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Abstract Increasingly complex generative models are
being used across disciplines as they allow for realistic
characterization of data, but a common di�culty with
them is the prohibitively large computational cost to
evaluate the likelihood function and thus to perform
likelihood-based statistical inference. A likelihood-free
inference framework has emerged where the parame-
ters are identi�ed by �nding values that yield simu-
lated data resembling the observed data. While widely
applicable, a major di�culty in this framework is how
to measure the discrepancy between the simulated and
observed data. Transforming the original problem into a
problem of classifying the data into simulated versus ob-
served, we �nd that classi�cation accuracy can be used
to assess the discrepancy. The complete arsenal of clas-
si�cation methods becomes thereby available for infer-
ence of intractable generative models. We validate our
approach using theory and simulations for both point
estimation and Bayesian inference, and demonstrate its
use on real data by inferring an individual-based epi-

Michael U. Gutmann
School of Informatics, University of Edinburgh
E-mail: michael.gutmann@ed.ac.uk

Ritabrata Dutta
InterDisciplinary Institute of Data Science, UniversitÆ della Svizzera
italiana
E-mail: ritabrata.dutta@usi.ch

Samuel Kaski
Helsinki Institute for Information Technology,
Department of Computer Science, Aalto University
E-mail: samuel.kaski@aalto.�

Jukka Corander
Department of Biostatistics, University of Oslo
Helsinki Institute for Information Technology,
Department of Mathematics and Statistics, University of Helsinki
E-mail: jukka.corander@medisin.uio.no

demiological model for bacterial infections in child care
centers.

Keywords approximate Bayesian computation �
generative models � intractable likelihood � latent
variable models � simulator-based models

1 Introduction

The likelihood function plays a central role in statisti-
cal inference by quantifying to which extent some val-
ues of the model parameters are consistent with the
observed data. For complex models, however, evaluat-
ing the likelihood function can be computationally very
costly, which often prevents its use in practice. This pa-
per is about statistical inference for generative models
whose likelihood-function cannot be computed in a rea-
sonable time.1

A generative model is here de�ned as a parametrized
probabilistic mechanism which speci�es how the data
are generated. It is usually implemented as a computer
program that takes a state of the random number gen-
erator and some values of the model parameters � as in-
put and that returns simulated data Y� as output. The
mapping from the parameters � to simulated data Y� is
stochastic and running the computer program for di�er-
ent states of the random number generator corresponds
to sampling from the model. Generative models are also
known as simulator- or simulation-based models (Har-
tig et al 2011), or implicit models (Diggle and Gratton
1984), and are closely related to probabilistic programs
(Mansinghka et al 2013). Their scope of applicability
is extremely wide ranging from genetics and ecology

1 Early versions were communicated as (Gutmann et al 2014a,b).
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(Beaumont 2010) to economics (GouriØroux et al 1993),
physics (Cameron and Pettitt 2012) and computer vi-
sion (Zhu et al 2009).

A disadvantage of complex generative models is the
di�culty of performing inference with them: evaluating
the likelihood function involves computing the proba-
bility of the observed data X as function of the model
parameters �, which for complex models cannot be done
analytically or computationally within practical time
limits.

As generative models are widely used, solutions have
emerged in multiple �elds to perform �likelihood-free�
inference, that is, inference which does not rely on the
availability of the likelihood function. Approximate Bayes-
ian computation (ABC) stems from research in genetics
(Beaumont et al 2002; Marjoram et al 2003; Pritchard
et al 1999; TavarØ et al 1997), while the method of sim-
ulated moments (McFadden 1989; Pakes and Pollard
1989) and indirect inference (GouriØroux et al 1993;
Smith 2008) come from econometrics. The latter meth-
ods are traditionally used in a classical inference frame-
work while ABC has its roots in Bayesian inference,
but the boundaries have started to blur (Drovandi et al
2011). Despite their di�erences, the methods all share
the basic idea to perform inference about � by iden-
tifying values which generate simulated data Y� that
resemble the observed data X.

The discrepancy between the simulated and observed
data is typically measured by reducing each data set to
a vector of summary statistics and measuring the dis-
tance between them. Both the distance function used
and the summary statistics are critical for the success of
the inference procedure (see, for example, the reviews
by Lintusaari et al 2016; Marin et al 2012). Tradition-
ally, researchers choose the two quantities subjectively,
relying on expert knowledge about the observed data.
The goal of this paper is to show that the complete ar-
senal of classi�cation methods can be brought to our
disposal to measure the discrepancy, and thus to per-
form inference for intractable generative models.

The paper is based on the observation that distin-
guishing two data sets that were generated with very
di�erent values of � is usually easier than distinguishing
two data sets that were generated with similar values.
We propose to use the discriminability (classi�ability)
of the observed and simulated data as a discrepancy
measure in likelihood-free inference.

We visualize the basic idea in Figure 1 for the infer-
ence of the mean � of a bivariate Gaussian with iden-
tity covariance matrix. The observed data X, shown
with black circles, were generated with mean �o equal
to zero. Figure 1a shows that data Y� simulated with
mean � = (6; 0) can be easily distinguished from X. The

indicated classi�cation rule yields an accuracy of 100%.
In Figure 1b, on the other hand, the data were simu-
lated with � = (1=2; 0) and distinguishing such data
from X is much more di�cult; the best classi�cation
rule only yields 58% correct assignments. Moreover, if
the data were simulated with � = �o, the classi�ca-
tion task could not be solved signi�cantly above chance-
level. This suggests that we can perform likelihood-free
inference by identifying parameters which yield chance-
level discriminability only.

The remaining parts of the paper are structured as
follows: In Section 2, we �esh out the basic idea. We
then show in Sections 3 and 4 how classi�cation allows
us to perform statistical inference of generative models
in both a classical and Bayesian framework. The ap-
proach will be validated on continuous, binary, discrete,
and time series data where ground truth is known. In
Section 5, we apply the methodology to real data, and
in Section 6, we discuss the proposed approach and re-
lated work. Section 7 concludes the paper.

2 Measuring discrepancy via classi�cation

Standard classi�cation methods operate on feature vec-
tors that numerically represent the properties of the
data that are judged relevant for the discrimination task
(Hastie et al 2009; Wasserman 2004). There is some
freedom in how the feature vectors are constructed. In
the simplest case, the data are statistically independent
and identically distributed (iid) random variables, and
the features are equal to the data points, as in Figure 1.
But the approach of using classi�cation to measure the
discrepancy is not restricted to iid data. In the paper,
we will construct features and set up a classi�cation
problems also for time series or matrix-valued data.

We denote the feature vectors from the observed
data X by xi, and the feature vectors from the sim-
ulated data Y� by yi, where the dependency on � is
suppressed for notational simplicity. We assume that
we obtained n feature vectors from each of the two data
sets. The xi are then associated with class label 0 and
the yi with class label 1, which yields the augmented
data set D�,

D� = f(x1; 0); : : : ; (xn; 0); (y1; 1); : : : ; (yn; 1)g: (1)

Classi�cation consists in predicting the class labels of
the features in D�. This is done by means of a classi-
�cation rule h that maps each feature vector u to its
class label h(u) 2 f0; 1g. The performance of h on D�
can be assessed by the classi�cation accuracy CA,

CA(h;D�) =
1

2n

 
nX

i=1

[1� h(xi)] + h(yi)

!

