

Edinburgh Research Explorer

Android OS Privacy Under the Loupe -- A Tale from the East

Citation for published version:
Liu, H, Leith, DJ & Patras, P 2023, Android OS Privacy Under the Loupe -- A Tale from the East. in
Proceedings of the 16th ACM Conference on Security and Privacy in Wireless and Mobile Networks. ACM
Association for Computing Machinery, pp. 31-42, The 16th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, 29/05/23.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 16th ACM Conference on Security and Privacy in Wireless and Mobile Networks

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://www.research.ed.ac.uk/en/publications/f7ce63e2-dc1b-4588-a70b-096692ce5b72

Android OS Privacy Under the Loupe – A Tale from the East
Haoyu Liu

The University of edinburgh
Edinburgh, United Kindgom

haoyu.liu@ed.ac.uk

Douglas J. Leith
Trinity College Dublin

Dublin, Ireland
Doug.Leith@tcd.ie

Paul Patras
The University of edinburgh
Edinburgh, United Kindgom

paul.patras@ed.ac.uk

ABSTRACT
China is currently the country with the largest number of Android
smartphone users. We use a combination of static and dynamic
code analysis techniques to study the data transmitted by the pre-
installed system apps on Android smartphones from three of the
most popular vendors in China. We find that an alarming number
of preinstalled system, vendor and third-party apps are granted dan-
gerous privileges. Through traffic analysis, we find these packages
transmit to many third-party domains privacy sensitive information
related to the user’s device (persistent identifiers), geolocation (GPS
coordinates, network-related identifiers), user profile (phone num-
ber, app usage) and social relationships (e.g., call history), without
consent or even notification. This poses serious deanonymization
and tracking risks that extend outside China when the user leaves
the country, and calls for a more rigorous enforcement of the re-
cently adopted data privacy legislation.

CCS CONCEPTS
• Security and privacy →Mobile platform security; Software
reverse engineering.

KEYWORDS
Android OS privacy; China firmware; PII leakage

1 INTRODUCTION
As of 2021, China is the country with the largest number of smart-
phone users [20], with over 70% of mobile handsets running an
Android OS distribution [28]. Concerns about user and data privacy
on mobile handsets are increasingly coming to the attention of
regulatory authorities in many countries, including in the EU [12],
Canada [14], USA [19], Brazil [23], and Japan [22]. While China has
recently adopted a Personal Information Protection Law [30], which
mirrors in part the EU GDPR, the extent to which smartphone ven-
dors comply with these provisions and howmuch sensitive personal
information may be disclosed to vendors and third parties without
user consent remains poorly understood. Prior privacy analysis of
preinstalled Android system apps [18] has largely been confined to
European handsets and does not consider Android OS distributions
used by consumers in China, where regional differences are directly
reflected in the firmware and built-in system apps.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In this paper, we conduct an in-depth analysis of the Android OS
variants from three of the most popular smartphones vendors in
China, namely OnePlus, Xiaomi and Oppo Realme. We analyze the
OS system apps and their permissions, as well as the communication
between these system apps and the servers to which these connect
in order to provide users with the intended functionality.We confine
consideration to the information transmitted by the OS and system
apps that come preinstalled on a handset, leaving out any third-
party apps that a user would install themselves.We note that system
apps such as Settings, Messages, and Maps cannot be removed by
the user, and preinstalled system apps can have access privileges
that user-installed apps may not gain easily, especially not without
explicit user consent.

We focus on a privacy-aware but busy user who opts out of ana-
lytics and personalization, does not use any cloud storage or any
other optional third-party services, and has not set up an account
on any platform of the OS distribution developer. This allows us to
establish a baseline for privacy behavior. We find that the smart-
phones studied send a worrying amount of Personally Identifiable
Information (PII) not only to the device vendor but also to Chinese
mobile network operators (e.g., China Mobile and China Unicom),
even though they do not provide any service to the device, i.e., a
SIM card has not been inserted or we use a SIM card that ensures
connectivity to a different operator in China or in the UK, and to
over-the-top service providers (e.g., Baidu). The data we observe
being transmitted includes persistent device identifiers (IMEI, MAC
address, etc.), location identifiers (GPS coordinates, mobile network
cell ID, etc.), user profiles (phone number, app usage patterns, app
telemetry), and social connections (call/SMS history/time, contact
phone numbers, etc.). Combined, this information poses serious
risks of user deanonymization and extensive tracking, particularly
since in China every phone number is registered under a citizen ID.
Moreover, the data collection behaviors do not change when the
devices move outside China, despite potentially being under juris-
dictions where users should benefit from stronger data protection,
meaning that phone vendors and some third-parties are still able
to track business travelers and students studying abroad, including
the foreign contacts they make on their visits.

Finally, we perform a cross-regional analysis and compare the
preinstalled system apps on the Chinese (CN) and Global (e.g.,
EU) Android OS distributions from the same OS developers. We
find that the number of preinstalled third-party apps on CN OS
distributions is 3 to 4 times larger than for the corresponding Global
OS distribution, and that these are given 8 to 10 times as many
permissions as third-party apps in Global distributions, including
many more permissions classed as dangerous. Overall, our findings
paint a troubling picture of the state of user data privacy in the
world’s largest Android market, and highlight the urgent need for

ar
X

iv
:2

30
2.

01
89

0v
1

 [
cs

.C
R

]
 3

 F
eb

 2
02

3

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Haoyu Liu, Douglas J. Leith, & Paul Patras

tighter privacy controls to increase the ordinary people’s trust in
technology companies, many of which are partially state-owned.

2 THREAT MODEL
We focus on privacy leaks from system services and preinstalled
system apps that transmit information to backend servers. Unlike
third-party apps which have to explicitly ask for system permissions
(storage, location, network, etc.), preinstalled system apps may use
permissions, including privileged permissions not available to non-
system apps, without asking for user consent.

It is worth noting that data transmission from the OS does not
intrinsically entail a breach of privacy. For instance, it can be useful
to share details of the device model/version and the locale/country
of the device when checking for software updates. This poses few
privacy risks if the data is common to many handsets and therefore
cannot be easily linked back to a specific handset/person.

Two major issues in handset privacy are (i) release of sensitive
data, and (ii) handset deanonymization, i.e., linking of the handset
to a person’s real world identity.

Release of sensitive data.What counts as sensitive data is amoving
target, but it is becoming increasingly clear that data can be used in
surprising ways and that so-called metadata can be sensitive data.
The sensitive information we consider in this work can be classified
into four major categories:

(1) Device-specific: Information that is bundled with the de-
vice upon manufacturing or setup, such as International
Mobile Equipment Identity (IMEI), Mobile Equipment Iden-
tifier (MEID), Android ID, MAC address, hardware serial
number, installed packages and hardware model.

(2) Location-specific: Information that directly or indirectly
reveals the location of the user, such as GPS coordinates,
the SSID and MAC address of nearby Wi-Fi access points,
Mobile Country Code (MCC), Mobile Network Code (MNC),
Location Area Code (LAC), and cell ID (CID).

(3) User Profile: Information that reveals user identity (phone
number) and user traits (list of installed apps, app usage logs).

(4) Social Relationships: Information that contains details
about the personal contacts of the user, such as phone call
and SMS history.

We also note that data which is not sensitive in isolation can become
sensitive when combined with other data, see for example [5, 8, 37].
This is not a hypothetical concern since vendors such as Xiaomi
operate mobile payment services and supply custom web browsers
with the handsets they commercialize.

Deanonymization. Android handsets can be directly tied to a
person’s real identity in at least three ways, even when a user takes
active steps to try to preserve their privacy. Firstly, via the SIM
and phone number. In China every phone number is registered
under a citizen ID. Secondly, via the IMEI number which globally
uniquely identifies each SIM slot on a handset. The IMEI is used
by cellular operators to block network access for a stolen handset
[34] and so it is commonly linked to the user’s SIM, phone number
and cellular contract. Thirdly, via vendor accounts. For example,
Xiaomi encourages people to create user accounts and sign in to
themwhile using their handsets. Creation of user accounts typically
requires disclosure of personal information that is then linked to

device identifiers such as the IMEI, and if used for mobile payments
becomes linked to a person’s financial details (e.g., credit card).

3 ETHICAL STATEMENT
Our study involved no human subjects and took measurements
on handsets in normal operation. The methodology used therefore
raises no ethical concerns. However, the software that we study is
in active use by many millions of people, and so warrants consider-
ation of responsible disclosure. We have informed Oppo, Realme
and Xiaomi of our findings. It seems likely that any changes to the
OSes studied here, even if they were agreed upon, would take a
considerable time to deploy and we believe that keeping handset
users in the dark for a long open-ended period in the meantime is
inappropriate.

