displacement in time frame t are −2t◦ and
(0, 0,−6t) mm respectively.

From the measurement perspective, any two electrodes can
form a capacitor and generate a capacitance readout. The
16-electrode capacitive sensor can theoretically produce 120
readouts per measurement frame. However, many of them are

too small to be robustly measured in the physical world. To
better approximate the practical conditions, we only record the
capacitance readouts generated by two electrodes in the same
layer and discard the others. Each layer includes 4 electrodes
and can form 6 valid independent capacitance readouts per
frame. In total, the 16-electrode sensor has 24 readouts per
frame.

B. Case 2: pneumatic actuator

The second case models a simplified silicone-based pneu-
matic actuator with single chamber (see Fig. 3). The size of
the actuator is 60×20×130 mm. The diameter of the flow
inlet is 6 mm. Eight planar electrodes are uniformly placed
on the surface of the actuator (2 layers and each contains
4 electrodes). Each electrode is a 16×50 mm flat surface.
Using the measurement strategy in the first case, the sensor
can produce 12 capacitance readouts per measurement frame.

Actuation is driven by prescribing an air inflow at the inlet
boundary, which in turn drives the chamber deformation and
is ultimately recorded via the capacitance measurements. This
process is achieved by coupling laminar flow, mechanic and
electrostatic fields through the method described in Section
II. The simulation consists of 20 discrete time frames. The
interval between two adjacent frames is 0.1 s. For the laminar
flow field, the simulation parameters are set ad Tab II. We
suppress backflow to ensure the air does not leave the chamber.
Each inner surface is selected as the wall, and the no-slip
condition is adopted. The speed of the air entering the pipe is
constant at 0.7 m/s. A constant reference pressure point (0 Pa)
is placed on the centre of the tail surface to ensure convergence
and accelerate computation.

TABLE II
SIMULATION PARAMETERS

System temperature 293.15 K
System pressure 101.325 kPa
Dynamic viscosity of air 1.81e-5 kg/ms
Density of air 1.293 kg m−3

The solid part of the actuator is modelled as a hyperelastic
material with a wall thickness dt = 3 mm. The Ogden model
[18] is chosen as the silicone’s model with bulk modulus K =
4.157e4 MPa. The density of the silicone is ρs = 1000 kg
m−3. The relative permittivity of the silicone is taken as εs =
3, and that of air is εa = 1.

IV. RESULTS AND DISCUSSION

A. Capacitance readouts of the robot arm

The 24 capacitance readouts of the soft arm under the
bending deformation over time is shown in Fig. 4. The
calibrated capacitance is obtained using:

c =
craw − cnol

cnol
(5)

where c is the calibrated capacitance; craw is the raw mea-
surement and cnol is the measurement without any loads.
The signals from the capacitive sensor array change with the
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Fig. 4. Calibrated capacitance curves over time under the bending
deformation. a, Examples of deformations in several selected frames
and the calibrated capacitance readouts for all electrode pairs. b, The
calibrated capacitance readouts for 4 selected electrode pairs.

deformation, demonstrating the feasibility of applying it to soft
robot perception.

Fig. 4 also shows that some capacitance readouts increase
as the amplitude of the bending grows, while others have the
opposite trend. This is because bending deformation causes
one part of the soft body to expand (electrodes deployed
in the area will also expand) while the other part contracts
(electrodes deployed in the area will also contract). The
locations of expansion and contraction depend on the bending
direction. Fig. 5 shows the calibrated capacitance readout of
the same electrode pair exhibits distinct responses to bending
deformations in different directions. This property enables the
proposed capacitive sensor array to measure bending direction.
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Fig. 5. Calibrated capacitance curves over time of bending deforma-
tions in two different directions.
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Fig. 6. Calibrated capacitance curves over time under the 2-stage
twisting and bending deformation. a, Examples of deformations in
several selected frames and the calibrated capacitance readouts for all
electrode pairs. b, The calibrated capacitance readouts for 4 selected
electrode pairs.

Capacitance readouts of the 2-stage twisting and bending
deformation are illustrated in Fig. 6. During the first stage
(the first 13 time frames), pure twisting is implemented.
The magnitude of the sensor response to twisting is smaller
compared with that of bending, which results in the bending
deformation dominating the capacitance readouts at the second
stage. We can observe the flipping of several capacitance
signals at the 14th time frame due to the introduction of
bending.