; (2)
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Fig. 1: Discriminability as discrepancy measure. The observed data X are shown as black circles and were generated with
mean �o = (0; 0). The hatched areas indicate the Bayes classi�cation rules. (a) Simulated data Y� (green diamonds) were
generated with � = (6; 0). (b) Y� (red crosses) were generated with � = (1=2; 0). As � approaches �o, the discriminabil-
ity (best classi�cation accuracy) of X and Y� drops. We propose to use the discriminability as discrepancy measure for
likelihood-free inference.

which is the proportion of correct assignments. The
largest classi�cation accuracy on average is achieved by
the Bayes classi�cation rule h��, which consists in as-
signing a feature vector to X if it is more probable that
the feature belongs to X than to Y�, and vice versa for
Y� (Hastie et al 2009; Wasserman 2004). We denote
this largest classi�cation accuracy by J�n(�),

J�n(�) = CA(h��;D�): (3)

It is an indicator of the discriminability (classi�ability)
of X and Y�.

In the motivating example in Figure 1, the labels
of the data points are indicated by their markers, and
the Bayes classi�cation rule by the hatched areas. The
classi�cation accuracy J�n(�) decreases from 100% (per-
fect classi�cation performance) toward 50% (chance-
level performance) as � approaches �o, the parameter
value which was used to generate the observed data X.
While this provides an intuitive justi�cation for using
J�n(�) as discrepancy measure, an analytical justi�ca-
tion will be given in the next section where we show
that J�n(�) is related to the total variation distance un-
der mild conditions.

In practice, J�n(�) is not computable because the
Bayes classi�cation rule h�� involves the probability dis-
tribution of the data which is unknown in the �rst place.
But the classi�cation literature provides a wealth of
methods to learn an approximation ĥ� of the Bayes

classi�cation rule, and J�n(�) can be estimated via cross-
validation (Hastie et al 2009; Wasserman 2004).

We will use several straightforward methods to ob-
tain ĥ�: linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), L1-regularized polynomial
logistic regression, L1-regularized polynomial support
vector machine (SVM) classi�cation, and an aggrega-
tion of the above and other methods (max-rule, see
Supplementary material 1.1). These are by no means
the only applicable methods. In fact, any method yield-
ing a good approximation of h�� may be chosen; our
approach makes the complete arsenal of classi�cation
methods available for inference of generative models.

While other approaches are possible, for the approx-
imation of J�n(�), we use K-fold cross-validation where
the data D� are divided intoK folds of training and val-
idation sets, the di�erent validation sets being disjoint.
The training sets are used to learn the classi�cation
rules ĥk� by any of the methods above, and the vali-
dation sets Dk� are used to measure their performances
CA(ĥk�;D

k
�). The average classi�cation accuracy on the

validation sets, Jn(�),

Jn(�) =
1
K

KX

k=1

CA(ĥk�;D
k
�); (4)

approximates J�n(�), and is used as computable mea-
sure of the discrepancy between X and Y�.
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We usedK = 5 folds in the paper. In cross-validation,
large values of K generally lead to approximations with
smaller bias but larger variance than small values of K.
Intermediate values like K = 5 are thought to lead to
a good balance between the two desiderata (e.g. Hastie
et al 2009, Section 7.10).

We next show on a range of di�erent kinds of data
that most of the di�erent classi�cation methods yield
equally good approximations of J�n(�) for large sample
sizes. Continuous data (drawn from a univariate Gaus-
sian distribution of variance one), binary data (from
a Bernoulli distribution), count data (from a Poisson
distribution), and time-series data (from a zero mean
moving average model of order one) are considered. For
the �rst three data sets, the unknown parameter is the
mean, and for the moving average model, the lag coe�-
cient is the unknown quantity (see Supplementary ma-
terial 1.2 for the model speci�cations). Unlike for the
other three data sets, the data points from the moving
average model are not statistically independent, as the
lag coe�cient a�ects the correlation between two con-
secutive time points xt and xt+1. For the classi�cation,
we treated each pair (xt; xt+1) as a feature.

Figure 2 shows that for the Gaussian, Bernoulli, and
Poisson data, all the considered classi�cation methods
perform as well as the Bayes classi�cation rule (BCR),
yielding discrepancy measures Jn(�) that are practi-
cally identical to J�n(�). The same holds for the moving
average model, with the exception of LDA. The reason
is that LDA is not sensitive to the correlation between
xt and xt+1, which would be needed to discover the
value of the lag coe�cient. In other words, the Bayes
classi�cation rule h�� is outside the family of possible
classi�cation rules learned by LDA.

The examples show that classi�cation can be used to
identify the data generating parameter value �o by min-
imizing Jn(�). Further evidence is provided as Supple-
mentary material 2. The derivation of conditions which
guarantee the identi�cation of �o via classi�cation in
general is the topic of the next section.

3 Classical inference via classi�cation

In this section, we consider the task of �nding the single
best parameter value. This can be the primary goal of
the inference or only the �rst step before computing the
posterior distribution, which will be considered in the
following section. In our context, the best parameter
value is the value for which the simulated data Y� are
the least distinguishable from the observed data X, that
is, the parameter �̂n which minimizes Jn,

�̂n = argmin�Jn(�): (5)
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Fig. 2: Comparison of the classi�cation accuracy of the
Bayes and the learned classi�cation rules for large sam-
ple sizes (n = 100;000). The symmetric curves depict
Jn and J�n as a function of the relative deviation of the
model parameter from the true data generating param-
eter. As the curves of the different methods are indis-
tinguishable, quadratic discriminant analysis (QDA), L1-
regularized polynomial logistic regression (L1 logistic), L1-
regularized polynomial support vector machine classi�ca-
tion (L1 SVM), and a max-combination of these and other
methods (Max-Rule) perform as well as the Bayes clas-
si�cation rule, which assumes the true distributions to be
known (BCR). For linear discriminant analysis (LDA), this
holds with the exception of the moving average model.

We show that �̂n is a consistent estimator: Assuming
that the observed data X equal some Y�o , generated
with unknown parameter �o, conditions are given under
which �̂n converges to �o in probability as the sample
size n increases. Figure 3 provides motivating evidence
for consistency of �̂n.

The proposition below lists two conditions. The �rst
one is related to convergence of frequencies to expecta-
tions (law of large numbers), the second to the ability
to learn the Bayes classi�cation rule more accurately as
the sample size increases. We prove the proposition in
Appendix A. Some basic assumptions are made: The xi
are assumed to have the marginal probability measure
P�o and the yi the marginal probability measure P� for
all i, which amounts to a weak stationarity assumption.
Importantly, the stationarity assumption does not rule
out statistical dependencies between the data points;
time-series data, for example, are allowed. We also as-
sume that the parametrization of P� is not degenerate,
that is, there is a compact set � containing �o where
� 6= �o implies that P� 6= P�o .
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Fig. 3: Empirical evidence for consistency. The �gure
shows the mean squared estimation error E[jj�̂n��ojj2] for
the examples in Figure 2 as a function of the sample size n
(solid lines, circles). The mean was computed as an average
over 100 outcomes. The dashed lines depict the mean � 2
standard errors. The linear trend on the log-log scale sug-
gests convergence in quadratic mean, and hence consistency
of the estimator �̂n. The results are for L1-regularized lo-
gistic regression, see Supplementary material 3 for the other
classi�cation methods.

