

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Impacts of relative permeability hysteresis, wettability, and injection/withdrawal schemes on underground hydrogen storage in saline aquifers

Citation for published version:

Pan, B, Liu, K, Ren, B, Zhang, M, Ju, Y, Gu, J, Zhang, X, Clarkson, CR, Edlmann, K, Zhu, W & Iglauer, S 2023, 'Impacts of relative permeability hysteresis, wettability, and injection/withdrawal schemes on underground hydrogen storage in saline aquifers', *Fuel*, vol. 333, 126516. https://doi.org/10.1016/j.fuel.2022.126516

Digital Object Identifier (DOI):

10.1016/j.fuel.2022.126516

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Fuel

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Impacts of relative permeability hysteresis, wettability, and injection/withdrawal

\mathbf{a}

schemes on underground hydrogen storage in saline aquifers

- 3 Bin Pan¹, Kai Liu¹, Bo Ren², Mingshan Zhang³, Yang Ju⁴, Jianwei Gu⁵, Xueying
- 4 Zhang ⁶, Christopher R. Clarkson ⁷, Katriona Edlmann ⁸, Weiyao Zhu ^{1*}, and Stefan
- 5 Iglauer ^{9,10}
- ⁶ ¹School of Civil and Resource Engineering, University of Science and Technology
- 7 Beijing, No. 30, Xueyuan Road, Beijing, 10083, China
- ⁸ ²Bureau of Economic Geology, The University of Texas at Austin, 10611 Exploration
- 9 *Way, Austin, TX* 78758, US
- ¹⁰ ³Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School
- 11 of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
- ⁴State Key Laboratory of Coal Resources and Safe Mining, China University of Mining
- 13 and Technology at Beijing, D11 Xueyuan Road, Beijing 100083, China
- ⁵School of Petroleum Engineering, China University of Petroleum (East China), No. 66,
- 15 Changjiang West Road, Qingdao, China
- ⁶*PetroChina Huabei Oilfield Company, Hebei, 062552, China*
- ¹⁷ ⁷Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
- ⁸School of Geosciences, University of Edinburgh, Grant Institute, Edinburgh, UK
- ⁹School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup,
- 20 Australia
- 21 ¹⁰Centre for Sustainable Energy and Resources, Edith Cowan University, 270
- 22 Joondalup Drive, Joondalup, Australia

24 Abstract

Underground hydrogen storage (UHS) is a key strategy in the implementation of 25 a large-scale hydrogen (H_2) economy and promotion of renewable energy 26 27 development/utilization. For UHS in water-wet saline aquifers, H₂ displaces in-situ brine during injection; during well shut-in and H₂ withdrawal, brine imbibes back into 28 the flow paths where it displaces some H₂. These processes are influenced by H₂-brine 29 transport physics, H₂-brine-rock interactions and injection/withdrawal schemes, which, 30 31 in turn, determine H₂ storage capacities and injection/withdrawal efficiency. However, these effects are poorly understood. Therefore, this work focuses on the impact of 32 relative permeability hysteresis (RPH), wettability, and H₂ withdrawal rate on UHS 33 34 performance in a saline aquifer. Furthermore, differences between UHS and CO2 geostorage (CGS) are examined. 35

The primary findings include: 1) RPH results in a smaller H₂ withdrawal factor (H_{2-WF}), but a larger H₂ withdrawal purity (H_{2-WP}); 2) H_{2-WF} increases with rock hydrophobicity, while H_{2-WP} is mostly insensitive to rock wettability; 3) under similar storage conditions, H_{2-WF} and H_{2-WP} are approximately 10% less than CO_{2-WF} and CO_{2-WP} .

These insights demonstrate the significance of RPH and rock wettability on UHS
performance and provides guidance on H₂ injection/withdrawal scheme optimization.
This study aids in the implementation of an industry-scale hydrogen economy.

Keywords: Underground hydrogen storage; Saline aquifers; Relative permeability
hysteresis; Wettability; Injection/withdrawal scheme.

47

48 **1. Introduction**

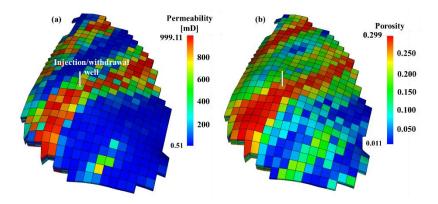
49 Commercial development of renewable and sustainable energy resources are required to accelerate energy transition, mitigate global warming, and accomplish 50 carbon neutrality [1–3]. However, these energy resources (e.g., wind, solar, and tide) 51 are time-, season-, weather- and/or region- dependent, which limits their stability, 52 53 reliability and large-scale economic implementation [4-6]. To overcome these drawbacks, underground hydrogen storage (UHS) is considered as a promising solution 54 [7–11]. When energy supply is larger than energy demand, excess renewable and 55 56 sustainable energy can be converted to hydrogen (H₂) through water electrolysis as a green energy carrier, and the H₂ can be injected into the subsurface for storage; when 57 energy demand is high, H₂ can be withdrawn again from the subsurface for usage [12– 58 59 17]. Potential subsurface storage sites include deep coal seams [18,19], depleted hydrocarbon reservoirs [20,21], aquifers [22,23] and salt caverns [15,24]. Salt caverns 60 are suitable for frequent cyclic H₂ injection and withdrawal, but salt cavern storage 61 capacities are usually small (around 50 \times 10⁴ Sm³ [15,24,25]). Depleted 62 hydrocarbon reservoirs are often well characterized with the necessary geological 63 information, and substantial surface/subsurface infrastructure are in place [20,21]. 64 However, microbial activity may be high, which causes both serious H_2 loss and H_2 65 purity reduction (e.g. via the reactions $C_2H_6 + H_2 \rightarrow 2 CH_4$ or $H_2 + S \rightarrow H_2S$ 66

[8,16,26]). In contrast, saline aquifers have the largest storage capacity and relatively
weak microbial reactions, and thus attract significant attention [7,27]. Heinemann et al.
[7] discussed the scientific challenges to enabling large-scale hydrogen storage in saline
reservoirs while Pan et al. [27] reviewed all available experimental data related to UHS
in saline aquifers.