4 ENVIRONMENT SETUP
We scrutinize three popular mobile devices purchased in China,
which run local (CN) firmware, namely a Xiaomi Redmi Note 11
with Android 11/MIUI 12.5.4.0 RGBCNXM, an OPPO Realme Q3
Pro with Android 11/realme UI v2.0 RMX2205_11_A.13 (based on
ColorOS 11), and a OnePlus 9R with Android 11/ColorOS 11.2
LE2100_11_A.05.

Regional differences take the form of differences in the installed
firmware, e.g., differences between the system apps installed in
the Global/EU vs. CN Android OS distributions. In addition, even
when the same version of system app is installed in the CN and
Global distributions, the app may contain logic that causes it to
behave differently depending on the region, e.g., by checking the
current location. Regarding the latter, by reverse-engineering the
main system apps, we find that mobile devices tend to use locale,
firmware version, IP address and MCC (which identifies the mobile
operator country) to localize their behavior. For example, Xiaomi
maintains a list of URLs in a Java HashMap:
1 {"CN": "data.mistat.xiaomi.com",
2 "INTL": "data.mistat.intl.xiaomi.com",
3 "IN": "data.mistat.india.xiaomi.com"},

and uses a hardcoded value ("CN") and locale together, to select an
endpoint in the Chinese firmware. The preinstalled Amap package
on Realme and OnePlus handsets uses the MCC to determine the
API endpoint:
1 StringBuilder sb = new StringBuilder();
2 if (a2) {
3 sb.append("http://aps.oversea.amap.com/APS/r?ver=5.1&q=0");
4 } else if (z) {
5 sb.append("http://aps.testing.amap.com/APS/r?ver=5.1&q=0");
6 } else if (z2) {
7 sb.append("https://aps.amap.com/APS/r?ver=5.1&q=0");
8 } else {
9 sb.append("http://aps.amap.com/APS/r?ver=5.1&q=0");}

in which a2 is True if MCC does not equal 460 (China).
Although the mobile devices in our study were purchased on the

Chinese market, we do not conduct experiments locally and recog-
nize that the data collected outside China may not fully represent a
device’s behavior in that region. To overcome this issue, we set up a
network tunnel between our campus and a Huawei Cloud instance
in Shanghai. The IP address observed by the backend server is thus
that of the Huawei Cloud server located in Shanghai. We set up
each handset using Chinese as the language to simulate a local user.
With this setup, the only app that we observed still adapting to

Android OS Privacy Under the Loupe – A Tale from the East Conference’17, July 2017, Washington, DC, USA

mobile device ASUS router tunneling traffic
to Huawei cloud instance Internet Huawei cloud instance with

MITM proxy
backend servers

Trusted certificate installed before data collection

Figure 1: Illustration of the experimentation setup. A wireless router is configured to tunnel all traffic from the connected
mobile devices to a Huawei Cloud instance in Shanghai, where a mitmproxy is set up to intercept and log HTTPS flows. A
MTIMProxy signed certificate is installed on every handset studied prior to any data collection.

the device’s true location was the Amap app. Fortunately, through
reverse-engineering (decrypting/decoding every connection in the
collected traces via mitmproxy and apk decompiling and analysis,
which allows us to examine all the transmitted fields in plaintext)
we confirmed that the contents of the messages transmitted to
Amap’s different API endpoints are the same in all regions, and so
leaves our traffic collection unaffected. We did not find any sys-
tem services or preinstalled applications that use GPS to select an
endpoint.
4.1 Wi-Fi Connection & Traffic Tunneling
We aim to capture the handset traffic starting from right after fac-
tory reset. To collect measurements, we first configured a Wi-Fi
access point on an ASUS RT-AC86U router which supports third-
party firmware and thus allows for the configuration of many VPN
or tunneling protocols. We build a tunnel where the proxy server is
based on a Huawei Cloud s6.small instance running Ubuntu 20.04 in
Shanghai, and the ASUS router running Koolshare 3.0.0.4 works as
a proxy client, which is configured to redirect any TCP/UDP pack-
ets to the endpoint on the Huawei Cloud instance (see Figure 1)
To avoid any negative impact on the censorship circumvention
community, we do not disclose the tunneling protocol used. During
our traffic collection campaign, only the handsets being studied are
permitted to connect to the Wi-Fi access point, in order to prevent
other sources of traffic from interfering with our measurements.
4.2 Man-in-the-Middle Proxy
The tunneling server receives connections from the handset and for-
wards them to the intended destinations, while we deploy a man-in-
the-middle proxy to be able to intercept and decipher HTTP/HTTPS
traffic. To fully isolate handset-initiated requests from the Huawei
Cloud messaging that serves to monitor the hosted virtual machine
(VM), we create a user named tunnel which runs the tunnel-
ing proxy server. We also run mitmproxy 8.0.0 [7] with superuser
permissions on port 8080 on the VM, and configure iptables to
redirect any TCP connections from tunnel to locahost:8080.
In this way,mitmproxy communicates with the handset on behalf of
the requests from the server endpoints, and initiates new requests
to the target server endpoints by impersonating the handset, which
allows mitmproxy to intercept each request.

Due to the prevalence of HTTPS, the mobile device needs to
be equipped with a mitmproxy-generated CA certificate, so that
TLS handshakes between the handset and mitmproxy can succeed.
However, if installing the mitmproxy certificate as a user-trusted
certificate, the user has to authenticate by PIN-code or password
every time the certificate is used. Therefore, we install it as a system-
trusted certificate instead, following the steps explained in [18],

which requires the handsets to be rooted. Xiaomi, OPPO and One-
Plus are open about unlocking the bootloader of their devices, which
allows us to flash Magisk-patched boot images. In our work, we
use Magisk v23.0 [31] to unpack the stock boot image and hijack
the original SELinux policy in order to acquire root access.
5 DATASETS
5.1 Experiment Design
We collect traffic generated by the three mobile devices considered
(Xiaomi Redmi Note 11, OPPO Realme Q3 Pro, and OnePlus 9R),
which run firmware made for the Chinese market. We root each de-
vice and perform factory reset prior to any data collection. During
the device setup stage, the user is asked to agree with terms and
conditions, and to customize a set of options. Similar to prior work
[18], we act as a privacy-aware user and uncheck all the options
presented by the OS. For Redmi Note 11, we uncheck ‘Turn On
Screen to Activate Mi AI’, ‘Location’, ‘Send Usage and Diagnostic
Data’, ‘Automatic System Updates’, ‘User Experience Program’, and
skip System Navigation Mode; for Realme Q3 Pro, we uncheck ‘Join
User Experience Program’, ‘Automatically Select the Best Wi-Fi’,
‘Automatically Switch to Mobile Network’, ‘Lock Screen Magazine’,
‘Auto Update Overnight’, and skip Learn Swipe Gestures; for One-
Plus 9R, we uncheck ‘Join User Experience Program’, ‘Automatically
Select the Best Wi-Fi’, ‘Automatically Switch to Mobile Network’,
‘Auto Update Overnight’ and skip Learn Swipe Gestures.

During the setup stage, we also skip the Wi-Fi connection config-
uration and do not insert a SIM card, to make sure that no Internet
traffic is generated. After installing the mitmproxy certificate, we
perform the following set of actions on each handset:

(1) Connect to the controlled Wi-Fi access point;
(2) Leave the handset untouched for 24 hours and log the net-

work activity via mitmproxy on Huawei Cloud;
(3) Insert a Chinese SIM card, disable Mobile Data and log the

network activity through Wi-Fi. The phone was connected
to a UK cellular network at this stage;

(4) Keep the handset idle for 24 hours with a SIM card inserted
and record the network activity;

(5) Turn off and on location and record the network activity;
(6) Make and receive a phone call, and log the network activity;
(7) Send and receive a message, and log the network activity;
(8) Open Camera, Clock, Note, Photos, Recorder, Settings one-

by-one, and log the network activity. If any application asks
for permissions, we only grant the minimal set that ensures
they remain functional;

(9) Remove the SIM card and log the network activity;
(10) Factory Reset the device and log the network activity.

Conference’17, July 2017, Washington, DC, USA Haoyu Liu, Douglas J. Leith, & Paul Patras

Region Model android pkg vendor pkg 3rd-party pkg

num # perm
dangerous
permission

num # perm
dangerous

perm
num #perm

dangerous
perm

CN
Redmi 152 36.0 3.1 137 117.8 8.9 36 72.9 7.1
OnePlus 159 32.8 3.2 185 72.9 6.7 40 51.9 6.5
Realme 147 35.6.3 3.7 163 71.5 7.8 34 56.2 6.5

Global Redmi 169 32.4 3.4 111 108 9.2 14 9.0 1.8
Realme 166 35.1 4.1 139 100.0 9.9 9 6.2 4.1

Table 1: Summary of the number of different types of packages installed in each of the handsets studied, and the average
number of permissions requested in each category. Note that we group hardware-supported packages, including Qualcomm,
Mediatek, and packages developed by parent/child companies into the ‘vendor pkg’ category.