PROPOSITION 1 Denote the set of features which the Bayes
classi�cation rule h�� classi�es as being from the simulated
data by H�� . The expected discriminability E(J�n(�)) equals
J(�),

J(�) =
1
2

+
1
2

(P�(H��)� P�o(H��)) ; (6)

and �̂n converges to �o in probability as the sample size n
increases, �̂n

P! �o, if

sup
�2�
jJ�n(�)� J(�)j P! 0 and (7)

sup
�2�
jJn(�)� J�n(�)j P! 0: (8)

The two conditions guarantee that Jn(�) converges uni-
formly to J(�), so that J(�) is minimized with the min-
imization of Jn(�) as n increases. Since J(�) attains its
minimum at �o, �̂n converges to �o. By de�nition of
H�� , P�(H��)�P�o(H��) is one-half of the total variation
distance between the two distributions (Pollard 2001,
Chapter 3). The limiting objective J(�) corresponds
thus to a well de�ned statistical distance between P�
and P�o .

The condition in Equation (7) is about convergence
of sample averages to expectations. Standard conver-
gence results apply for statistically independent fea-
tures. For features with statistical dependencies, like

for example for time-series data, corresponding conver-
gence results are investigated in empirical process the-
ory (van der Vaart and Wellner 1996), which forms a
natural limit of what is studied in this paper. We may
only note that by de�nition of J , convergence will de-
pend on the complexity of the sets H�� , � 2 �, and
hence the complexity of the Bayes classi�cation rules
h��. The condition does not depend on the classi�cation
method employed. In other words, this �rst condition is
about the di�culty of the classi�cation problems that
need to be solved. The condition in Equation (8), on the
other hand, is about the ability to solve them: The per-
formance of the learned rule needs to approach the per-
formance of the Bayes classi�cation rule as the number
of available samples increases. How to best learn such
rules and �nding conditions which guarantee successful
learning is a research area in itself (Zhang 2004).

In Figure 2, LDA did not satisfy the condition in
Equation (8) for the moving average data, which can
be seen by the chance-level performance for all param-
eters tested. This failure of LDA suggests a practical
means to test whether the second condition holds: We
generate data sets with two very di�erent parameter
values so that it is unlikely that the data sets are sim-
ilar to each other, and learn to discriminate between
them. If the performance is persistently close to chance-
level, the Bayes classi�cation rule is likely outside the
family of classi�cation rules that the method is able to
learn, so that the condition would be violated. Regard-
ing the �rst condition, the results in Figure 3 suggest
that it is satis�ed for all four inference problems con-
sidered. Generally verifying whether the sample average
converges to the expectation, e.g. via a general method
that works reliably for any kind of time-series data,
seems, however, di�cult.

4 Bayesian inference via classi�cation

We consider next inference of the posterior distribution
of � in the framework of approximate Bayesian compu-
tation (ABC).

ABC comprises several simulation-based methods to
obtain samples from the posterior distribution when the
likelihood function is not known (for review papers, see,
for example, Lintusaari et al 2016; Marin et al 2012).
ABC algorithms are iterative: The basic steps at each
iteration are

1. proposing a parameter value �0,
2. simulating pseudo observed data Y�0 , and then
3. accepting or rejecting the proposal based on a com-

parison of Y�0 with the real observed data X.

How to actually measure the discrepancy between the
observed and the simulated data is a major di�culty in
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(a) binary data (Bernoulli) (b) count data (Poisson)

(c) continuous data (Gauss) (d) time series (ARCH)

Fig. 4: Posterior distributions inferred by classi�er ABC for binary, count, continuous and time-series data. The results are for
10,000 ABC samples and n = 50. For the univariate cases, the samples are summarized as empirical pdfs. For the bivariate
cases, scatter plots of the obtained samples are shown (the results are for the max-rule). The numbers on the contours are
relative to the maximum of the reference posterior. For the autoregressive conditional heteroskedasticity (ARCH) model, the
hatched area indicates the domain of the uniform prior. Supplementary material 4 contains additional examples and results.

these methods (Lintusaari et al 2016; Marin et al 2012).
We here show that Jn can be used as a discrepancy
measure in ABC; in the following, we call this approach
�classi�er ABC.� In step 3, we thus compare Y�0 and
X through the lenses of a classi�er by computing the
discriminability of the two data sets.

The results reported in this paper were obtained
with a sequential Monte Carlo implementation (see Sup-
plementary material 1.3). The use of Jn in ABC is,
however, not restricted to that particular algorithm.

We validated classi�er ABC on binary (Bernoulli),
count (Poisson), continuous (Gaussian), and time-series
(ARCH) data (see Supplementary material 1.2 for the
model details). The true posterior for the autoregres-
sive conditional heteroskedasticity (ARCH) model is
not available in closed form. We approximated it us-
ing deterministic numerical integration, as detailed in
Supplementary material 1.2.

The inferred empirical posterior probability density
functions (pdfs) are shown in Figure 4. There is a good
match with the true posterior pdfs or the approxima-
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tion obtained with deterministic numerical integration.
Di�erent classi�cation methods yield di�erent results
but the overall performance is rather similar. Regard-
ing computation time, the simpler LDA and QDA tend
to be faster than the other classi�cation methods used,
with the max-rule being the slowest one. Additional ex-
amples as well as links to movies showing the evolution
of the posterior samples in the ABC algorithm can be
found in Supplementary material 4.

As a quantitative analysis, we computed the relative
error of the posterior means and standard deviations.
The results, reported as part of Supplementary mate-
rial 4, show that the errors in the posterior mean are
within 5% after �ve iterations of the ABC algorithm
for the examples with independent data points. For the
time series, where the data points are not independent,
a larger error of 15% occurs. The histograms and scat-
ter plots show, however, that the corresponding ABC
samples are still very reasonable.

5 Application on real data

We next used our approach to infer an intractable model
of bacterial infections in child care centers.

5.1 Data and model

The observed data X were the presence or absence of
di�erent strains of the bacterium Streptococcus pneu-
moniae among attendees of M = 29 child care cen-
ters in the metropolitan area of Oslo, Norway, at single
points of time Tm (cross-sectional data). On average,
N = 53 children attended a center. Only a subset of size
Nm of all attendees of each center was sampled. The
data were collected and �rst described by Vestrheim
et al (2008).

In the following, we represent the colonization state
of individual i in a child care center by the binary vari-
able Itis; s = 1; : : : ; S, where S the total number of
strains in circulation. If the attendee is infected with
strain s of the bacterium at time t, Itis = 1, and other-
wise, Itis = 0. The observed data X consisted thus of a
set of M = 29 binary matrices of size Nm � S formed
by the ITm

is , i = 1; : : : ; Nm; s = 1; : : : ; S.
The model for which we performed inference was

developed by Numminen et al (2013). It is individual-
based and consists of a continuous-time Markov chain
for the transmission dynamics inside a child care center
paired with an observation model. The child care cen-
ters were assumed independent. The model is sketched
in Figure 5 for a single center.