Fig. 7 shows the results of the compound deformation
of elongation and twisting. The capacitance readouts mono-
tonically increase with the degree of deformation. This is
readily justified by the elongation deformation dominating the
response of the capacitive sensor. The area of individual planar
electrodes grows during elongation, leading to the increase in
capacitance readouts.

B. Capacitance readouts of the pneumatic actuator

The results of the pneumatic actuator simulation are shown
in Fig. 8. The capacitance readouts grow with the manipu-
lator inflates if capacitors are formed by electrodes from the
same surface, and the capacitance readouts decrease with the
manipulator inflates if capacitors are formed by electrodes
from different surfaces (see Fig. 8b). The increase of the
capacitance readouts generated by the same surface electrode
pairs is mainly caused by the area expansion of electrodes
during manipulator inflation. The distance extension between
electrodes in the inflation process makes the main contribution
to the decrease of the capacitance readouts generated by
different surface electrode pairs.
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Fig. 7. Calibrated capacitance curves over time under the compound
deformation of elongation and bending. a, Examples of deformations in
several selected frames and the calibrated capacitance readouts for all
electrode pairs. b, The calibrated capacitance readouts for 4 selected
electrode pairs.

C. Perception tasks
The proposed CFS models that can seamlessly integrate

robot dynamics and sensor response can generate a large num-
ber of annotated data, providing samples to train neural net-
works for various perception tasks. The networks trained with
simulated data have the potential to be transferred to practical
applications using sim-to-real transfer learning approaches,
reducing the burden of data acquisition in the physical world.
This subsection implements two typical perception tasks (i.e.,
applied force estimation and deformation classification) as
case studies to demonstrate the potential of CFS.

Task 1: applied force estimation
Deformation induced by applied force can lead to the

change of capacitance measurements, thus making it feasible
to estimate the magnitude of force through capacitance read-
outs. We implement the CFS model for the soft manipulator
subject to pure bending (which is presented in Section III) to
generate annotated data. The bending deformation is induced
by a force load f = (vxt, vyt, 0) applied to the tip of the
manipulator. The parameters vx and vy are varied in each
episode to ensure the diversity of the synthesis dataset. In
total, we generate 300 episodes of data (12,000 time frames;
with each episode containing 40 frames).

Our goal here is not to develop a novel algorithm with
superiority for applied force estimation. Instead, we aim to
verify the potential of CFS as a tool to analyze sensor and
algorithm performance at the design stage. Therefore, we em-
ploy a simple multi-layer perceptron (MLP) [19] as the force
estimator. The MLP has one hidden layer with 128 neurons.
The input of the MLP is the 24-dimensional measurement
vector from the capacitive sensor. The output is the estimation
of the 2-dimensional force vector, i.e., (f̂x, f̂y) (the component
in the z direction is 0). The activation functions for the hidden
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Fig. 8. Calibrated capacitance curves over time under the inflation
deformation. a, Examples of deformations in several selected frames
and the calibrated capacitance readouts for all electrode pairs. b, The
calibrated capacitance readouts for 4 selected electrode pairs.

and output layers are ReLU and Linear, respectively. The data
are randomly divided into three exclusive groups, i.e., the
training set (172 episodes, 6,880 frames), the validation set
(74 episodes, 2,960 frames) and the testing set (54 episodes,
2,160 frames). We implement the network on the PyTorch
platform. We use the Mean Squared Error (MSE) between
prediction and ground truth as the loss of the force estimator.
The Adam [20] optimizer is employed to update the learnable
parameters and minimize the loss. We set the initial learning
rate as 0.0005, which decays every 15 epochs by a factor of
1.2. The gradient is clipped with the threshold of 0.5. We train
the network with the training set for 200 epochs and the batch
size is set to 256. After training, the network with the least
validation loss is retained as the final model. Two error metrics
are employed here to quantitatively evaluate the performance
of the trained network, i.e., Mean Square Error (MSE) and
Mean Absolute Error (MAE), in this case, defined as:

MSE =
1

2N

N∑
i=1

[
(f̂ i

x − f i
x)

2 + (f̂ i
y − f i

y)
2
]

(6)

MAE =
1

2N

N∑
i=1

(
|f̂ i

x − f i
x|+ |f̂ i

y − f i
y|
)

(7)

where N is the number of samples and superscript i represents
the i-th sample.