Numerical simulation is a cost-effective and rapid method for large-scale UHS 72 evaluation, which should be conducted prior to field-scale pilot tests. Pfeiffer et al. 73 [28,29] used numerical simulations to predict UHS performance in the Rhaetian deposit, 74 Germany, and the results demonstrated that up to 7700 $\times 10^4$ Sm³ (equal to 245 MW 75 electricity) could be stored. Feldmann et al. [30] simulated 5 years of continuous H₂ 76 injection and subsequent 5 years of seasonal cyclic H₂ injection/withdrawal into a 77 depleted gas reservoir; the authors found that the H₂ withdrawal purity (H_{2-WP}) and 78 withdrawal factor (H_{2-WF}) reached 82% - 85% and 39%, respectively. Sainz-Garcia et 79 al. [22] conducted a three-dimensional multiphase numerical simulation for three 80 81 annual H₂ injection/withdrawal cycles in Castilla-Leon, Spain. The stored H₂ (67400 $\times 10^4$ Sm³) was able to supply 15% of the electric consumption for a population of 82 175,000 over 3 months. Additionally, Lubon and Tarkowski [23] utilized numerical 83 simulations to predict seasonal H₂ cyclic injection/withdrawal scenarios in a deep 84 85 aquifer at Suliszewo, Poland - it was discovered that water coning was the main obstacle for UHS performance. Recently, Heinemann et al. [11] investigated the role of cushion 86 87 gas for H₂ injection and withdrawal in saline aquifers, demonstrating that the produced

H₂ was equal to 1.625 TWH from a three dimensional anticline reservoir model with
the ratio of cushion gas to working gas at 1.27 [11].

In the above-mentioned UHS simulations, either CO₂-brine relative permeability curves were used as input parameters [11,28,29], or H₂-brine relative permeability hysteresis (RPH) was not considered [22,23,30] (though CO₂ RPH strongly influences capillary CO₂ trapping in saline reservoirs in CGS schemes [31]). To mitigate this uncertainty, and to address the fact that H₂ is a very different molecule than CH₄ or CO₂ [27,32], UHS reservoir simulations with real H₂ input parameters and H₂ transport physics are required.


Therefore impact RPH, 97 herein. the of rock-H₂ wettability, and injection/withdrawal schemes on UHS performance in saline aquifers is systematically 98 99 evaluated. Further, the acquired UHS results are compared with CGS data. This work will provide important information supporting large-scale UHS implementation and the 100 decarbonization of energy supply chains. 101

102

103 **2.** Methodology

104 **2.1 Geological model**

105 The commercial reservoir simulator IMEX from Computer Modelling Group 106 (CMG) was used to simulate UHS in a synthetic PUNQ-S3 geological model. This 107 simulation is based on the classic black-oil model following the mass conservation 108 principles [33]. PUNQ-S3 is a three-dimensional, geometrically complicated and 109 heterogeneous geological model (a central dome + 5 layers of sand/shale) [34]. This model was previously used for oil production forecasting [34] and CO_2 geo-storage simulation [31]. The average aquifer thickness is 15 m, and the entire domain is discretized into 19 × 28 × 5 grid blocks (1761 of them active). Each cell has a length of 180 m in the horizontal direction. The average horizontal permeability and porosity are 100 mD and 0.2, respectively, with their spatial distributions shown in **Figure 1**.

115

Figure 1. (a) Horizontal permeability and (b) porosity distributions in the PUNQ-S3
geological model (Modified after [31]). For simplicity, only one well was used for gas
injection and withdrawal.

119

A single well was drilled at the structurally highest location for gas injection and withdrawal. Similar to [31], the pore volume around the geological boundaries is set ~1000 times larger than the area of interest so that *in-situ* brine could be displaced during the gas injection; the displaced brine is imbibed back again during well shut-in (in case of water-wet rock) and simultaneously pumped out of the subsurface with gas during gas withdrawal.

126

127 **2.2 Input parameters**

Information about H₂ density, H₂ viscosity and H₂ expansion factor at UHS
conditions are tabulated in **Table 1**. Currently, only one H₂-brine relative permeability

130	curve was measured for the process of H ₂ injection into a brine saturated water-wet
131	sandstone [35] (Figure 2). Using pore network modelling, H ₂ -brine relative
132	permeability curves (for drainage and imbibition) were also predicted for additional
133	rock wettabilities [i.e., brine contact angles (θ) of 51° and 83°] [36] (Figure 2).
134	Information about CO ₂ properties and relative permeability curves (which were
-	information about CO ₂ properties and relative permeability curves (which were

Pressure [MPa]	Density [kg/m³]	Expansion factor [-]	Viscosity [mPa∙s]	
0.1	0.089	1	0.0092	
10	8	89.9	0.0094	
20	14	157.3	0.0096	
30	20	224.7	0.0098	
40	24	269.7	0.01	
50	29	325.8	0.0104	

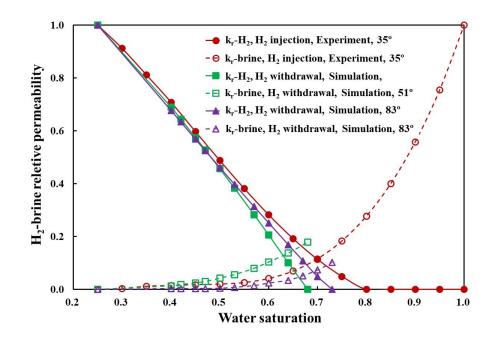


Figure 2. H₂-brine relative permeability curves (modified after [35,36]; curve fitting
was conducted to smooth the raw experimental and simulation data based on the least
squares method). Experimental data is from [30]; simulated curves using pore network
modeling are from [31].