In each child care center, the transmission dynam-
ics started with zero infected individuals, I0

is = 0 for all
i and s, after which the states evolved in a stochastic
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Fig. 5: Sketch of the individual-based epidemic model. The
evolution of the colonization states in a single child care cen-
ter is shown. Colonization is indicated by the black squares.

manner according to the following transition probabil-
ities:

P(It+his = 0jItis = 1) = h+ o(h); (9)

P(It+his = 1jItis0 = 0 8s0) = Rtsh+ o(h); (10)

P(It+his = 1jItis = 0; 9s0 : Itis0 = 1) = �Rtsh+ o(h); (11)

where h is a small time interval and o(h) a remainder
term satisfying limh!0 o(h)=h = 0. Equation (9) de-
scribes the probability to clear strain s, Equation (10)
the probability to be infected by it when previously not
infected with any strain, and Equation (11) the proba-
bility to be infected by it when previously infected with
another strain s0. The rate of infection with strain s at
time t is denoted by Rts, and � 2 (0; 1) is an unknown
co-infection parameter. For � = 0, the probability for a
co-infection is zero. The rate Rts was modeled as

Rts = �Ets + �Ps; (12)

Ets =
NX

j=1

1
N � 1

Itjs
ntj
; (13)

ntj =
SX

s0=1

Itjs0 ; (14)

where N is the average number of children attending
the child care center, and � and � are two unknown rate
parameters that scale the static probability Ps for an in-
fection happening outside the child care center and the
dynamic probability Ets for an infection from within, re-
spectively. The probability Ps and the number of strains
S were determined by an analysis of the overall distribu-
tion of the strains in the cross-sectional data (yielding
S = 33; for Ps, see Numminen et al 2013). The expres-
sion for Ets in Equation (13) was derived by assuming
that contacts happen uniformly at random (the proba-
bility for a contact is 1=(N � 1)), and that the strains
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attendee j is carrying are all transmitted with equal
probability (with ntj being the total number of strains
carried by attendee j, the probability for a transmission
of strain s is Itjs=ntj).

The observation model was random sampling of Nm
individuals without replacement from the average num-
ber N of individuals attending a child care center. A
stationarity assumption was made so that the exact
value of the sampling time Tm was not of importance
as long as it is su�ciently large so that the system is in
its stationary regime.

The model has three parameters for which uniform
priors were assumed: Parameter � 2 (0; 11) which is
related to the probability to be infected by someone
inside a child care center, parameter � 2 (0; 2) for the
probability of an infection from an outside source, and
parameter � 2 (0; 1) which is related to the probability
to be infected with multiple strains. With a slight abuse
of notation, we will use � = (�;�; �) to denote the
compound parameter vector.

5.2 Reference inference method

Since the likelihood function is intractable, the model
was inferred with ABC in previous work (Numminen
et al 2013). The summary statistics were chosen based
on epidemiological considerations and the distance func-
tion was adapted to the speci�c problem at hand.

To compare X and Y�, Numminen et al (2013) �rst
summarized each of the M = 29 child care centers of
the simulated and observed data using four statistics,

1. the strain diversity in the child care centers,
2. the number of di�erent strains circulating,
3. the proportion of individuals who are infected, and
4. the proportion of individuals who are infected with

more than one strain.

For each of the four summary statistics, the empirical
cumulative distribution function (cdf) was computed
from the obtained M = 29 values. The L1 distances
between the empirical cdfs of the summary statistics
for X and Y� were then used to assess the discrepancy
(Numminen et al 2013). Inference was performed with a
sequential Monte Carlo ABC algorithm with four gen-
erations. The corresponding posterior distribution will
serve as reference against which we compare the solu-
tion by classi�er ABC.

5.3 Formulation as classi�cation problem

For likelihood-free inference via standard classi�cation,
the observed matrix-valued data were transformed to
feature vectors. We used simple features which re�ect
the matrix structure and the binary nature of the data.

For the matrix-nature of the data, the rank of each
matrix and the L2-norm of the singular values (scaled
by the size of the matrix) were used. For the binary na-
ture of the data, we counted the fraction of ones in cer-
tain subsets of each matrix and used the average of the
counts and their variability as features. The set of rows
and the set of columns were used, as well as 100 ran-
domly chosen subsets. Each random subset contained
10% of the elements of a matrix. Since the average of
the counts is the same for the row and column subsets
(it equals the fraction of all ones in a matrix), only one
average was used.

The features xi or yi in the classi�cation had thus
size seven (2 dimensions are for the matrix properties,
3 dimensions for the column and row subsets, and 2
dimensions for the random subsets). Multiple random
subsets can be extracted from each matrix. We made
use of this to obtain n = 1;000 features xi and yi.
We also ran classi�er ABC without random subsets;
the classi�cation problems consisted then in discrimi-
nating between two data sets consisting each of 29 �ve-
dimensional feature vectors. As classi�cation method,
we used LDA.

5.4 Inference results

In ABC, the applicability of a discrepancy measure can
be assessed by �rst performing inference on synthetic
data of the same size and structure as the observed data
but simulated from the model with known parameter
values. Since ABC algorithms are rather time consum-
ing, we �rst tested the applicability of Jn in the frame-
work of point estimation. We computed Jn(�) varying
only two of the three parameters at a time, keeping the
third parameter �xed at the value which was used to
generate the data. To eliminate random e�ects, we used
for all � the same random number generator seed when
simulating the Y�. The seeds for X and the Y� were
di�erent.

Figure 6 shows the results for classi�cation with ran-
domly chosen subsets (top row) and without (bottom
row). The diagrams on the top and bottom row are very
similar, both have well-de�ned regions in the parame-
ter space for which Jn is close to one half, which corre-
sponds to chance-level discriminability. But the features
from the random subsets were helpful to discriminate
between X and Y� and produced more localized re-
gions with small Jn. The results suggest that LDA, the
arguably simplest classi�cation method, is suitable to
infer the epidemic model.

We next applied classi�er ABC on the synthetic
data, using a sequential Monte Carlo ABC algorithm
with four generations as previously done by Numminen
et al (2013).
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Fig. 6: Testing the applicability of the discrepancy measure Jn to infer the individual-based epidemic model. The �g-
ures show Jn(�) when one parameter is �xed at a time. The red crosses mark the data generating parameter value
�o = (�o; �o; �o) = (3:6; 0:6; 0:1). The presence of random features produced more localized regions with small Jn.

The resulting posterior pdfs are shown in Figure 7 in
form of kernel density estimates (smoothed and scaled
histograms) based on 1,000 ABC samples. It can be
seen that classi�er ABC with or without random sub-
sets both yielded results which are qualitatively simi-
lar to the expert solution. The strongest di�erence is
that the tails of the posterior pdf of � are heavier for
classi�er ABC than for the expert solution. In case of
classi�er ABC with random subsets, this di�erence be-
came less pronounced when the algorithm was run for
an additional �fth iteration (Supplementary material
5). For classi�er ABC without random subsets, on the
other hand, the di�erence persisted. This behavior is
in line with Figure 6 where the random features led to
tighter Jn-diagrams. Overall, the results on synthetic
data con�rm the applicability of classi�er ABC to infer
the epidemic model.