In addition, to allow a cross-regional comparison we obtained the
traces collected by the authors of [18] from Xiaomi Redmi Note 9
with Android 10/MIUI Global 12.0.7 QJOMIXM (denoted as Redmi
Global) and OPPO Realme 6 Pro with Android 10/realme UI v1.0
RMX2063_11 _A.38 (denoted as Realme Global), where both run
the global versions of the respective firmware. Note that the traces
collected from the CN firmware do not contain any connections to
Google services, and thus in our study we filter out the Google con-
nections in Redmi Global and Realme Global for a fair comparison.
5.2 Limitations
Wehighlight a number of potential limitations of the traces collected
in our study.

1) We do not alter the GPS location of the handsets and we do
not know whether being inside mainland China would trigger the
AMap maps app to behave differently. This is limited to the Realme
and OnePlus handsets, which have the AMap app preinstalled and
running in the background.

2) Due to the passage of time since the measurements reported
in [18], the devices in our investigation are shipped with Android 11,
whereas the devices in [18] run Android 10. However, we find (see
Section 6.2) that the differences that we observe between the CN
and Global variants of the Android OS are not due to the Android
version, but instead are mainly associated with the preinstalled
applications and system services.

3) We only collect and analyze the network traffic generated
by system apps and by basic applications such as the dialer and
messages apps. Nevertheless, we argue that these largely reflect
the attitude of vendors towards user privacy.

4) Traffic analysis is limited to the apps which do not implement
certificate pinning.
5.3 Additional Material: Connection Data
Annotated measurements of network connections are available at
https://github.com/Mobile-Intelligence-Lab/android_CN_trafficdata.

6 RESULTS AND ANALYSIS
We carry out our privacy analysis using a mix of static and dynamic
analysis techniques: 1) static analysis is used to study the differ-
ences between installed packages and the permissions requested
in each handset; and 2) dynamic analysis via code instrumentation
and traffic analysis is used to discover whether sensitive user infor-
mation is actually leaked to backend servers. We seek to answer
the following key questions:

(1) How many apps are preinstalled in each handset?
(2) How many permissions are requested by system services

and preinstalled third-party apps?
(3) Do handset manufacturers grant runtime permissions by

default to preinstalled third-party packages?
(4) Which type of personally identifiable information (PII) is

uploaded to backend servers?
(5) Is the user notified about the transmission of the PII regard-

ing geolocation, user profile and social relationships?
(6) Who collects PII and where are they located?

The first three questions aim to compare the differences between
the Android distributions on the handsets from a static perspec-
tive, while the latter three focus on the dynamic aspects. The static
analysis is crucial to understanding how preinstalled apps are able
to achieve exfiltration, especially of some PII that is supposed to
be protected under runtime permissions. Our traffic analysis re-
veals the transmissions of a collection of PII while users may be
completely unaware of this.

6.1 Static Analysis
Third-party app developers often collaborate with mobile device
manufacturers, who embed popular third-party applications in the
official firmware for a specific region. For example, it is common for
Chinese brands to preinstall Chinese input apps, video streaming
apps (such as Youku and Tencent TV), and domestic map apps (e.g.,
Baidu Map and AMap), due to the governmental ban on Google
services. From a user perspective, this constitutes product bundling
and preinstalled applications may excessively request permissions
without the user knowing it.

Q1. How many apps are preinstalled in each handset?

The entire list of installed Android packages is maintained in
/data/system/packages.list, and the requested permis-
sions and whether each permission is granted, can be acquired
by running dumsys package <packgename> on Android de-
vices. Table 1 shows the details of the preinstalled packages found
on the devices we study, and the average number of requested (dan-
gerous) permissions encountered on each. Specifically, we group
preinstalled packages into three categories, Android AOSP pack-
ages, vendor packages and third-party packages. It is the vendor
who decides which type of hardware (CPU, fingerprint sensor, etc.)

https://github.com/Mobile-Intelligence-Lab/android_CN_trafficdata

Android OS Privacy Under the Loupe – A Tale from the East Conference’17, July 2017, Washington, DC, USA

0 5 10 15 20 25 30
permissions

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

redmi

android
vendor
3rd-party

0 5 10 15 20 25 30
permissions

0.0

0.2

0.4

0.6

0.8

1.0
oneplus

android
vendor
3rd-party

0 5 10 15 20 25 30
permissions

0.0

0.2

0.4

0.6

0.8

1.0
realme

android
vendor
3rd-party

0 5 10 15 20 25 30
permissions

0.0

0.2

0.4

0.6

0.8

1.0
redmi (global)

android
vendor
3rd-party

0 5 10 15 20 25 30
permissions

0.0

0.2

0.4

0.6

0.8

1.0
realme (global)

android
vendor
3rd-party

Figure 2: The ECDF of the number of dangerous permissions requested by each category of packages in each handset.

to use during production, thus we count hardware-supported pack-
ages including Qualcomm and Mediatek in the ‘vendor pkg’ cate-
gory. Moreover, we also group the packages developed by paren-
t/child companies into the ‘vendor pkg’ class. We find that the num-
ber of preinstalled packages among different brands with Chinese
firmware is roughly the same, with vendor packages on OnePlus
slightly outnumbering that on the other two brands. This is because
OnePlus shares the same Android OS distribution (i.e., ColorOS)
with Realme, but also loads a number of OnePlus self-developed
apps. There are more than 30 third-party packages deployed in each
handset with Chinese firmware, including multiple similar types
of application. For example, Redmi Note 11 is bundled with three
Chinese input apps, namely, Baidu Input, IflyTek Input and Sogou
Input. Both OnePlus 9R and Realme Q3 Pro preinstall Baidu Map as a
foreground navigation app but also load the AMap package, which
is continuously running in the background. News, video streaming
and online shopping apps are bundled with all the CN firmware. It
is notable that substantially fewer third-party apps are preinstalled
in the Redmi (Global) and Realme (Global) OS distributions.

Key findings: Product bundling in CN firmware is more extensive
than in global firmware, and the CN firmware preinstalls multiple
applications of the same type.

Q2. How many permissions are requested by system ser-
vices and preinstalled third-party apps?

We can see from Table 1 that the Android packages and vendor
packages in the CN distribution request roughly the same number
of permissions as those in the Global distribution. It can also be
seen that the permissions requested by vendor packages are more
than twice as many as those requested by Android packages. A
previous study [35] found that more than 80% of preloaded vendor
packages are over-privileged, which is consistent with our ownmea-
surements. For example, the package for fingerprint authentication
com.goodix.fingerprint requires permission to access Cal-
endar, Camera, Contact, Call log and Audio recording. This appears
to be a common feature across different firmware.

On the other hand, third-party packages preinstalled in all the
handsets with CN distributions request many more permissions
on average than Global distributions. The reason, apart from over-
privileging, may be that the bundled apps request a number of per-
missions declared by different phone manufacturers to ensure maxi-
mal compatibility of the apps. For example,com.taobao.taobao
on OnePlus and Realme request permissions declared by Meizu,

Google, Samsung, Vivo and Huawei, although this package is in-
stalled in ColorOS. We include a detailed list of all the requested
permissions and their frequency in Appendix A.

Given that some custom permissions declared by different ven-
dors serve the same purpose and could be potentially distracting,
we take a closer look into the so-called dangerous ones, as defined in
the official Android documentation [3] and which require runtime
consent from users by default. In Figure 2 we plot the Empirical Cu-
mulative Distribution Function (ECDF) of the number of requested
dangerous permissions with respect to each type of preinstalled
packages. A common observation in the first four subplots is a
surge in the ‘vendor’ curve at 𝑥 ∼ 20 from ∼ 0.75 to 1, meaning that
25% of the vendor packages request around 20 runtime permissions.
An exception is Realme (Global) which has a version of mobile
OS (realme UI v1.0) that is older than the Realme (CN) (realme
UI v2.0), and package over-privilege seems more prevalent. Third-
party packages on CN firmware also follow a similar pattern in that
around 10% of them ask for no dangerous permissions, while the
rest varies within 20 permissions. However, third-party packages
on Global firmware request many fewer dangerous permissions,
with 60% on Redmi Global and 50% on Realme Global not using any
dangerous permissions.

Keyfindings: Vendor packages are over-privileged in both the CN
and Global distributions. In CN distributions, pre-installed third-
party apps ask for a significantly larger collection of permissions,
including dangerous permissions, than in Global distributions.