144

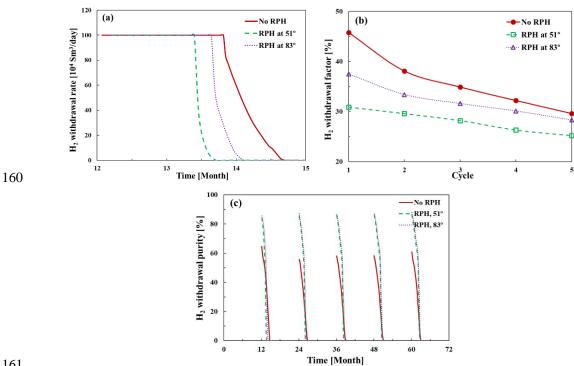
145 **2.3 Simulation scenarios**

146 Four separate scenarios were simulated to explore the impact of RPH, rock

147 wettability, and injection/withdrawal scheme on UHS performance, Table 2. In addition,

148 two scenarios were simulated for CGS to provide a comparison.

Table 2. Scenarios simulated in this work (NA means that CO₂ wettability wasunknown in the simulations).


Gas	Case	Relative permeability hysteresis	Wettability		Injection/withdrawal scheme
				a.	Injection at 50 \times 10 Sm ³ /day for 9 months; well shut-in for 3 months
		No	35°	b.	Withdrawal at 100×10
	(hasa sasa)				Sm ³ /day for 3 months
	(base case)				injection at 50 \times 10
					Sm ³ /day for 6 months; we
					shut-in for 3 months
			c.		
H ₂	2	Yes	51°		Same as case 1
	3	Yes	83°		Same as above
				a.	Injection at 50 \times 10
	4	Yes	51°		Sm ³ /day for 9 months; we
					shut-in for 3 months
				b.	Withdrawal at 200×10^{-10}
					Sm ³ /day for 3 month
					injection at 50 \times 10
					Sm^3/day for 6 months; we
					shut-in for 3 months
				<u>с.</u>	
				a.	Injection at 50×10^{-3} Sm ³ /day for 9 months; we
					shut-in for 3 months
				b.	Withdrawal at 100×100
	5	No	NA	υ.	Sm^3/day for 3 month
CO ₂	(base case)	110	1 17 1		injection at 50×10^{10}
					Sm^{3}/day for 6 months; we
					shut-in for 3 months
				c.	
	6	Yes	NA		Same as case 5

Results and discussion 153 3

3.1 Impact of relative permeability hysteresis and wettability 154

For UHS, H₂ injection into a water-wet aquifer is dominated by the forced 155 drainage (of the resident formation water), while H₂ withdrawal is dominated by the 156 spontaneous and forced imbibition [37,38]. Therefore, it is necessary to assess the 157 impact of RPH and rock wettability on UHS performance. 158

159

161

Figure 3. Effect of relative permeability hysteresis and rock wettability on the (a) actual 162 H₂ withdrawal rate during the 1st withdrawal cycle, (b) H₂ withdrawal factor (the ratio 163 of the accumulated H₂ withdrawal volume during a specific H₂ withdrawal cycle to the 164 total H₂ in-place volume prior to this withdrawal cycle) and (c) H₂ withdrawal purity 165 (the ratio of H₂ withdrawal mass to water production mass) at the prescribed withdrawal 166 rate of 100 \times 10⁴ Sm³/day). 167

169	RPH and a strongly water-wet state cause the actual H ₂ withdrawal rate (H_{2-WR})
170	to deviate from the prescribed H_{2-WR} value and to reach zero earlier, Figure 3(a).
171	During the 1 st H ₂ withdrawal cycle, the actual H_{2-WR} started to deviate from the
172	prescribed 100 \times 10 ⁴ Sm ³ /day on the 54 th , 36 th and 45 th day, while it reached zero on
173	the 81 st , 49 th and 62 nd day, for the case of no RPH, case with RPH at $\theta = 51^{\circ}$, and the
174	case with RPH at $\theta = 83^{\circ}$, respectively. Further, by the end of each withdrawal cycle,
175	the H ₂ withdrawal factor (H_{2-WF} , the ratio of the accumulated H ₂ withdrawal volume
176	during a specific H_2 withdrawal cycle to the total H_2 in-place volume prior to this
177	withdrawal cycle) follows the order: case with no RPH > case with RPH at $\theta = 83^{\circ}$ >
178	case with RPH at $\theta = 51^{\circ}$. H_{2-WF} was 38%, 33% and 30%, respectively for the
179	above-mentioned three scenarios at the end of the 2^{nd} withdrawal cycle, Figure 3(b).
180	Moreover, at the beginning of each H_2 withdrawal cycle, RPH causes a larger H_2
181	withdrawal purity (H_{2-WP} , the ratio of H_2 withdrawal mass to water production mass)
182	than without RPH (e.g., 86% - 88% versus 55% - 65%), though the wettability impact
183	is insignificant, Figure 3(c) . In addition, with the H ₂ withdrawal cycle increase, H_{2-WF}
184	decreased at the end of each cycle of withdrawal, while H_{2-WP} increased at the
185	beginning of each cycle of withdrawal, Figure 3(b) and (c), consistent with the previous
186	literature study [28].
187	Note that RPH and rock wettability influence pore-scale gas-brine two phase flow