The results on real data are shown in Figure 8. It
can be seen that the posterior distributions obtained
with classi�er ABC are generally similar to the expert
solution. The posterior mode of � for classi�er ABC
with random subsets is slightly smaller than for the
other methods. The shift could be due to stochastic
variation because we only worked with 1,000 ABC sam-
ples. It could, however, also be that the random features
picked up some properties of the real data which the
other methods are not sensitive to.

The computation time of classi�er ABC with LDA
was about the same as for the method by Numminen
et al (2013): On average, the total time for the data gen-

eration and the discrepancy measurement was 28.49 �
3.45 seconds for LDA while it was 28.41 � 3.45 seconds
for the expert method; with 28.4 � 3.45 seconds, most
of the time was spent on generating data from the epi-
demic model. Altogether, classi�er ABC thus yielded
inference results which are equivalent to the expert so-
lution, from both a statistical and computational point
of view.

5.5 Compensating for missing expert statistics

So far we did not use expert-knowledge about the infer-
ence problem when solving it with classi�er ABC. Using
discriminability in a classi�cation task as a discrepancy
measure is a data-driven approach to assess the similar-
ity between simulated and observed data. But it is not
necessarily a black-box approach. Knowledge about the
problem at hand can be incorporated when specifying
the classi�cation problem. Furthermore, the approach
is compatible with summary statistics derived from ex-
pert knowledge: Classi�er ABC, and more generally the
discrepancy measure Jn, is able to incorporate the ex-
pert statistics by letting them be features (covariates)
in the classi�cation. The combined use of expert statis-
tics and classi�er ABC enables one to �lter out prop-
erties of the model which are either not of interest or
known to be wrong. Moreover, it makes the inference
more robust, for example to possible misspeci�cations
or insu�ciencies of the summary statistics, as we illus-
trate next.
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Fig. 8: Inference results on real data, visualized as in Figure 7.

We selected two simple expert statistics used by
Numminen et al (2013), namely the number of di�erent
strains circulating and the proportion of infected indi-
viduals, and inferred the posteriors with this reduced
set of summary statistics, using the method by Num-
minen et al (2013) as before. Figure 9 shows that con-
sequently, the posterior distributions of � and � dete-
riorated. The used expert statistics alone were insu�-
cient to perform ABC. Combining the insu�cient set
of summary statistics with classi�er ABC, however, led
to a recovery of the posteriors. The result are for classi-
�er ABC with random subsets, but the same holds for
classi�er ABC without random subsets (Supplementary
material 5).

6 Discussion

Generative models are useful and widely applicable for
dealing with uncertainty and for making inferences from
data. The intractability of the likelihood function is,
however, often a serious problem in the inference for
realistic models. While likelihood-free methods provide

a powerful framework for performing inference, a limit-
ing di�culty is the required discrepancy measurement
between simulated and observed data.

We found that classi�cation can be used to mea-
sure the discrepancy. This �nding has practical value
because it reduces the di�cult problem of choosing an
appropriate discrepancy measure to a more standard
problem where we can leverage a wealth of existing so-
lutions; whenever we can classify, we can do likelihood-
free inference. It o�ers also theoretical value because it
reveals that classi�cation can yield consistent likelihood-
free inference, and that the two �elds of research, which
appear very much separated at �rst glance, are actually
tightly connected.

6.1 Summary statistics versus features

In the proposed approach, instead of choosing sum-
mary statistics and a distance function between them
as in the standard approach, we need to choose a clas-
si�cation method and the features. The reader may
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thus wonder whether we replaced one possibly arbitrary
choice with another. The important point is that by
choosing a classi�cation method, we only decide about
a function space, and not the classi�cation rule itself.
The classi�cation rule that is �nally used to measure the
discrepancy is learned from data and is not speci�ed by
the user, which is in stark contrast to the traditional
approach based on �xed summary statistics. Moreover,
the function space can be chosen using cross-validation,
as implemented with our max-rule, which reduces the
arbitrariness even more. In Figure Figure 2, for exam-
ple, the max-rule successfully chose to use other clas-
si�cation methods than LDA for the inference of the
moving average model. The in�uence of the choice of
features is also rather mild, because they only a�ect the
discrepancy measurement via the learned classi�cation
rule. This property of the proposed approach allowed
us to even use random features in the inference of the
epidemic model.

The possibility to use random features, however,
does not mean that we should not use reliable expert
knowledge when available. Indeed, summary statistics
derived from expert knowledge can be included by let-
ting them be features (covariates) in the classi�cation.

6.2 Related work

In previous work, regression with the parameters � as
response variables was used to generate summary statis-
tics from a larger pool of candidates (Aeschbacher et al
2012; Fearnhead and Prangle 2012; Wegmann et al 2009).
The shared characteristic of these works and our ap-
proach is the learning of transformations of the sum-
mary statistics and the features, respectively. The cri-
teria which drive the learning are, however, rather dif-
ferent.

Since the candidate statistics are a function of the
simulated data Y�, we may consider the regression to
provide an approximate inversion of the data generation
process � 7! Y�. In this interpretation, the (Euclidean)
distance of the summary statistics is an approxima-
tion of the (Euclidean) distance of the parameters. The
optimal inversion of the data generating process in a
mean squared error sense is the conditional expecta-
tion E(�jY�). Fearnhead and Prangle (2012) showed
that this conditional expectation is also the optimal
summary statistic for Y� if the goal is to infer �o as
accurately as possible under a quadratic loss. Transfor-
mations based on regression are thus strongly linked to
the computation of the distance between the parame-
ters. The reason we learn transformations, on the other
hand, is that we would like to approximate J�n(�) well,
which is linked to the computation of the total varia-
tion distance between the distributions indexed by the
parameters.

Classi�cation was recently used in other work on
ABC, but in a di�erent manner. Intractable density ra-
tios in Markov chain Monte Carlo algorithms were esti-
mated using tools from classi�cation (Pham et al 2014),
in particular random forests, and Pudlo et al (2016)
used random forests for model selection by learning to
predict the model class from the simulated data instead
of computing their posterior probabilities. This is dif-
ferent from using classi�cation to de�ne a discrepancy
measure between simulated and observed data, as done
here.

A particular classi�cation method, (nonlinear) lo-
gistic regression, was used for the estimation of unnor-
malized models (Gutmann and Hyvärinen 2012), which
are models where the probability density functions are
known up to the normalizing partition function only
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(see Gutmann and Hyvärinen (2013a) for a review pa-
per, and BarthelmØ and Chopin (2015); Gutmann and
Hirayama (2011); Pihlaja et al (2010) for generaliza-
tions). Likelihood-based inference is intractable for un-
normalized models but unlike in the generative models
considered here, the shape of the model-pdf is known
which can be exploited in the inference.