The trained MLP can achieve 1.373 for MAE and 3.589
for MSE on the testing set. The estimation results for fx and
fy on the testing set are shown in Fig.9. We observe that
samples distributed in the middle have smaller errors. A likely
explanation for this lies with the unbalanced distribution of
training samples and the limited expressive power of the MLP
when associated with only one hidden layer. Fig.10 shows two
examples of the ground truth deformations, the corresponding
applied force and the estimation of the MLP.
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Fig. 9. Absolute error for force estimation on the testing set. a,
absolute error for force component along x axis. b, absolute error for
force component along y axis.

Task 2: deformation classification
The capacitance signals induced by different types of de-

formations have distinct patterns. This property enables the
proposed sensor array to be applied to classify deformations.
We attempt to train a binary classifier which can tell the
difference between pure bending (the first type of deformations
described in Section III) and 2-stage twisting and bending
deformation (the second type of deformations described in
Section III). We already obtain 300 episodes of pure bending
data in task I. We implement the CSF model presented in
Section III to generate 298 episodes of data for 2-stage twisting
and bending deformation. The diversity of the synthesis dataset
is ensured by varying the values of external loads including
the axis of twisting, the increase rate for twisting angle and
the increase rate for the applied force. Complementary with
the dataset produced for the force estimation task, we totally
have 598 episodes of data.

We set the class label of pure bending as 0 and 2-stage
twisting and bending deformation as 1. We only retain the
data after the 14th frame in each episode to ensure the
difference between deformations is sufficiently large to be
detected. Finally, we construct a dataset with 15,548 frames of
samples, among which 7,748 frames belong to deformation 1
(the combination of bending and twisting) and the remaining
7,800 frames are deformation 0 (pure bending).

bending 1 bending 2

Deformation

Force estimation

x

y

z

estimation ground truth

y 
�1
�

x �1�

x �1�

y �1
�

Fig. 10. Examples of force estimation on the testing set. Top: the ground
truth deformations. Bottom: the ground truth applied force (red dot line)
and the estimated force (blue line).

We select an MLP with one hidden layer as the classifier.
Its structure is the same as the force estimator except for
the dimension (1) and the activation function (Sigmoid) of
the output layer. We feed the capacitance vector to the MLP
classifier and expect it to output the prediction of the class
label (i.e., the probability that the deformation contains a
twisting). The data are randomly divided into three exclusive
groups, i.e., the training set (343 episodes, 8,918 frames), the
validation set (147 episodes, 3,822 frames) and the testing
set (108 episodes, 2,808 frames). We select the binary cross
entropy loss function and train the classifier using the same
training procedure (the only difference is that we set the
initial learning rate as 0.0001). After training, the classifier
can achieve 100% classification accuracy on the testing set,
which demonstrates the feasibility of using capacitance signals
to distinguish these two types of deformations. Two examples
of deformation classification are shown in Fig.11. Note that the
100% accuracy is only achievable under ideal circumstances.
In this study, the classification task is very simple, which only
includes 2 deformation classes, and the signals are assumed
to be noise free. The accuracy is expected to drop if the task
involves more types of deformations and/or the noise is taken
into account.

V. CONCLUSIONS

We developed CFS models for capacitive sensor arrays
on two types of soft manipulators. The CFS models can
seamlessly integrate the sensing and mechanical components
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Fig. 11. Examples of deformation classification on the testing set.
Top: the ground truth deformations. Middle: the corresponding measure-
ments (the input of the MLP classifier). Bottom: the output of the MLP
classifier.

of soft robots. We implemented the CFS models to charac-
terize the capacitive sensor arrays in various deformations,
which helped us better understand sensor behaviours. The case
studies for two perception tasks (i.e., applied force estima-
tion and deformation classification) based on the annotated
dataset produced through CFS demonstrate the potential of
CFS to benefit learning-based perception. Combined with
simple machine learning frameworks, the capacitance sensor
arrays perform well in both the applied force estimation task
(1.373 MAE) and the deformation classification task (100%
accuracy). The models trained with simulated data could be
transferred to practical applications using sim-to-real transfer
learning approaches, significantly reducing time and costs for
data acquisition through physical experiment platforms.
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