Note that RPH and rock wettability influence pore-scale gas-brine two phase flow
characteristics and therefore determine reservoir-scale gas injection/withdrawal
efficiency [38–43]. In the absence of RPH, the injected gas exists as a continuous gas
plume, and capillary trapping is relatively weak [31]. If RPH is present, the trailing

edges of the gas plumes tend to convert into discontinuous phases, and capillary 191 trapping are relatively strong (which is favorable for CGS because of reduced leakage 192 193 risk) - however, it is unfavorable for UHS because of the more difficult gas remobilization [27]. Therefore, H_{2-WF} was higher in the absence of RPH. Further, a 194 more water-wet state leads to more snap off events [44,45], and therefore a more serious 195 H₂ loss and a smaller H_{2-WF} . Moreover, during well shut-in, discontinuous H₂ bubbles 196 197 can exert strong resistance for the spontaneous imbibition of *in-situ* formation brine [46,47] – therefore, if RPH is present, the initial H₂ concentration is higher around the 198 wellbore region (which again results in a larger H_{2-WP} at the beginning of each H₂ 199 withdrawal cycle). The observed H_{2-WF} and H_{2-WP} response to the withdrawal 200 cycle is because 1) at the end of each H₂ injection cycle, more H₂ will be in place than 201 202 the earlier injection cycle; and 2) at the end of each H₂ withdrawal cycle, more H₂ will be lost to the subsurface than the earlier withdrawal cycle [28]. 203

204

205 **3.2 Impact of H2 withdrawal rate**

To operate a field-scale UHS project efficiently, the H₂ injection/withdrawal scheme [7] should be optimized, especially H_{2-WR} . Therefore, the impact of H_{2-WR} on UHS performance was investigated in this section.

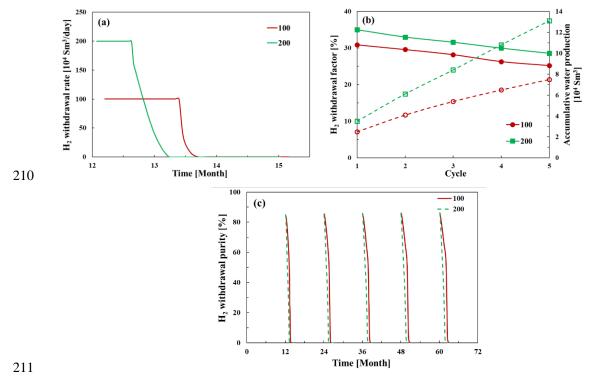
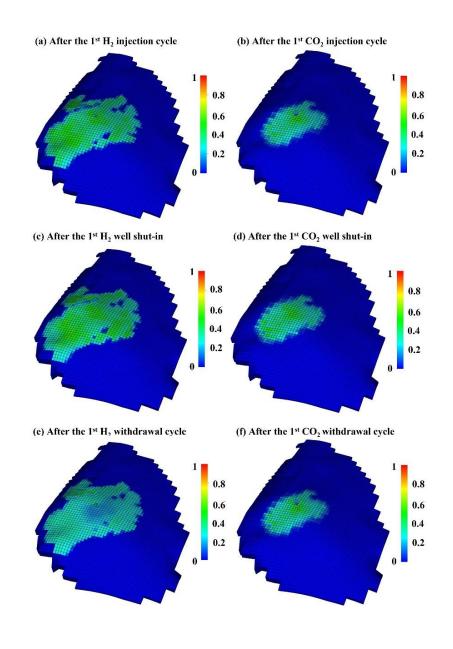



Figure 4. Effect of the prescribed H_2 withdrawal rate on (a) actual H_2 withdrawal rate during the 1st withdrawal cycle, (b) H_2 withdrawal factor and (c) H_2 withdrawal purity for the case of relative permeability hysteresis and brine contact angle of 51°.

216 Clearly, a larger prescribed H_{2-WR} causes the actual H_{2-WR} to deviate from the 217 pre-set value and reach zero earlier in the simulated cases, Figure 4(a) and (b). For example, during the 1st H₂ withdrawal cycle (for the prescribed $H_{2-WR} = 100 \times 10^4$ 218 Sm³/day and $H_{2-WR} = 200 \times 10^4$ Sm³/day), the actual H_{2-WR} started to deviate 219 from the prescribed value on the 38th and 18th day, respectively, while it reached zero 220 on the 50th and 36th day, respectively. This is due to the faster pressure depletion caused 221 by the larger H_{2-WR} [48]. Therefore, it is suggested that sufficient H₂ is stored and 222 sufficiently high reservoir pressure is maintained for continuous H₂ withdrawal at an 223 expected withdrawal rate. Furthermore, a larger H_{2-WR} caused a larger H_{2-WF} and a 224 225 more serious water production problem. For example, for the prescribed $H_{2-WR} =$ 100×10^4 Sm³/day and $H_{2-WR} = 200 \times 10^4$ Sm³/day, by the end of the 5th H₂ 226

227	withdrawal cycle, H_{2-WF} was 25% and 29% respectively, and cumulative water
228	production reached 7.5 \times 10 ⁴ Sm ³ and 13.1 \times 10 ⁴ Sm ³ , respectively.
229	In principle, larger H ₂ injection rates result in higher viscous forces, which can
230	override capillary forces (analogue to CO_2 flooding [49]), and suppress lateral H_2
231	migration beneath the caprock, resulting in a larger H_{2-WF} [31]. However, to avoid
232	water production problems, an optimized H ₂ withdrawal rate is required; to determine
233	this optimum H ₂ withdrawal scheme, it is suggested that a balance between initial gas
234	in place, transient H ₂ demand, and gas purification/separation ability should all be
235	considered [23].
236	
237	3.3 Impact of gas type
238	During the past decades, CGS has been investigated comprehensively (e.g.,
239	[31,40,42,43,50–54]). In contrast, UHS is a relatively new technology which is still in
240	its infancy [27,55–57]. Whether previous learnings from CGS can be directly used in
241	UHS is still uncertain. Therefore, in this section, UHS and CGS are compared (under
242	the prescribed gas withdrawal rate of 100 \times 10 ⁴ Sm ³ /day and RPH conditions, Table
243	3 and Figure 5.
244	
245	Table 3. Comparisons between underground hydrogen storage (UHS) and CO ₂ geo-
246	storage (CGS) during the first cycle of withdrawal, under the prescribed gas withdrawal
247	rate of 100 \times 10 ⁴ Sm ³ /day and relative permeability hysteresis conditions.