At about the same time we �rst presented our work
(Gutmann et al 2014a,b), Goodfellow et al (2014) pro-
posed to use nonlinear logistic regression to train a
neural network such that it transforms �noise� samples
into samples approximately following the same distri-
bution as some given data set. The main di�erence to
our work is that the method of Goodfellow et al (2014)
is a method for producing random samples while ours
is a method for statistical inference.

6.3 Sequential inference and prediction

We did not make any speci�c assumptions about the
model or the structure of the observed data X. An in-
teresting special case occurs when X are an element
X(t0) of a sequence of data sets X(t) which are observed
one after the other, and the generative model is spec-
i�ed accordingly to generate a sequence of simulated
data sets.

For inference at t0, we can distinguish between sim-
ulated data which were generated either before or after
X(t0) are observed: In the former case, the simulated
data are predictions about X(t0), and after observation
of X(t0), likelihood-free inference about � corresponds
to assessing the accuracy of the predictions. That is,
the discrepancy measurement converts the predictions
of X(t0) into inferences of the causes of X(t0). In the
latter case, each simulated data set can immediately
be compared to X(t0) which enables e�cient iterative
identi�cation of parameter values with low discrepancy
(Gutmann and Corander 2016). That is, the possible
causes of X(t0) can be explained more accurately with
the bene�t of hindsight.

6.4 Relation to perception and arti�cial intelligence

Probabilistic modeling and inference play key roles in
image understanding (Gutmann and Hyvärinen 2013b),
robotics (Thrun et al 2006), and arti�cial intelligence
(Ghahramani 2015). Perception has been modeled as
(Bayesian) inference based on a �mental� generative
model of the world (e.g. Vincent 2015). In most of the
literature, variational approximate inference has been
used for intractable generative models, giving rise to
the Helmholtz machine (Dayan et al 1995) and to the

free-energy in neuroscience (Friston 2010). But other
approximate inference methods can be considered as
well.

The discussion about sequential inference and pre-
diction points to similarities between perception and
likelihood-free inference or approximate Bayesian com-
putation. It is intuitively sensible that perception would
involve prediction of new sensory input given the past,
as well as an assessment of the predictions and a re-
�nement of their explanations after arrival of the data.
The quality of the inference depends on the quality of
the generative model and the quality of the discrep-
ancy assessment. That is, the inference results may only
be useful if the generative model of the world is rich
enough to produce data resembling the observed data,
and if the discrepancy measure can reliably distinguish
between the �mentally� generated and the actually ob-
served data.

We proposed to measure the discrepancy via clas-
si�cation, being agnostic about the particular classi�er
used. It is an open question how to generally best mea-
sure the classi�cation accuracy when the data are ar-
riving sequentially. Classi�ers are, however, rather nat-
urally part of perceptual systems. Rapid object recog-
nition, for instance, can be achieved via feedforward
multilayer classi�ers (Serre et al 2007) and there are
several techniques to learn representations which facil-
itate classi�cation (Bengio et al 2013). It is thus con-
ceivable that a given classi�cation machinery is used for
several purposes, for example to quickly recognize cer-
tain objects but also to assess the discrepancy between
simulated and observed data.

7 Conclusions and future work

In the paper, we proposed to measure the discrepancy
in likelihood-free inference via classi�cation. We focused
on the principle and not on a particular classi�cation
method. Some methods may be particularly suited for
certain models, where it may be possible to measure
the discrepancy via the loss function that is used to
learn the classi�cation rule instead of the classi�cation
accuracy.

When working with the classi�cation accuracy, we
only use a single bit of information per data point.
While this is little information, we showed that the ap-
proach yielded accurate posterior inferences and that
it de�nes a consistent estimator. The Bayesian infer-
ence results were empirical and it is likely that a more
rigorous theoretical analysis will reveal that the single
bit of information puts a limit on the possible closeness
to the true posterior. While our empirical results sug-
gest that other error sources may be more dominant
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in practice, the bottleneck can be avoided by using the
current setup to identify the relevant summary statis-
tics, or some transformation of them, and by computing
the discrepancy by their Euclidean distance as in clas-
sical ABC. While this is a possible approach, in recent
work, we chose another path by training the classi�er
on two simulated data sets whose size can be made as
large as computationally possible (Dutta et al 2016).

We here worked with a single simulated data set
per parameter value. If multiple simulated data sets
are available, they may be used to de�ne an approx-
imate likelihood function by, for example, averaging
their corresponding discrepancies (see e.g. Gutmann
and Corander 2016, Section 3.3). The approximate like-
lihood function can then be maximised with respect to
the parameters or used in place of the actual likelihood
function in standard methods for posterior sampling.

Further exploration of the connection between clas-
si�cation and likelihood-free inference is likely to lead to
practical improvements in general: Each parameter �,
for instance, induces a classi�cation problem. We here
treated the classi�cation problems separately but they
are actually related. First, the observed data X occur
in all the classi�cation problems. Second, the simulated
data sets Y� are likely to share some properties if the
parameters are not too di�erent. Taking advantage of
the relation between the di�erent classi�cation prob-
lems may lead to both computational and statistical
gains. In the classi�cation literature, leveraging the so-
lution of one problem to solve another one is generally
known as transfer learning (Pan and Yang 2010). In
the same spirit, leveraging transfer learning, or other
methods from classi�cation, seems promising to further
advance likelihood-free inference.
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Appendix A Proof of proposition 1

Proposition 1 is proved using an approach based on uniform
convergence in probability of Jn to a function J whose mini-
mizer is �o (van der Vaart 1998). The proof has three steps:
First, we identify J . Second, we �nd conditions under which J
is minimized by �o. Third, we derive conditions which imply
that Jn converges to J .

A.1 De�nition of J

For validation sets Dk� consisting of 2m labeled features (xki ; 0)
and (yki ; 1), i = 1; : : : ;m, we have by de�nition of CA(h;D�) in
Equation (2)

CA(ĥk� ;D
k
�) =

1
2m

 
mX

i=1

[1� ĥk�(xki )] + ĥk�(yki )

!

(15)

=
1
2

+
1

2m

mX

i=1

ĥk�(yki )� ĥk�(xki ); (16)

so that Jn(�) in Equation (4) can be written as

Jn(�) =
1
K

KX

k=1

 
1
2

+
1

2m

mX

i=1

ĥk�(yki )� ĥk�(xki )

!

(17)

=
1
2

+
1

2Km

mX

i=1

KX

k=1

ĥk�(yki )� ĥk�(xki ): (18)

Each feature is used exactly once for validation since the Dk�
are disjoint. We make the simplifying assumption that splitting
the original n features into K folds of m features was possible
without remainders. We can then order the yki as

y1
1; : : : ;y

1
m;y

2
1; : : : ;y

2
m;y

3
1; : : : ;y

K
m;

and relabel them from 1 to n. Doing the same for the xki , we
obtain

Jn(�) =
1
2

+
1

2n

nX

i=1

ĥk(i)
� (yi)�

1
2n

nX

i=1

ĥk(i)
� (xi): (19)

The function k(i) in the equation indicates to which validation
set feature i belonged. If the Bayes classi�cation rule is used
instead of the learned ĥk(i)

� , we obtain J�n(�) in Equation (3),

J�n(�) =
1
2

+
1

2n

nX

i=1

h��(yi)�
1

2n

nX

i=1

h��(xi): (20)

The function k(i) disappeared because of the weak stationarity
assumption that the marginal distributions of the xi and yi do
not depend on i.