Q3. Do handset manufacturers grant dangerous (runtime)
permissions by default to preinstalled third-party packages?

The number of requested permissions, to some extent, reflects
the privacy awareness of app developers, but it is not necessarily an
indicator of the privacy awareness of phone manufacturers. To con-
firm the latter, we also studywhether runtime permissions would be
granted to preinstalled third-party apps by default, without user in-
teractions, which is under the control of the vendor. Note that third-
party apps which circumvent permission systems on their own are
not in the scope of our analysis, while interested readers can refer
to [25]. We factory reset each handset to ensure that no user inter-
action is made with any applications, and then monitor the runtime
permissions of each package via dumpsys. In Figure 3, we report
the third-party apps that are granted runtime permissions by de-
fault, and the number of runtime permissions granted on each hand-
set. It can be seen that com.tencent.soter.soterserver,
an authentication package for WeChat Pay [29], is installed on
all of the handsets and is automatically granted more than 17

Conference’17, July 2017, Washington, DC, USA Haoyu Liu, Douglas J. Leith, & Paul Patras

Redmi

OnePlus

Realme (Global)

Realme

Redmi (Global)

com.factory.mmigroup
com.mobiletools.systemhelper

org.ifaa.aidl.manager
com.xunmeng.pinduoduo

com.tencent.soter.soterserver
com.mobiletools.systemhelper

com.finshell.wallet
com.tencent.soter.soterserver
com.amap.android.location

com.finshell.wallet
com.tencent.soter.soterserver
com.amap.android.location

com.tencent.soter.soterserver
com.dropboxchmod

com.tencent.soter.soterserver

REA
D_C

ALL
_LO

G

ACC
ESS

_CO
ARS

E_L
OC

ATI
ON

REC
OR

D_A
UD
IO

WR
ITE

_CO
NTA

CTS

ACC
ESS

_FI
NE_

LOC
ATI

ON

WR
ITE

_CA
LL_

LOG

REA
D_S

MS

REC
EIV

E_W
AP_

PUS
H

ACC
ESS

_ME
DIA

_LO
CAT

ION

PRO
CES

S_O
UTG

OIN
G_C

ALL
S

ACC
ESS

_BA
CKG

RO
UN
D_L

OC
ATI

ON

GE
T_A

CC
OU

NTS

REA
D_C

ON
TAC

TS

SEN
D_S

MS

CAM
ERA

CAL
L_P

HO
NE

REA
D_E

XTE
RN
AL_

STO
RAG

E

REC
EIV

E_S
MS

WR
ITE

_EX
TER

NAL
_ST

OR
AG
E

ACC
ESS

_BL
E_S

ETT
ING

S

ACT
IVIT

Y_R
ECO

GN
ITIO

N

WR
ITE

_CA
LEN

DAR

REA
D_C

ALE
ND
AR

REA
D_P

HO
NE_

NU
MB

ERS

REA
D_C

ELL
_BR

OA
DC
AST

S

Figure 3: Diagram showing the runtime permissions granted by default to third-party packages by each handset.

runtime permissions, including access to location, recording au-
dio, reading SMS and using the camera. A payment authentica-
tion module may use such permissions to verify user identity
and receive one-time tokens. However, a range of seemingly un-
necessary permissions are also granted by the handsets, includ-
ing reading/writing call logs and reading the list of contacts. The
org.ifaa.aidl.manager app is an equivalent for Alipay (an-
other popular electronic payment system in China). Moreover,
on OnePlus and Realme, the com.amap.android.location
(Amap) app is permitted to access background location without user
consent, and in our analysis in Section 6.2, we find that this pack-
age transmits GPS coordinates periodically to the relevant backend
server. com.mobiletools. systemhelper is a China Uni-
com device-registration SDK, which is also permitted to access in
the background the location of the handsets. Our traffic analysis in
Section 6.2 further reveals that a range of PII is transmitted by this
package after factory reset.

Key findings: Third-party packages are granted dangerous per-
missions by default, without the need for user interactions, result-
ing in user privacy exposure risks. The user is not informed and
so may be completely unaware of this.

6.2 Code Instrumentation & Traffic Analysis
We adopt a collection of techniques, including apk reverse engi-
neering and dynamic runtime hooking, to aid in our analysis of
the contents of the collected network traffic traces. Although most
HTTP requests are on top of the TLS layer, we identify that an extra
layer of content encryption/encoding is often applied when PII is
uploaded to a backend server. Some HTTP requests would embed
the name of the package in headers or queries, which allows us to
pinpoint the source APK files and figure out the applied encryption
algorithm via decompiling. However, it is also common to see HTTP
requests with only a minimal set of headers and everything else en-
crypted. In cases where this type of requests occur, such as factory
reset or opening an app, we log them and configure mitmproxy to
delay these requests for 20 seconds. We then trigger the handset

to generate those requests again. Once they are observed and de-
layed on the proxy server side, we run exhaustive search in all the
/proc/<pid>/net/tcp6 files, which record the socket usage
of each process, including source and destination IP addresses, and
the UID of the connection-initiating package. After repeating the
procedure on all the HTTPS requests with unreadable contents, we
uncover a few data encryption routines that the app developers
tend to use in practice, as summarized below. Every TCP connec-
tion can be thus attributed to an app by associating the UID with
an (IP, port) pair. We note that while it is theoretically feasible to
transmit covert messages in DNS requests, in practice such requests
may never reach the DNS servers hosted by app owners, due to the
hierarchical DNS resolution architecture in the network.

Symmetric Encryption. We identify a large number of packages
that apply AES encryption algorithms when uploading PII, by de-
compiling the associated APK files. For example, com.coloros.
weather on Realme and OnePlus encrypts GPS coordinates and
PII by AES (CTR mode), and concatenates the key and the initializa-
tion vector at the end of the ciphertext.com.nearme.romupdate
also appends AES keys at the end when querying system update in-
formation. On the other hand, com.ted.number, China Unicom
SDK,com.nearme.instant.platform andcom.android.
updater (Xiaomi) hardcode AES keys in the package, which are
used to encrypt POST contents of a range of HTTP requests. For
these packages using symmetric encryption algorithms, as long as
we acquire the AES keys, the contents can be easily decrypted.

However, an exception is com.amap.android.location
which encapsulates encryption/decryption algorithm in a precom-
piled JNI library. Instead of getting the keys, we have to hook the
plaintext before encryption during runtime, for which we utilize
Frida and Riru/EdXposed. Frida [13] is a dynamic code instrumen-
tation tool that has full access to the memory and injects Javascript
code into the target process on Android, allowing users to hook
variables and function calls during runtime. However, it is not pos-
sible to spawn an Android process that has no foreground activity,
meaning that hooking the variables created right after a process is
started can be difficult. An alternative is using Riru/EdXposed. Riru
[27] injects code into Zygote which is a special process handling

Android OS Privacy Under the Loupe – A Tale from the East Conference’17, July 2017, Washington, DC, USA

PII type Re
dm

i

O
ne
Pl
us

Re
al
m
e

Re
dm

i
(G
lo
ba
l)

Re
al
m
e

(G
lo
ba
l)

Device
specific

IMEI ✓ ✓ ✓ ✓ ✓

temporary IDs ✓ ✓ ✓ ✓ ✓

installed apps ✓ ✓ ✓ ✓ ✓

OS version ✓ ✓ ✓ ✓ ✓

hardware info ✓ ✓ ✓ ✓ ✓

Geo-
locaiton

MCC ✓ ✓ ✓ ✓

MNC ✓ ✓ ✓ ✓

CID ✓ ✓ ✓

LAC ✓ ✓ ✓

GPS ✓ ✓ ✓

connected Wi-Fi ✓ ✓ ✓ ✓

nearby Wi-Fi ✓ ✓ ✓

User
profile

phone number ✓ ✓ ✓

IMSI ✓ ✓ ✓

ICCID ✓ ✓

app usage ✓ ✓ ✓ ✓

Social
relationship

SMS history ✓ ✓

call history ✓ ✓

Table 2: Specific types of PII uploaded by each handset. ‘Tem-
porary ID’ represents IDs created by vendor packages or OS,
which would change after factory reset.
the forking of every new Android app, and EdXposed [1] is an
Riru module that provides universal hooking APIs. This framework
is able to inject code into the app at the very beginning when it
is forked from Zygote, thereby providing better control of code
instrumentation than Frida. In this work we use Frida 15.2.2, Riru
25.4.4 and EdXposed 0.5.2.2.