Gas	Plume areal coverage	Deviation from the prescribed withdrawal rate	Withdrawal factor by the end	Withdrawal purity at the beginning	
UHS	Large: 35.22 km ² ; 30.5%	Early: 38 days	Low: 31%	Low: 84%	
CGS	Small: 14.58 km ² ; 12.6%	Late: 50 days	High: 44%	High: 96%	

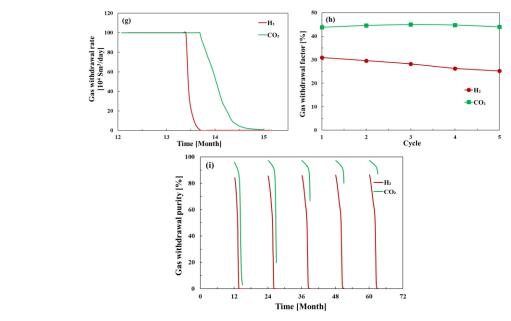


Figure 5. (a-f) Gas saturation distribution during the 1st H₂ storage cycle; (g) the actual gas withdrawal rate during the 1st withdrawal cycle; (h) gas withdrawal factor during the continuous 5 withdrawal cycles and (i) gas withdrawal purity during the continuous 5 withdrawal cycles under the prescribed withdrawal rate of 100×10^4 Sm³/day and relative permeability hysteresis conditions.

252

251

259 Clearly, UHS and CGS exhibit significant differences in gas saturation distribution, actual gas withdrawal rate, gas withdrawal factor and gas purity, Table 3 and Figure 5. 260 After the initial gas injection for 9 months, the H₂ plume was $\sim 2 - 5$ times larger than 261 262 CO₂, Figure 5(a) and (b) - this difference is caused by different gas viscosity and diffusivity [27]; after a well shut-in for 3 months, H₂ migrated significantly upward and 263 accumulated beneath the caprock, while CO₂ only migrated slightly upward, Figure 264 5(c) and (d) - this was mainly caused by the difference in gas-brine density [27,58]. 265 Furthermore, as shown in Table 3, Figure 5(h) and (i), in the same timeframe, H_{2-WF} 266 and H_{2-WP} were smaller than CO_{2-WF} and CO_{2-WP} . 267

Note that sandstone rocks are more water-wet in a H_2 environment than in a CO_2 environment [55,57,59,60], therefore gas bubble snap-off is more favored for H_2 than for CO₂, which has led lower H_{2-WF} than CO_{2-WF} [61,62]). Meanwhile, especially during the gas injection stage, viscous fingering was predicted to be more pronounced for H₂ than for CO₂ [27], and that H₂ moves farther away from the wellbore region than CO₂ [57].

274

275 4 Conclusions and Recommendations

Underground hydrogen storage (UHS) is a promising technology which could aid 276 the development of a large-scale hydrogen economy [12-17]. For UHS in saline 277 278 aquifers, H₂-multi-cycle injection/withdrawal schemes are influenced by the energy supply and demand [23,63]. H₂-brine two phase flow physics, and H₂-brine-rock 279 interactions determine UHS performance [7,27]. Therefore, in this work, the impact of 280 281 relative permeability hysteresis, rock wettability, and injection/withdrawal schemes are systematically studied, and the results for UHS are then compared with those for CO₂ 282 geo-storage (CGS). The following conclusions are reached: 283

284

1) H₂-brine relative permeability hysteresis results in a lower H₂ withdrawal
 factor, but a higher purity of withdrawn gas.

287 2) More water-wet rocks have lower H_2 withdrawal efficiencies.

- 288 3) Larger H₂ withdrawal rates increase H₂ withdrawal efficiency, but also
 289 increase water production.
- 4) UHS and CGS demonstrate significant differences and direct correlations
 should be avoided.

This study provides important information to aid in the implementation of a largescale hydrogen economy, and therefore also supports the decarbonization of energy supply chains. For future work, it is suggested to further analyze the pore-scale H_{2} brine two phase flow physics, and to establish a better understanding of meso-scale parameters (such as the H_2 -brine relative permeabilities for cyclic drainage and imbibition processes and how they vary with wettability). Such improved input data leads directly to improved prediction of UHS performance [64,65].

300

301 Acknowledgements

Bin Pan thanks the initiative funding from the University of Science and 302 Technology Beijing. Weiyao Zhu thanks the funding support from the National Natural 303 304 Science Foundation of China (No. 51974013 and No. 11372033) and Open Research Foundation (NEPU-EOR-2019-003). Yang Ju acknowledges the funding support from 305 the National Natural Science Foundation of China (No. 52121003). Christopher R. 306 307 Clarkson thanks the sponsors of the Tight Oil Consortium (TOC) and Ovintiv and Shell for support of his Chair position in Unconventional Gas and Light Oil Research in the 308 Department of Geoscience at the University of Calgary. Stefan Iglauer would like to 309 thank the Australian Research Council for financial support (under grant 310 311 DP220102907).

312

313 **References**

314 [1] Hosseini SE, Wahid MA. Hydrogen production from renewable and sustainable

- 315 energy resources: Promising green energy carrier for clean development. Renew
- 316
 Sustain
 Energy
 Rev
 2016;57:850–66.