In what follows, it is helpful to introduce the set H�� = fu :
h��(u) = 1g. The normalized sums in (20) are then the fractions
of features which belong to H�� . Taking the expectation over X
and Y� , using that the expectation over the binary function
h�� equals the probability of the set H�� ,

E(h��(yi)) = P�(H��); E(h��(xi)) = P�o (H��); (21)

we obtain the average discriminability E(J�n(�)) = J(�),

J(�) =
1
2

+
1
2
�
P�(H��)� P�o (H��)

�
: (22)
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The di�erence between Jn and J is twofold: First, relative fre-
quencies instead of probabilities (expectations) occur. Second,
learned classi�cation rules instead of the Bayes classi�cation
rule are used.
Remark: There is an interesting analogy between the objective
J�n and the log-likelihood: The sum over the yi does not de-
pend on the observed data but on � and may be considered an
analogue to the log-partition function (or an estimate of it). In
the same analogy, the sum over the xi corresponds to the log-
arithm of the unnormalized model of the data. The two terms
have opposite signs and balance each other as in the methods
for unnormalized models reviewed by Gutmann and Hyvärinen
(2013a).

A.2 Minimization of J

We note that J(�o) = 1=2. Since H�� contains only the points
which are more probable under P� than under P�o , we have fur-
ther that J(�) � 1=2. Hence, �o is a minimizer of J . However,
�o might not be the only one: Depending on the parametriza-
tion, it could be that P�o = P� for some ~� other than �o. We
therefore made the identi�ability assumption that the ~� are
well separated from �o so that there is is a compact subset � of
the parameter space which contains �o but none of the ~�. The
above can then be summarized as Proposition 2.
PROPOSITION 2 J(�o) = 1=2 and J(�) > 1=2 for all other � 2 �.
Restricting the parameter space to �, consistency of �̂n follows
from uniform convergence of Jn to J on � (van der Vaart 1998,
Theorem 5.7).

A.3 Uniform convergence of Jn to J

We show that Jn converges uniformly to J if J�n converges to
J and if Jn stays close to J�n for large n. This splits the con-
vergence problem into two sub-problems with clear meanings
which are discussed in the main text.
PROPOSITION 3

If sup
�2�
jJ(�)� J�n(�)j P! 0 and sup

�2�
jJ�n(�)� Jn(�)j P! 0

then sup
�2�
jJ(�)� Jn(�)j P! 0: (23)

Proof. By the triangle inequality, we have

jJ(�)� Jn(�)j � jJ(�)� J�n(�)j+ jJ�n(�)� Jn(�)j; (24)

so that

sup
�2�
jJ(�)�Jn(�)j � sup

�2�
jJ(�)�J�n(�)j+ sup

�2�
jJ�n(�)�Jn(�)j;

and hence

P

�
sup
�2�
jJ(�)� Jn(�)j > �

�
�P

�
sup
�2�
jJ(�)� J�n(�)j+

sup
�2�
jJ�n(�)� Jn(�)j > �

�
(25)

It further holds that

P

�
sup
�2�
jJ(�)� J�n(�)j+ sup

�2�
jJ�n(�)� Jn(�)j > �

�
� (26)

P

�
sup
�2�
jJ(�)� J�n(�)j >

�
2

�
+ P

�
sup
�2�
jJ�n(�)� Jn(�)j >

�
2

�

which concludes the proof.
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1. Models and algorithms

This section contains details on the classi�cation methods, the models for continuous, bi-
nary, count and time-series data used to test our approach, as well as the ABC algorithm
employed.

1.1 Classi�cation methods

There are many possible classi�cation methods, ranging from traditional logistic regression
to more recent deep learning and kernel methods. For an introduction, we refer the reader
to the textbooks by Wasserman (2004) and Hastie et al (2009). We used methods provided
by two libraries: For linear and quadratic discriminant analysis (LDA and QDA), mat-
lab’s classify.m was employed. For L1 and L2 regularized polynomial logistic regression
and support vector machine (SVM) classi�cation, we used the liblinear classi�cation
library (Fan et al 2008), version 1.93, via the matlab interface, with a �xed regularization
penalty (we used the default value C = 1). The liblinear library is for linear classi�-
cation. Polynomial classi�cation was implemented via polynomial basis expansion (Hastie
et al 2009, Chapter 5). We rescaled the covariates to the interval [�1; 1] and used the �rst
nine Chebyshev polynomials of the �rst kind.

For all methods but LDA, multidimensional xi were projected onto their principal com-
ponents prior to classi�cation and thereafter rescaled to variance one. This operation
amounts to multiplying the xi with a whitening matrix, and the yi were multiplied with
the same matrix.

The max-rule consisted in trying several classi�cation methods and selecting the one
giving the largest classi�cation accuracy. We used L1 and L2 regularized polynomial logistic
regression and SVM classi�cation with the penalties C = 0:1; 1; 10, as well as LDA and QDA.
When LDA was not applicable (as for the moving average model), it was excluded from the
pool of classi�cation methods used for the max-rule.

1.2 Models used for continuous, binary, count, and time series data

We tested the proposed inference method on several well-known distributions. This section
details the models and lists the parameters used to generate the data, as well as the priors
employed for Bayesian inference and the corresponding posterior distributions. The poste-
rior distributions served as reference against which we compared the distributions produced
by classi�er ABC.

The sample average of n data points (x1; : : : ; xn) will be denoted by �x, and the sample
variance by s2

n,

�x =
1
n

nX

i=1
xi; s2

n =
1
n

nX

i=1
(xi � �x)2: (S1)

1.2.1 CONTINUOUS DATA

We considered inference for a univariate Gaussian with unknown mean and known variance,
and inference of both mean and variance.
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Gaussian with unknown mean. The data were sampled from a univariate Gaussian with
mean �o = 1 and variance vo = 1. Inference was performed on the mean �. In the Bayesian
setting, the prior distribution of � was Gaussian,

� � N (�0; v0); p(�j�0; v0) =
1p

2�v0
exp

 

�
(�� �0)2

2v0

!

; (S2)

with mean �0 = 3 and variance v0 = 1. For Gaussian data with known variance vo and
a Gaussian prior on the mean �, the posterior distribution of � is Gaussian with mean �n
and variance vn,

�jX � N (�n; vn); �n =
��0

v0
+
n�x
vo

�
vn; vn =

� 1
v0

+
n
vo

��1
; (S3)

see, for example, (Gelman et al 2003, Chapter 2).
Gaussian with unknown mean and variance. The Gaussian data were generated with

mean �o = 3 and variance vo = 4. Both mean � and variance v were considered unknown.
In the Bayesian setting, the prior distribution was normal-inverse-gamma,

�jv � N
�
�0;

v
�0

�
; v � G�1(�0; �0); p(vj�0; �0) =

��0
0

�(�0)
v��0�1 exp

�
�
�0

v

�
; (S4)

where �0 and �0 are the shape and scale parameters, respectively, and �(:) is the gamma
function, �(t) =

R1
0 ut�1 exp(�u)du. The parameter values �0 = 0; �0 = 1; �0 = 3; �0 = 0:5

were used. This gives a prior variance with mean and standard deviation 0.25. The posterior
is normal-inverse-gamma with updated parameters �n; �n; �n; �n,

�jv;X � N
�
�n;

v
�n

�
; �n =

�0�0 + n�x
�0 + n

; �n = �0 + n; (S5)

vjX � G�1(�n; �n); �n = �0 +
n
2
; �n = �0 +

n
2
s2
n +

n
2

�0

�0 + n
(�x� �0)2; (S6)

see, for example, (Gelman et al 2003, Chapter 3).