Asymmetric Encryption. Asymmetric encryption is involved in a
small number of packages, such ascom.mobiletools.system
helper (China Unicom SDK), when uploading private information.
Specifically, the package contains a hardcoded RSA public key, and
each HTTP request contains the ciphertext encrypted with an AES
key and also the RSA-encrypted AES key. Since the RSA private
key is stored on the backend server, we have to utilize Frida to hook
runtime plaintext before it gets encrypted. A few Xiaomi packages
adopt similar routines while uploading app telemetry.

Q4. Which type of personally identifiable information (PII)
is uploaded to backend servers?

We classify important PII into four categories and in Table 2
present which specific identifiers or information is actually shared.

Device-specific PII. It appears that the handsets studied routinely
upload device-specific PII, regardless of brand and firmware. In-
stalled applications and the version of Android OS is posted pe-
riodically to check for updates. Hardware information, including
phone model, CPU brand and screen size are also posted to the
backend servers. Besides, persistent identifiers, such as IMEI, and
resettable identifiers, including VAID, OAID and Android ID, are
embedded in a number of requests for device registration, teleme-
try, checking for updates, etc. However, we notice that the mobile

devices with the global version of firmware only transmit the IMEI
to the vendor, while those with CN version also upload the IMEI
to China Unicom (dm.wo.com.cn) and China Mobile (a.fxltsbl.com)
for registration after factory reset and when a SIM card is in-
serted, despite the handsets not having a contract with any of
these communication service providers. A quick search reveals
that the URLs correspond to the device management platforms
for the mobile operators, and apparently any Android device in
China Mobile’s product library (including non-contract phones)
should support the SDK for device management. Although we did
not find the official regulation file, the SDK is installed on all the
devices with CN firmware, named com.miui.dmregservice
on Xiaomi and com.coloros.regservice on OnePlus and
Realme. Different from China Unicom, the China Mobile SDK
also collects and uploads the installed package list in a request
to https://a.fxltsbl.com/accept/sdkService, for unknown purpose.

Despite the same start-up configuration on Redmi and Redmi
(Global) described in Section 5, we discover in the payload to api.
ad.xiaomi.com that the handsets have different system advertising
configuration:

1 POST https://api.ad.xiaomi.com/brand/pushConfig
2 clientInfo={...{"locale":"zh_CN","language":"zh","
country":"CN","isPersonalizedAdEnabled":true,...}}

3
4 POST https://api.ad.intl.xiaomi.com/brand/pushConfig
5 clientInfo={...,{"locale":"en_US","language":"en","
country":"IE""isPersonalizedAdEnabled":false..}}

That said, this feature cannot be controlled by opting out of ‘Send
Usage Data’ or ‘User Experience Program’, but this is an inherent
difference between the CN and Gloabl firmware. It is still unclear
how this option would impact advertising behaviors though, which
is a decision to be taken at the backend side.

Geolocation PII. Device-related PII are posted to backend servers
regardless of firmware, butwe find that the uploading of geolocation-
related PII appears substantially different between the global and
CN fimware. For Realme (Global), only the MCC and MNC are
uploaded to confe.dc.oppomobile.com, which allows the server
to confirm the country and the mobile operator in use. Redmi
(Global) sends the connected Wi-Fi SSID and MAC address to
tracking.intl.miui.com, which leaks user coarse location if the server
maintains a database with Wi-Fi access point information.1

However, for handsets with CN firmware, traffic analysis reveals
that the full range of the geolocation-related PII is uploaded, and to
a range of recipients. The MCC, MNC, CID and LAC are transmitted
to China Mobile and Unicom when a SIM card is inserted. By using
the CID and LAC, these Chinese mobile operators can therefore
easily infer coarse user location. A notable fact in Table 2 is that
the three handsets with CN firmware also upload GPS coordinates.
This happens even for the Redmi handset for which we chose to
disable location during device startup following factory reset (the
OnePlus and Realme handsets do not offer this option and have
location service turned once the devices are started).

Both theOnePlus and Realme handsets have thecom.coloros.
weather.service and com.amap.android d.location
apps preinstalled, which are granted theACCESS_BACKGROUND_L

13WiFi: open database ofWi-Fi Access Points passwords https://miloserdov.org/?p=746

dm.wo.com.cn
a.fxltsbl.com
https://a.fxltsbl.com/accept/sdkService
api.ad.xiaomi.com
api.ad.xiaomi.com
confe.dc.oppomobile.com
tracking.intl.miui.com
https://miloserdov.org/?p=746

Conference’17, July 2017, Washington, DC, USA Haoyu Liu, Douglas J. Leith, & Paul Patras

-OCATION permission by default, and upload the current GPS loca-
tion periodically.

The weather app makes the following request:

1 POST https://i6.weather.oppomobile.com/weather/
location/v0/sdk?appId=app-weather&authCode=3357..

2 { 'latitude': <anonymized>,'language': 'ZH-CN', '
longitude': <anonymized>,'vaid': '63..5B', 'oaid':..}

in which latitude and longitude are populated with encrypted GPS
location and the associated AES keys. The request contains iden-
tifiers (OAID and VAID), which can be combined with data from
other connections to identify the individual handset, and is sent to
an Oppo server approximately 5 times per day. AMap encapsulates
the encryption algorithm in a JNI library, and sends the ciphertext
in the following message:

1 POST http://apsrgeo.amap.com/rgeo/r?q=1&language=cn
2 {"data":"...<latitude><anonymized><\/latitude><
longitude><anonymized><\/longitude>..."}

The connections to this domain are recorded 13 times a day, with
an ID adiu associated, allowing Amap’s server to analyze the user’s
location over time. Moreover, AMap also transmits the LAC, CID,
the connected Wi-Fi MAC and SSID, as well as nearby Wi-Fi MACs
and SSIDs in the request shown below:

1 POST http://aps.amap.com/APS/r?ver=5.1&q=0&csid=d6...
2 {"mcc":<anonymized>,"mnc":<anonymized>,"lac":<
anonymized>,"cid":<anonymized>,"wifiStatus":{...,"
mainWifi":{"mac":"<anonymized>","ssid":"\"
androidprivacy\"

3 ", "wifiList":[{"mac":"<anonymized>","ssid
4 ":"Xiaomi_8DEE",...}...]}

where androidprivacy is the Wi-Fi network we deployed for traffic
collection purposes and Xiaomi_8DEE is a nearby WiFi. Note that
the actual payload is encrypted and posted in a compact format, in
which only the values are populated in a byte array.

In addition, the com.coloros.wifisecuredetect app
on the OnePlus and Realme handset transmits the connected Wi-Fi
SSID and MAC address to log.avlyun.com.

1 POST https://log.avlyun.com/logupload?channel=
coloros_wifi&pkg=com.coloros.wifisecuredetect

2 #SYSINFO;{"kernel_version":"","name":"OnePlus9R_CH","
security_patch":"2021-03-05","sdk":"30","incremental
":"1618459936301","base_os":"","platform":"kona","
manufacturer":"OnePlus"}

3 #WIFI;635eb9bf(timestamp in hex); androidprivacy (
wifi name);<anonymized> (Mac address);PSK;;;...

The Redmi handset does not grant runtime permissions to the
map and weather apps by default, but allows system services to
access location information in the background after startup. The
com.miui.analytics system app sends the MCC, MNC, GPS
coordinates and nearby Wi-Fi access point to https://tracking.miui.
com/track/v4 as shown below:

1 POST https://tracking.miui.com/track/v4
2 {"radio": "<anonymized>", // MCC+MNC
3 "loc": "{\"w\":\"<anonymized_MAC_addr>,
androidprivacy,-37,5500\",...\"wl\":[\"<
anonymized_MAC_addr>,Xiaomi_8DEE,-31,2422\",...,\"
lat\":<anonymized>,\"lng\":<anonymized>}

and com.xiaomi.metoknlp encrypts and transmits the GPS
coordinates to Baidu Map API to retrieve street information:

1 GET https://api.map.baidu.com/geocoder/v2/?channel=nl
.1269e&coordtype=wgs84ll&&from=BaiduNLP&location=<
anonymized>

Both services run in the background. The former sends geolocation
PII right after a SIM card is inserted, while the latter is observed
once within the first 24 hours of leaving the device idle after factory
reset. Note however that we found no device/user identifiers in the
request to Baidu.

User profile PII. We group user phone number and ICCID (SIM
card identifier) as a part of user profile information because every
phone number in China is registered under a citizen ID, thus func-
tions as a semi-persistent identifier of the user. Due to the existence
of China Unicom SDK on Redmi and OnePlus, phone number, IMSI
and ICCID are transmitted within the first 10 minutes after fac-
tory reset. The Phone and Message apps on OnePlus and Realme
would send contact information when receiving text/calls, which
is intended for “recognizing unknown number”, but also leaks app
usage information because of the timestamp and call duration in
such requests, as detailed in what follows.