 317
 https://doi.org/10.1016/J.RSER.2015.12.112.
- Lau LC, Lee KT, Mohamed AR. Global warming mitigation and renewable
 energy policy development from the Kyoto Protocol to the Copenhagen
 Accord—A comment. Renew Sustain Energy Rev 2012;16:5280–4.
 https://doi.org/10.1016/J.RSER.2012.04.006.
- [3] Lam PTI, Law AOK. Crowdfunding for renewable and sustainable energy
 projects: An exploratory case study approach. Renew Sustain Energy Rev
 2016;60:11–20. https://doi.org/10.1016/J.RSER.2016.01.046.
- Rourke FO, Boyle F, Reynolds A. Renewable energy resources and technologies
 applicable to Ireland. Renew Sustain Energy Rev 2009;13:1975–84.
 https://doi.org/10.1016/J.RSER.2009.01.014.
- 328 [5] Bhuiyan MRA, Mamur H, Begum J. A brief review on renewable and sustainable
- energy resources in Bangladesh. Clean Eng Technol 2021;4:100208.
 https://doi.org/10.1016/J.CLET.2021.100208.
- Widén J, Carpman N, Castellucci V, Lingfors D, Olauson J, Remouit F, et al.
 Variability assessment and forecasting of renewables: A review for solar, wind,
 wave and tidal resources. Renew Sustain Energy Rev 2015;44:356–75.
 https://doi.org/10.1016/J.RSER.2014.12.019.
- 335 [7] Heinemann N, Alcalde J, Miocic JM, Hangx SJT, Kallmeyer J, Ostertag336 Henning C, et al. Enabling large-scale hydrogen storage in porous media the

- 337 scientific challenges. Energy Environ Sci 2021;14:853–64.
 338 https://doi.org/10.1039/d0ee03536j.
- Thaysen EM, McMahon S, Strobel GJ, Butler IB, Ngwenya BT, Heinemann N,
 et al. Estimating microbial growth and hydrogen consumption in hydrogen
 storage in porous media. Renew Sustain Energy Rev 2021;151:111481.
 https://doi.org/10.1016/J.RSER.2021.111481.
- 343 [9] Miocic JM, Heinemann N, Edlmann K, Scafidi J, Molaei F, Alcalde J.
 344 Underground hydrogen storage: a review. Geol Soc London 2022;528.
- 345 [10] Rezaei A, Hassanpouryouzband A, Molnar I, Derikvand Z, Haszeldine S,
- Edlmann K. Relative permeability of hydrogen and aqueous brines in sandstones
 and carbonates at reservoir conditions. Geophys Res Lett 2022;49.
- [11] Heinemann N, Scafidi J, Pickup G, Thaysen EM, Hassanpouryouzband A,
 Wilkinson M, et al. Hydrogen storage in saline aquifers: The role of cushion gas
 for injection and production. Int J Hydrogen Energy 2021;46:39284–96.
- [12] Lankof L, Tarkowski R. Assessment of the potential for underground hydrogen
 storage in bedded salt formation. Int J Hydrogen Energy 2020;45:19479–92.
 https://doi.org/10.1016/j.ijhydene.2020.05.024.
- Tarkowski R. Underground hydrogen storage: Characteristics and prospects.
 Renew Sustain Energy Rev 2019;105:86–94.
 https://doi.org/10.1016/j.rser.2019.01.051.
- 357 [14] Tarkowski R, Czapowski G. Salt domes in Poland Potential sites for hydrogen
 358 storage in caverns. Int J Hydrogen Energy 2018;43:21414–27.

359 https://doi.org/10.1016/J.IJHYDENE.2018.09.212.

- 360 [15] Ozarslan A. Large-scale hydrogen energy storage in salt caverns. Int J Hydrogen
 361 Energy 2012;37:14265–77. https://doi.org/10.1016/j.ijhydene.2012.07.111.
- [16] Carden PO, Paterson L. Physical, chemical and energy aspects of underground
 hydrogen storage. Int J Hydrogen Energy 1979;4:559–69.
 https://doi.org/10.1016/0360-3199(79)90083-1.
- [17] Qiu Y, Zhou S, Wang J, Chou J, Fang Y, Pan G, et al. Feasibility analysis of
 utilising underground hydrogen storage facilities in integrated energy system:
 Case studies in China. Appl Energy 2020;269:115140.
 https://doi.org/10.1016/j.apenergy.2020.115140.
- 369 [18] Sedev R, Akhondzadeh H, Ali M, Keshavarz A, Iglauer S. Contact Angles of a
 370 Brine on a Bituminous Coal in Compressed Hydrogen. Geophys Res Lett
 371 2022;49:e2022GL098261. https://doi.org/10.1029/2022GL098261.
- 372 [19] Iglauer S, Akhondzadeh H, Abid H, Paluszny A, Keshavarz A, Ali M, et al.
- Hydrogen flooding of a coal core: Effect on Coal Swelling. Geophys Res Lett
 2022;49:e2021GL096873. https://doi.org/10.1029/2021GL096873.
- Kanaani M, Sedaee B, Asadian-Pakfar M. Role of cushion gas on underground
 hydrogen storage in depleted oil reservoirs. J Energy Storage 2022;45:103783.
 https://doi.org/10.1016/J.EST.2021.103783.
- Amid A, Mignard D, Wilkinson M. Seasonal storage of hydrogen in a depleted
 natural gas reservoir. Int J Hydrogen Energy 2016;41:5549–58.
 https://doi.org/10.1016/j.ijhydene.2016.02.036.

- [22] Sainz-Garcia A, Abarca E, Rubi V, Grandia F. Assessment of feasible strategies
 for seasonal underground hydrogen storage in a saline aquifer. Int J Hydrogen
 Energy 2017;42:16657–66. https://doi.org/10.1016/j.ijhydene.2017.05.076.
- [23] Luboń K, Tarkowski R. Numerical simulation of hydrogen injection and
 withdrawal to and from a deep aquifer in NW Poland. Int J Hydrogen Energy
 2020;45:2068–83. https://doi.org/10.1016/j.ijhydene.2019.11.055.
- 387[24]Caglayan DG, Weber N, Heinrichs HU, Linßen J, Robinius M, Kukla PA, et al.388Technical potential of salt caverns for hydrogen storage in Europe. Int J389HydrogenEnergy2020;45:6793–805.
- 390 https://doi.org/10.1016/J.IJHYDENE.2019.12.161.
- 391 [25] Portarapillo M, Di Benedetto A. Risk assessment of the large-scale hydrogen
 392 storage in salt caverns. Energies 2021, 14, 2856 2021;14:2856.
 393 https://doi.org/10.3390/EN14102856.
- Walters AB, Walters, B. A. Technical and environmental aspects of underground
 hydrogen storage. Whe2 1976;2:2B 65-2B 79.
- 396 [27] Pan B, Yin X, Ju Y, Iglauer S. Underground hydrogen storage: influencing
 397 parameters and future outlook. Adv Colloid Interface Sci 2021, 294, 102473.
- 398 [28] Pfeiffer WT, Bauer S. Subsurface Porous Media Hydrogen Storage Scenario
 399 Development and Simulation. Energy Procedia 2015;76:565–72.
 400 https://doi.org/10.1016/J.EGYPRO.2015.07.872.
- 401 [29] Pfeiffer WT, Beyer C, Bauer S. Hydrogen storage in a heterogeneous sandstone
 402 formation: Dimensioning and induced hydraulic effects. Pet Geosci

2017;23:315–26.

404 050/CITE/REFWORKS.

- 405 [30] Feldmann F, Hagemann B, Ganzer L, Panfilov M. Numerical simulation of
 406 hydrodynamic and gas mixing processes in underground hydrogen storages.
 407 Environ Earth Sci 2016;75:1–15. https://doi.org/10.1007/S12665-016-5948408 Z/FIGURES/9.
- 409 [31] Juanes R, Spiteri EJ, Orr FM, Blunt MJ. Impact of relative permeability
 410 hysteresis on geological CO₂ storage. Water Resour Res 2006;42:12418.
 411 https://doi.org/10.1029/2005WR004806.
- [32] Pan B, Ni T, Zhu W, Yang Y, Ju Y, Zhang L, et al. Mini review on wettability in
 the methane-liquid-rock system at reservoir conditions: Implications for gas
 recovery and geo-storage. Energy & Fuels 2022;36:4268–75.
- 415 [33] Aziz K, A S. Petroleum reservoir simulation. 1979.
- 416 [34] Floris FJT, Bush MD, Cuypers M, Roggero F, Syversveen AR. Methods for
 417 quantifying the uncertainty of production forecasts: A comparative study. Pet
 418 Geosci 2001;7:S87–96.
- 419 https://doi.org/10.1144/PETGEO.7.S.S87/CITE/REFWORKS.
- Yekta AE, Manceau JC, Gaboreau S, Pichavant M, Audigane P. Determination
 of hydrogen-water relative permeability and capillary pressure in sandstone:
 Application to underground hydrogen injection in sedimentary Formations.
 Transp Porous Media 2018;122:333–56. https://doi.org/10.1007/s11242-0181004-7.

- 425 [36] Hashemi L, Blunt M, Hajibeygi H. Pore-scale modelling and sensitivity analyses
- 426 of hydrogen-brine multiphase flow in geological porous media. Sci Reports 2021
- 427 111 2021;11:1–13. https://doi.org/10.1038/s41598-021-87490-7.
- [37] Bachu S. Drainage and imbibition CO₂/brine relative permeability curves at in
 situ conditions for sandstone formations in western Canada. Energy Procedia, 37,

430 2013, 4428–36. https://doi.org/10.1016/j.egypro.2013.07.001.

- [38] Bennion DB, Bachu S. Drainage and imbibition relative permeability
 relationships for supercritical CO₂/brine and H₂S/brine systems in intergranular
 sandstone, carbonate, shale, and anhydrite rocks. SPE Reserv Eval Eng
 2008;11:487–96. https://doi.org/10.2118/99326-pa.
- [39] Krevor SCM, Pini R, Zuo L, Benson SM. Relative permeability and trapping of
 CO₂ and water in sandstone rocks at reservoir conditions. Water Resour Res
 2012;48. https://doi.org/10.1029/2011WR010859.
- 438 [40] Pan B, Li Y, Wang H, Jones F, Iglauer S. CO₂ and CH₄ wettabilities of organic-
- 439 rich shale. Energy and Fuels 2018;32:1914–22.
 440 https://doi.org/10.1021/acs.energyfuels.7b01147.
- [41] Pan B, Jones F, Huang Z, Yang Y, Li Y, Hejazi SH, et al. Methane (CH₄)
 wettability of clay-coated quartz at reservoir conditions. Energy and Fuels
 2019;33:788–95. https://doi.org/10.1021/acs.energyfuels.8b03536.
- Iglauer S, Pentland CH, Busch A. CO₂ wettability of seal and reservoir rocks and
 the implications for carbon geo-sequestration. Water Resour Res 2015;51:729–
- 446 74. https://doi.org/10.1002/2014WR015553.

- 447 [43] Iglauer S, Paluszny A, Pentland CH, Blunt MJ. Residual CO₂ imaged with X-ray
- 448 micro-tomography. Geophys Res Lett 2011;38:n/a-n/a.
 449 https://doi.org/10.1029/2011GL049680.
- [44] Hu R, Wan J, Kim Y, Tokunaga TK. Wettability impact on supercritical CO₂
 capillary trapping: Pore-scale visualization and quantification. Water Resour Res
 2017;53:6377–94. https://doi.org/10.1002/2017WR020721.
- 453 [45] Hu R, Wan J, Yang Z, Chen Y, Tokunaga T. Wettability and flow rate impacts on
- 454 immiscible displacement: A theoretical model. Geophys Res Lett 2018;45:3077–
- 455 86. https://doi.org/10.1002/2017GL076600.
- [46] Pan B, Clarkson CR, Younis A, Song C, Debuhr C, Ghanizadeh A, et al.
 Fracturing fluid loss in unconventional reservoirs: evaluating the impact of
 osmotic pressure and surfactant and methods to upscale results. URTeC Tech
 2021:26–8. https://doi.org/10.15530/URTEC-2021-5139.
- [47] Pan B, Clarkson CR, Younis A, Song C, Debuhr C, Ghanizadeh A, et al. New
 methods to evaluate impacts of osmotic pressure and surfactant on fracturing
 fluid loss and effect of contact angle on spontaneous imbibition data scaling in
 unconventional reservoirs. Fuel 2022;328.
 https://doi.org/10.1016/j.fuel.2022.125328.
- 465 [48] Clarkson CR. Unconventional reservoir rate-transient analysis. Elsevier; 2021.
- 466 [49] Jin X, Chao C, Edlmann K, Fan X. Understanding the interplay of capillary and
 467 viscous forces in CO₂ core flooding experiments. J Hydrol 2022;606:127411.
- 468 [50] Wan J, Kim Y, Tokunaga TK. Contact angle measurement ambiguity in