On the other hand, Redmi collects app usage data from a much
broader range with greater level of detail. We uncover that Redmi
posts requests to tracking.miui.com/track/v4 when the preinstalled
Settings, Note, Recorder, Phone, Message and Camera apps are
opened and used. The app’s first launch time, usage start time, end
time, and the timestamps when accessing some Android activities,
such as WifiProvisionSettingsActivity, NotesList Activity, EditAc-
tivity and Camera, are uploaded. If the user is accessing preinstalled
Xiaomi apps consecutively, telemetry would be logged frequently,
resulting in a chain of actions that the user conducts. A snippet of
the relevant request is shown below:

1 POST https://tracking.miui.com/track/v4
2 { "imsis": "[b2d5c6783e3fa6eef38ff1fc7dedfb10,]",..,
3 {"pkg": "com.xiaomi.smarthome","action": "
first_launch", "fit": 1666816796000, ...},

4 {"pkg": "com.android.settings","ts": 1666818456958,"
duration": 1424, ...},

5 {"pkg": "com.miui.securityinputmethod","ts":
1666818463544,"duration": 4706, ... },

6 {"pkg": "com.miui.notes","ts": 1666818784908,"stat":
"app_start",...}...}

This type of telemetry is not affected by opting out of ‘Send Usage
and Diagnositic Data’ during start-up.

It was previously reported that Redmi (Global) also collects IMSI
and app telemetry, but the other user profile PII seen above are not
transmitted from Redmi (Global) and Realme (Global) [18].

Social relationships PII. The preinstalled Phone (com.ted.numb
er) and Message (com.android.mms) apps on OnePlus and
Realme not only transmit user’s phone number, but also send the
other party’s phone number with the duration when making/re-
ceiving a phone call or sending/receiving a text message. A typical
request generated with a phone call is shown below:

1 POST https://sms.ads.heytapmobi.com/new/v5/phone
2 {"header":{.."p7":"user-phone-number",...,"data":{"
phone":"caller-number","dialNumber":"
caller-number",...,"duration":15,"contact":-1,"
ringtime":0,"lasttime":-1}}

log.avlyun.com
https://tracking.miui.com/track/v4
https://tracking.miui.com/track/v4
tracking.miui.com/track/v4

Android OS Privacy Under the Loupe – A Tale from the East Conference’17, July 2017, Washington, DC, USA

in which call duration, ring time, last contact time and whether the
caller is in the contact is posted to the backend server. This type of
PII not only helps the vendors to identify individual users, but also
leaks users’ social relationships. For the group of population who
are inclined towards these brands, manufacturers can even build
a connection map among them on the backend side, and infer the
social relationships between users who are not directly connected.

Key findings: CN OS distributions transmits a much larger range
of PII to backend servers than Global distribution do, despite the
fact that they are developed by the same companies. This is fa-
cilitated by 1) the granting of dangerous permissions to some
pre-installed apps by default; and 2) a number of preloaded third-
party apps being allowed to run continuously in the background.

Q5. Is the user notified about the transmission of PII re-
garding geolocation, user profile and social relationships?

During device start-up following factory reset, each handset may
present the user with information on the permissions used and data
collected by preinstalled apps. Also, the first time an app is opened
the terms and conditions of the specific app may be shown, and
permissions may be asked. Having observed the data actually sent
from each handset, we now revisit the information provided to
users to check whether this matches the actual data transmission
we observe.

Xiaomi. The following system apps transmit geolocation and
user profile PII:

1) com.miui.anlaytics: The statement in the startup page
shows that Analytics would use location service and transmits
the IMSI. “If you don’t agree to grant such permissions ... You can
choose not to use this feature in such cases.” However, no option is
given to restrict the permissions of this app and this app cannot be
managed in Settings > Apps.

2) com.xiaomi.metoknlp: We did not find any relevant
statement for this app, which is grantedACCESS_BACKGROUND_L-
OCATION and posts GPS coordinates to the Baidu Map API.

3) com.mobiletools.systemhelper: This app embeds
the China Unicom SDK. A statement on carrier services gives the
types of information (including coordinates) to be collected.

4) com.miui.regservice: This embeds the China Mobile
SDK. Similarly to the above, a statement on carrier services de-
tails the types of information (including coordinates) that will be
collected by China Mobile.

A shared feature of these statements is that the user is presented
with a ‘take-it-or-leave-it’ choice by the vendor and mobile opera-
tors together, and the user is unable to fully control the permissions
of preinstalled packages. For example, if the user would like to
avoid GPS coordinates being uploaded, the only option is to turn
Location off in ‘Settings’, which applies to all apps and so likely to
cause significant inconvenience. Note also that when starting the
Redmi handset we chose to disable Location, but we found that the
location service is still running once we enter the system.

IMEI

a.fxltsbl.com

data.mistat.xiaomi.com

update.miui.com

tracking.miui.com

api.ad.xiaomi.com

diagnosis.ad.xiaomi.com

dm.wo.com.cn

port.sec.miui.com

moa-upload-online.coloros.com

dragate.dc.oppomobile.com

sms.ads.heytapmobi.com
MCC+MNC
IMSI

WiFi
app usage

CID
LAC

GPS

api.map.baidu.com

apsrgeo.amap.com

i6.weather.oppomobile.com

phone numbers data.sms.heytapmobi.com

contact history
sms history

Beijing

Guangzhou

Xi’an

Nanjing

Hangzhou

Shenzhen

Figure 4: Sankey Diagram of important PII collected by
the handsets running CN firmware and by what package/to
what location it is being sent.

OnePlus & Realme. Since both handsets are shipped with Color-
OS, PII transmission on these devices share a large degree of sim-
ilarity. The following apps transmit geolocation, user profile and
social relationships-related PII:

1)com.coloros.weather.service: The statement on the
startup page shows that “during your use of the ‘Weather Ser-
vice’ [...], we need to use your location information”. However, the
Weather app is never opened during our data collection campaign.

2) com.amap.android.location: We did not find any rel-
evant statement for this app to access location information.

3) com.ted.number: When opening the Phone app for the
first time, the user is asked to agree to terms, including permissions
to read call logs to identify unknown numbers. However, the user
is not offered the option to decline these terms.

4) com.android.mms: The above situation also applies to the
Message app.

5) com.coloros.regservice: This embeds the China Mo-
bile SDK. The startup statement informs users that this package has
the permission to access location information and would regularly
upload PII to the backend server.

6)com.mobiletools.systemhelper (OnePlus only): This
package embeds the China Unicom SDK. A statement about the
carrier’s term of service details the information to be collected.

Compared with Xiaomi, we find that OnePlus and Realme are
even less transparent about the use of location information. It
should be noted that theWeather Service andWeather are two differ-
ent packages, in which the former hasACCESS_BACKGROUND_LO-
CATION granted by default and runs in the background, and thereby
we can observe coordinates being uploaded. However, if the user
checks the permission status of Weather in Settings > Permission
Manager, access to location information is never granted because
it is the Weather Service that has the runtime permission. Other
packages also trap users in a “take-it-or-leave-it” situation, where
a ‘decline’ button is not provided.

Key finding: In general, the user is not notified about the trans-
mission of important PII or is not given the option to reject such
transmissions when being notified.

Q6. Who collects PII and where are they located?

Conference’17, July 2017, Washington, DC, USA Haoyu Liu, Douglas J. Leith, & Paul Patras

Figure 4 and Figure 5 visualize, respectively, the PII collection in
the CN and Global distributions. For the same device setup after
factory reset, it can be clearly seen that the handsets running CN
firmware collect a wider range of PII and transmit to more end-
points owned not only by phone vendors but also by third-party
domains, in which the IMEI is the most frequently collected persis-
tent identifier. The AMap system app on the Realme and Oneplus
handsets regularly transmits GPS coordinates when the devices
are idle, ranking the second in Figure 4. On handsets running CN
firmware, the phone vendors, weather and navigation providers
and mobile operators all collect important PII in the background.
It is not surprising to see that all of the servers associated with
the endpoints are located in China, since the China Data Protec-
tion Law explicitly restricts personal data from being transferred
abroad without administrative consent. For handsets running the
Global firmware, the IMEI is also the most frequently transmitted
persistent identifier, followed by telemetry data collected by the
Redmi Global firmware. However, we do not find that any pre-
installed third-party apps collecting geolocation, user profiles or
social-relationship PII. It should be noted that the measurement
traces for the Redmi Global firmware were collected one year ago
when DNS resolution of Xiaomi’s domain pointed to IP addresses
in Singapore, which may be different from newer DNS records.

Key finding: Important PII transmitted by CN firmware reaches
many third-party domains, whereas this is not witnessed with
Global firmware.