469		supercritical CO ₂ -water-mineral systems: Mica as an example. Int J Greenh Gas
470		Control 2014;31:128-37. https://doi.org/10.1016/j.ijggc.2014.09.029.
471	[51]	Wan J, Tokunaga TK, Ashby PD, Kim Y, Voltolini M, Gilbert B, et al.
472		Supercritical CO ₂ uptake by nonswelling phyllosilicates. Proc Natl Acad Sci U
473		S A 2018;115:873-8. https://doi.org/10.1073/pnas.1710853114.
474	[52]	Iglauer S. CO ₂ -water-rock wettability: Variability, influencing factors, and
475		implications for CO ₂ geostorage. Acc Chem Res 2017;50:1134–42.
476		https://doi.org/10.1021/acs.accounts.6b00602.
477	[53]	Pan B, Gong C, Wang X, Li Y, Iglauer S. The interfacial properties of clay-coated
478		quartz at reservoir conditions. Fuel 2020;262:116461.
479		https://doi.org/10.1016/j.fuel.2019.116461.
480	[54]	Tenney CM, Cygan RT. Molecular simulation of carbon dioxide, brine, and clay
481		mineral interactions and determination of contact angles. Environ Sci Technol
482		2014;48:2035–42. https://doi.org/10.1021/es404075k.
483	[55]	Ali M, Pan B, Yekeen N, Al-Anssari S, Al-Anazi A, Keshavarz A, et al.
484		Assessment of wettability and rock-fluid interfacial tension of caprock:
485		Implications for hydrogen and carbon dioxide geo-storage. Int J Hydrogen
486		Energy 2022. https://doi.org/10.1016/J.IJHYDENE.2022.02.149.
487	[56]	Pan B, Yin X, Iglauer S. Rock-fluid interfacial tension at subsurface conditions:
488		Implications for H ₂ , CO ₂ and natural gas geo-storage. Int J Hydrogen Energy
489		2021. https://doi.org/10.1016/j.ijhydene.2021.05.067.

490 [57] Pan B, Yin X, Zhu W, Yang Y, Ju Y, Yuan Y, et al. Theoretical study of brine

491		secondary imbibition in sandstone reservoirs: Implications for H ₂ , CH ₄ , and CO ₂
492		geo-storage. Int J Hydrogen Energy 2022;47:18058–66.
493		https://doi.org/10.1016/J.IJHYDENE.2022.03.275.
494	[58]	Ren B, Jerry J, Duncan I, Lake L. Buoyant flow of H ₂ versus CO ₂ in storage
495		aquifers. SPE Annu. Tech. Conf. Exhib. Houston, Texas, USA, Oct. 2022.
496	[59]	Iglauer S, Ali M, Keshavarz A. Hydrogen wettability of sandstone reservoirs:
497		Implications for hydrogen geo-storage. Geophys Res Lett 2020.
498		https://doi.org/10.1029/2020GL090814.
499	[60]	Ali M, Jha NK, Al-Yaseri A, Zhang Y, Iglauer S, Sarmadivaleh M. Hydrogen
500		wettability of quartz substrates exposed to organic acids; Implications for
501		hydrogen geo-storage in sandstone reservoirs. J Pet Sci Eng 2021;207:109081.
502		https://doi.org/10.1016/J.PETROL.2021.109081.
503	[61]	Krevor S, Blunt MJ, Benson SM, Pentland CH, Reynolds C, Al-Menhali A, et al.
504		Capillary trapping for geologic carbon dioxide storage – From pore scale physics
505		to field scale implications. Int J Greenh Gas Control 2015;40:221-37.
506		https://doi.org/10.1016/J.IJGGC.2015.04.006.
507	[62]	Lysyy M, Ersland G, Fernø M. Pore-scale dynamics for underground porous
508		media hydrogen storage. Adv Water Resour 2022;163:104167.

- 509 https://doi.org/10.1016/J.ADVWATRES.2022.104167.
- 510 [63] Lysyy M, Fernø M, Ersland G. Seasonal hydrogen storage in a depleted oil and
 511 gas field. Int J Hydrogen Energy 2021;46:25160–74.
 512 https://doi.org/10.1016/J.IJHYDENE.2021.05.030.

513	[64]	Tarkows	ski F	R, Uliasz-N	lisiak B.	Towards	undergro	und hy	drogen	storage: A
514		review	of	barriers.	Renew	Sustain	Energy	Rev	2022;10	62:112451.
515		https://d	loi.or	g/10.1016/.	J.RSER.2	022.11245	1.			
516	[65]	van Roo	oijen	W, Hashem	i L, Boon	M, Farajz	adeh R, H	ajibey	gi H. Mic	crofluidics-
517		based an	nalys	is of dyna	mic conta	ct angles	relevant f	for und	erground	l hydrogen
518		storage.		Adv	Wa	ter	Resour		2022;10	64:104221.
519		https://d	loi.or	g/10.1016/.	J.ADVWA	ATRES.20	22.10422	l .		
520										