7 RELATEDWORK
Android Customization Analysis. Previous work on Android cus-

tomization analysis mainly focuses on the security side [2]. It was
shown that vulnerable security configurations exist at a large scale
in custom Android firmware, and these may potentially lead to a
series of privacy attacks, such as stealing emails and altering system
settings without proper permissions [2]. Wu et al. found that due
to vendor customization, more than 80% of pre-loaded packages
are over-privileged, some of which can be exploited for permission
re-delegation attack or privacy leaks [35]. The customization of
device drivers by Samsung is found to underpin various attacks,
including taking a photo or screenshot without permissions [38].

Privacy leak analysis through app monitoring: Mobile apps are
capable of accessing a series of PII with or without user permis-
sion. It can be extremely time-consuming to manually examine
which type of PII is accessed by each app, thus automated tools
come into play. PiOS analyzes control flow graphs of binary files
and examines the reachability of key PII for iOS applications [10].
FlowDroid proposes a static analysis method by taking the Android
Application life-cycle into consideration [4]. AppIntent studies if
the transmission of private data is intended by the users through
symbolic execution [36]. Taintdroid [11] marks (taints) sensitive
data and tracks the data flow during execution. However, these tools
face challenges when PII is obfuscated or encrypted. Continella et
al. [6] proposes a black-box method without the knowledge of app
source code to detect privacy leaks through differential analysis.

Traffic Analysis: It has been shown that a vast amount of PII
is directly embedded in queries, headers or post body of HTTP

IMEI

esa-reg-eup.myoppo.com

update.intl.miui.com

tracking.intl.miui.com

api.sec.intl.miui.com
data.sec.intl.miui.com

MCC+MNC confe.dc.oppomobile.com

IMSI

app usage

WiFi

Paris

Singapore

Figure 5: The Sankey Diagram of important PII collected by
the handsets with Global firmware.

requests. By using ISP traffic logs or self-collected datasets, numer-
ous mobile advertising and tracking services were uncovered, in
which persistent identifiers including IMEI, IMSI, MAC address
and advertising IDs are often transmitted [21, 24, 32, 33]. Note that
most of the services are hosted by third-party companies instead of
phone vendors. Ren et al. track the update of more than 500 apps
across 8 years and document the evolution of PII collection [26].
Further work examines over 500 apps in the Google Play Store and
shows that 76% of them collect and transmits PII insecurely and
34% send PII to third parties [16]. Privacy analyses have also been
conducted to compare over 5,000 free mobile apps with their paid
versions, demonstrating that paid apps are not necessarily more
privacy-aware than their free counterparts, with 34% exhibiting the
same data transmission behavior [15]. Moreover, a case study on
the Covid contact tracing apps was conducted recently, revealing
that the Google Play Services integrated in the apps would reg-
ularly contact Google servers, making it possible to track users’
location via the change of IP addresses [9]. It was reported that
both Google and Apple collect a number of PII including IMEI,
IMSI and telemetry. iOS devices also transmit nearby Wi-Fi MAC
addresses and GPS coordinates, which users cannot control [17].
Previous work analyzes the data collection of different Android de-
vices (Huawei, Xiaomi and Oppo) with global firmware [18], while
our study fills the gap of firmware differences across regions in
terms of PII collection.

8 CONCLUSION
In this work we study the Chinese version of the Android OS dis-
tributions run by Xiaomi, Realme, and OnePlus handsets. We mea-
sure the network traffic the handsets generate when in-use by a
privacy-aware consumer. We find that these devices come bun-
dled with a number of third-party applications, some of which are
granted dangerous runtime permissions by default without user
consent, and transmit traffic containing a broad range of geoloca-
tion, user-profile and social relationships PII to both phone vendors
and third-party domains, without notifying the user or offering the
choice to opt-out. In contrast, the data shared by the Global version
of the firmware is mostly limited to device-specific information.
Our study therefore highlights major differences in terms of how
privacy provisions are enforced in different regions.

ACKNOWLEDGMENTS
This material is based upon work partially supported by Arm Ltd
and Scotland’s Innovation Centre for sensing, imaging and Internet
of Things technologies (CENSIS).

REFERENCES
[1] EdXposed Framework. 2022. GitHub - ElderDrivers/EdXposed: Elder driver

Xposed Framework. https://github.com/ElderDrivers/EdXposed.

Android OS Privacy Under the Loupe – A Tale from the East Conference’17, July 2017, Washington, DC, USA

[2] Yousra Aafer, Xiao Zhang, and Wenliang Du. 2016. Harvesting Inconsistent
Security Configurations in Custom Android {ROMs} via Differential Analysis.
In 25th USENIX Security Symposium (USENIX Security 16). 1153–1168.

[3] Android Open Source Project. 2022. Android Permissions.
https://source.android.com/docs/core/permissions.

[4] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[5] Marco Cominelli, Francesco Gringoli, Paul Patras, Margus Lind, and Guevara
Noubir. 2020. Even black cats cannot stay hidden in the dark: Full-band de-
anonymization of bluetooth classic devices. In 2020 IEEE Symposium on Security
and Privacy (S&P). IEEE, 534–548.

[6] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puccetti,
Ali Zand, Christopher Kruegel, and Giovanni Vigna. 2017. Obfuscation-Resilient
Privacy Leak Detection for Mobile Apps Through Differential Analysis.. In NDSS,
Vol. 17. 10–14722.

[7] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. 2020.
mitmproxy: A free and open source interactive HTTPS proxy (v5.01). https:
//mitmproxy.org/

[8] Adriano Di Luzio, Alessandro Mei, and Julinda Stefa. 2017. Consensus robustness
and transaction de-anonymization in the ripple currency exchange system. In
IEEE International Conference on Distributed Computing Systems (ICDCS). 140–
150.

[9] Stephen Farrell Douglas Leith. 2021. Contact Tracing App Privacy: What Data Is
Shared By Europe’s GAEN Contact Tracing Apps. In Proc IEEE INFOCOM 2021.

[10] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna. 2011. PiOS:
Detecting Privacy Leaks in iOS Applications.. In NDSS. 177–183.

[11] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014),
1–29.

[12] European Parliament and Council of the European Union. 2016. Regulation on
the protection of natural persons with regard to the processing of personal data
and on the free movement of such data, and repealing Directive 95/46/EC (Data
Protection Directive).

[13] Frida. 2022. Dynamic instrumentation toolkit for developers, reverse-engineers,
and security researchers. https://frida.re/

[14] Government of Canada. 2021. Personal Information Protection and Electronic
Documents Act.

[15] Catherine Han, Irwin Reyes, Álvaro Feal, Joel Reardon, PrimalWijesekera, Narseo
Vallina-Rodriguez, Amit Elazar, Kenneth A Bamberger, and Serge Egelman. 2020.
The price is (not) right: Comparing privacy in free and paid apps. Proceedings on
Privacy Enhancing Technologies 2020, 3 (2020).

[16] Qiwei Jia, Lu Zhou, Huaxin Li, Ruoxu Yang, Suguo Du, and Haojin Zhu. 2019.
Who leaks my privacy: Towards automatic and association detection with gdpr
compliance. In International Conference on Wireless Algorithms, Systems, and
Applications. Springer, 137–148.

[17] Douglas Leith. 2021. Mobile Handset Privacy: Measuring The Data iOS and
Android Send to Apple And Google. In Proc SECURECOM.

[18] Haoyu Liu, Paul Patras, and Douglas J Leith. 2023. On the data privacy practices
of Android OEMs. PloS one 18, 1 (2023), e0279942.

[19] New York Times. 2021. The State of Consumer Data Privacy Laws in the US (And
Why It Matters).

[20] Newzoo. 2021. Top Countries by Smartphone Users.
https://newzoo.com/insights/rankings/top-countries-by-smartphone-
penetration-and-users.

[21] Trung Tin Nguyen, Michael Backes, Ninja Marnau, and Ben Stock. 2021. Share
First, Ask Later (or Never?) Studying Violations of {GDPR’s} Explicit Consent

in Android Apps. In 30th USENIX Security Symposium (USENIX Security 21).
3667–3684.

[22] Personal Information Protection Commission Japan. 2020. Act on the Protection
of Personal Information.

[23] Presidencia da Republica Federativa do Brasil. 2020. Lei Geral de Protecao de
Dados Pessoais.

[24] A Razaghpanah, R Nithyanand, N Vallina-Rodriguez, and S Sundaresan. 2018.
Apps, Trackers, Privacy, and Regulators: A Global Study of the Mobile Tracking
Ecosystem. In Network and Distributed System Security Symposium (NDSS).

[25] Joel Reardon, Álvaro Feal, PrimalWijesekera, Amit Elazari Bar On, Narseo Vallina-
Rodriguez, and Serge Egelman. 2019. 50 ways to leak your data: An exploration of
apps’ circumvention of the android permissions system. In 28th USENIX Security
Symposium.

[26] Jingjing Ren, Martina Lindorfer, Daniel J Dubois, Ashwin Rao, David Choffnes,
Narseo Vallina-Rodriguez, et al. 2018. Bug fixes, improvements,... and privacy
leaks. In The 25th Annual Network and Distributed System Security Symposium
(NDSS 2018).

[27] RikkaApps. 2022. GitHub - RikkaApps/Riru: Inject into zygote process.
https://github.com/RikkaApps/Riru.

[28] Statcounter. 2022. Mobile Operating System Market Share in China - October
2022. https://gs.statcounter.com/os-market-share/mobile/china.

[29] Tencent. 2022. GitHub - Tencent/soter: A secure and quick biometric authentica-
tion standard and platform in Android held by Tencent.

[30] The National People’s Congress of the People’s Republic of China. 2021.
Personal Information Protection Law of the People’s Republic of China.
http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm.

[31] topjohnwu. 2022. GitHub - topjohnwu/Magisk: The Magic Mask for Android.
https://github.com/topjohnwu/Magisk.

[32] Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore, Yan Grunenberger,
Konstantina Papagiannaki, Hamed Haddadi, and Jon Crowcroft. 2012. Breaking
for commercials: characterizing mobile advertising. In Proceedings of the 2012
Internet measurement conference. 343–356.

[33] Zhaohua Wang, Zhenyu Li, Minhui Xue, and Gareth Tyson. 2020. Exploring the
eastern frontier: A first look at mobile app tracking in china. In International
Conference on Passive and Active Network Measurement. Springer, 314–328.

[34] Wikipedia. 2022. International Mobile Equipment Identity. https://en.wikipedia.
org/wiki/International_Mobile_Equipment_Identity.

[35] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. 2013. The
impact of vendor customizations on android security. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. 623–634.

[36] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X Sean Wang.
2013. Appintent: Analyzing sensitive data transmission in android for privacy
leakage detection. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security. 1043–1054.

[37] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger (Peng) Yu, and Martin Abadi. 2012.
Host Fingerprinting and Tracking on the Web:Privacy and Security Implications.
In Network and Distributed System Security Symposium (NDSS).

[38] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng
Wang. 2014. The peril of fragmentation: Security hazards in android device driver
customizations. In 2014 IEEE Symposium on Security and Privacy. IEEE, 409–423.

A APPENDIX
The list of permissions requested by third-party packages are sum-
marized in Table 3 and 4. The number at the end of each entry
denotes the average times that this permission is requested by
third-party packages per handset. Table 3 only shows a subset of
permissions which occur over 7 times on average.

https://mitmproxy.org/
https://mitmproxy.org/
https://frida.re/
https://en.wikipedia.org/wiki/International_Mobile_Equipment_Identity
https://en.wikipedia.org/wiki/International_Mobile_Equipment_Identity

Conference’17, July 2017, Washington, DC, USA Haoyu Liu, Douglas J. Leith, & Paul Patras

permission permission
android.permission.INTERNET (26.7) android.permission.ACCESS_NETWORK_STATE (26.7)
android.permission.READ_EXTERNAL_STORAGE (25.7) android.permission.ACCESS_WIFI_STATE (25.3)
android.permission.WRITE_EXTERNAL_STORAGE (25.0) android.permission.READ_PHONE_STATE (24.7)
android.permission.VIBRATE (23.0) android.permission.WAKE_LOCK (22.7)
android.permission.REQUEST_INSTALL_PACKAGES (22.0) android.permission.ACCESS_FINE_LOCATION (21.7)
android.permission.ACCESS_COARSE_LOCATION (21.7) android.permission.CAMERA (21.7)
android.permission.GET_TASKS (21.3) android.permission.CHANGE_NETWORK_STATE (21.0)
android.permission.RECORD_AUDIO (21.0) android.permission.CHANGE_WIFI_STATE (20.3)
com.android.launcher.permission.INSTALL_SHORTCUT (19.3) android.permission.FOREGROUND_SERVICE (19.3)
android.permission.SYSTEM_ALERT_WINDOW (19.3) android.permission.WRITE_SETTINGS (18.0)
android.permission.BLUETOOTH (17.7) com.coloros.mcs.permission.RECIEVE_MCS_MESSAGE (17.0)
android.permission.MODIFY_AUDIO_SETTINGS (16.7) com.android.launcher.permission.READ_SETTINGS (15.7)
android.permission.RECEIVE_BOOT_COMPLETED (15.0) android.permission.READ_CONTACTS (15.0)
com.android.launcher.permission.UNINSTALL_SHORTCUT (14.3) android.permission.FLASHLIGHT (13.7)
android.permission.READ_LOGS (13.3) com.huawei.android.launcher.permission.CHANGE_BADGE (13.0)
android.permission.MOUNT_UNMOUNT_FILESYSTEMS (12.7) com.oppo.launcher.permission.READ_SETTINGS (12.3)
android.permission.USE_FINGERPRINT (12.0) android.permission.REORDER_TASKS (11.7)
com.htc.launcher.permission.READ_SETTINGS (11.3) com.huawei.android.launcher.permission.READ_SETTINGS (11.0)
android.permission.USE_CREDENTIALS (11.0) com.oppo.launcher.permission.WRITE_SETTINGS (10.7)
android.permission.BLUETOOTH_ADMIN (10.7) android.permission.EXPAND_STATUS_BAR (10.3)
com.huawei.android.launcher.permission.WRITE_SETTINGS (10.0) android.permission.WRITE_CALENDAR (10.0)
android.permission.GET_ACCOUNTS (10.0) com.meizu.flyme.push.permission.RECEIVE (9.7)
com.meizu.c2dm.permission.RECEIVE (9.7) android.permission.MANAGE_ACCOUNTS (9.7)
com.heytap.mcs.permission.RECIEVE_MCS_MESSAGE (9.3) android.permission.CHANGE_WIFI_MULTICAST_STATE (9.3)
com.sec.android.provider.badge.permission.WRITE (9.3) com.sec.android.provider.badge.permission.READ (9.3)
com.vivo.notification.permission.BADGE_ICON (9.3) android.permission.AUTHENTICATE_ACCOUNTS (9.3)
android.permission.READ_CALENDAR (9.0) com.sonyericsson.home.permission.BROADCAST_BADGE (9.0)
com.android.launcher.permission.WRITE_SETTINGS (8.7) android.permission.WRITE_SYNC_SETTINGS (8.0)
android.permission.BROADCAST_STICKY (8.0) com.android.launcher3.permission.READ_SETTINGS (8.0)
com.bbk.launcher2.permission.READ_SETTINGS (8.0) com.htc.launcher.permission.UPDATE_SHORTCUT (7.7)
android.permission.DISABLE_KEYGUARD (7.0) com.sonymobile.home.permission.PROVIDER_INSERT_BADGE (7.0)
android.permission.ACCESS_LOCATION_EXTRA_COMMANDS (7.0)

Table 3: The most frequently requested permissions by preinstalled third-party packages in the CN firmware.

permission permission
android.permission.ACCESS_NETWORK_STATE (3.3) android.permission.INTERNET (3.3)
android.permission.WAKE_LOCK (2.7) android.permission.RECEIVE_BOOT_COMPLETED (2.7)
android.permission.READ_EXTERNAL_STORAGE (2.3) android.permission.ACCESS_WIFI_STATE (2.3)
android.permission.WRITE_EXTERNAL_STORAGE (2.0) android.permission.READ_PHONE_STATE (1.3)
com.google.android.c2dm.permission.RECEIVE (1.3) android.permission.FOREGROUND_SERVICE (1.3)
android.permission.VIBRATE (1.0) com.google.android.finsky.permission.BIND_GET_INSTALL_REFERRER_SERVICE (1.0)
android.permission.REQUEST_INSTALL_PACKAGES (1.0) android.permission.ACCESS_MEDIA_LOCATION (1.0)
android.permission.GET_TASKS (1.0) android.permission.INSTALL_PACKAGES (1.0)

Table 4: The requested permissions by preinstalled third-party packages in the Global firmware.

	Abstract
	1 Introduction
	2 Threat Model
	3 Ethical Statement
	4 Environment Setup
	4.1 Wi-Fi Connection & Traffic Tunneling
	4.2 Man-in-the-Middle Proxy

	5 Datasets
	5.1 Experiment Design
	5.2 Limitations
	5.3 Additional Material: Connection Data

	6 Results and Analysis
	6.1 Static Analysis
	6.2 Code Instrumentation & Traffic Analysis

	7 Related Work
	8 Conclusion
	References
	A Appendix