1.2.2 BINARY DATA

The data were a random sample from a Bernoulli distribution with success probability
(mean) �o = 0:2. The prior on the mean � was a beta distribution with parameters
�0 = �0 = 2,

� � Beta(�0; �0); p(�j�0; �0) =
�(�0 + �0)
�(�0)�(�0)

��0�1(1� �)�0�1; (S7)

which has mean 0.5 and standard deviation 0.22. The posterior is beta with parameters
�n, �n,

�jX � Beta(�n; �n); �n = �0 + n�x; �n = �0 + n(1� �x); (S8)

see, for example, (Gelman et al 2003, Chapter 2).
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1.2.3 COUNT DATA

The data were a random sample from a Poisson distribution with mean �o = 10. The prior
on the mean � was a gamma distribution with shape parameter �0 = 3 and rate parameter
�0 = 1=2,

� � G(�0; �0); p(�j�0; �0) =
��0

0
�(�0)

��0�1 exp (��0�) : (S9)

The prior distribution has mean 6, mode 4, and standard deviation 3.46. The posterior
distribution is gamma with parameters �n, �n,

�jX � G(�n; �n); �n = �0 + n�x; �n = �0 + n; (S10)

see, for example, (Gelman et al 2003, Chapter 2).

1.2.4 TIME SERIES

We considered a moving average and an ARCH(1) model.
Moving average model. The time series is determined by the update equation

xt = �t + ��t�1; t = 1; : : : ; T; (S11)

where the �t; t = 0; : : : ; T are independent standard normal random variables, and �0 is
unobserved. The observed data were generated with �o = 0:3. The xi for classi�cation
consisted of 2 consecutive time points (xt; xt+1).

For the derivation of the posterior distribution, it is helpful to write the update equation
in matrix form. Let x0:T = (x0; : : : ; xT ) and � = (�0; : : : ; �T ) be two column vectors of length
T +1. The update equation does not specify the value of x0. We thus set x0 = �0. Equation
(S11) can then be written as

x0:T = B�; B =

0

BBBBBBB@

1 0
� 1 0

. . . . . . . . .
. . . . . . 0

� 1

1

CCCCCCCA

: (S12)

It follows that x0:T is zero mean Gaussian with covariance matrix BB>. Since x0:T has a
Gaussian distribution, we can analytically integrate out the unobserved x0. The resulting
vector x1:T is zero mean Gaussian with tridiagonal covariance matrix C,

C =

0

BBBBBBB@

1 + �2 �
� 1 + �2 �

. . . . . . . . .
. . . . . . �

� 1 + �2

1

CCCCCCCA

: (S13)
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We denote the distribution of x1:T by p(x1:T j�). A uniform prior on (�1; 1) was assumed
for �. The posterior probability density function of � given x1:T is thus p(�jx1:T ),

p(�jx1:T ) =
p(x1:T j�)R 1

�1 p(x1:T j�)d�
; � 2 (�1; 1): (S14)

The normalizing denominator can be computed using numerical integration. Numerical
integration can also be used to compute the posterior mean and variance. We used matlab’s
integral.m.

ARCH(1) model. The model used was

xt = �1xt�1 + �t; �t = �t
q

0:2 + �2�2t�1; t = 1; : : : ; T; x0 = 0; (S15)

where the �t and �0 are independent standard normal random variables. We call �1 the
mean process coe�cient and �2 the variance process coe�cient. The observed data consist
of the xt and we generated them with (�o1; �o2) = (0:3; 0:7). The xi used for classi�cation
consisted of 5 consecutive time points.

For the derivation of the posterior distribution, we introduce the column vectors � =
(�1; : : : ; �T ) and x1:T = (x1; : : : ; xT ) which are related by a linear transformation,

� = Qx1:T ; Q =

0

BBBBBBB@

1 0
��1 1 0

. . . . . . . . .
. . . . . . 0

��1 1

1

CCCCCCCA

: (S16)

Note that the band-diagonal matrix Q depends on �1. The determinant of Q is one so that

px(x1:T j�1; �2) = p�(Qx1:T j�1; �2): (S17)

The assumption on the �t implies that �tj�t�1 is Gaussian with variance 0:2 + �2�2t�1. We
thus have

p�(�j�1; �2) = p1(�1j�1; �2)
TY

t=2

1
q

2�(0:2 + �2�2t�1)
exp

 

�
�2t

2(0:2 + �2�2t�1)

!

; (S18)

where p1 is the pdf of �1. Since �0 is a latent variable following a standard normal distribu-
tion, p1 is de�ned via an integral,

p1(�1j�1; �2) =
Z 1
q

2�(0:2 + �2�20)
exp

 

�
�21

2(0:2 + �2�20)

!
1p
2�

exp
 

�
�20
2

!

d�0: (S19)

We used numerical integration, matlab’s integral.m, to evaluate it. The prior distribu-
tion of (�1; �2) was the uniform distribution on the rectangle (�1; 1)� (0; 1). The posterior
pdf p(�1; �2jx1:T ) is

p(�1; �2jx1:T ) =
p�(Qx1:T j�1; �2)

R 1
�1
R 1

0 p�(Qx1:T j�1; �2)d�1d�2
; (�1; �2) 2 (�1; 1)� (0; 1): (S20)

The normalizing denominator, the posterior means and variances were computed with mat-
lab’s integral2.m.
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1.3 ABC algorithm

There are several algorithms for approximate Bayesian computation (ABC, for an overview,
see, for example, Marin et al 2012). For the results in the paper, we used a population Monte
Carlo sampler, also known as sequential Monte Carlo ABC algorithm, with a Gaussian
kernel (Marin et al 2012, Algorithm 4), (Beaumont et al 2009; Sisson et al 2007; Toni
et al 2009). In brief, the algorithm starts with samples from the prior distribution and
then produces sets (generations) of weighted independent samples where the samples from
any given generation are the starting point to get the samples of the next generation. The
empirical pdfs, scatter plots, and sample moments reported in the paper all take the weights
into account.

In some ABC implementations, the acceptance thresholds are the empirical quantiles of
the discrepancies of the accepted parameters; in others, a schedule is pre-de�ned. The pre-
de�ned schedule depends on the scale of the discrepancy measure which is often unknown.
Using quantiles avoids this problem, but if the quantile is set too low, too few samples
will be accepted which results in a slow algorithm. For Jn, the scale is known. We took
advantage of this and used a hybrid approach to choose the thresholds: The threshold for
a generation was the maximum of the value given by a pre-de�ned schedule and the value
given by the 0.1 quantile of the Jn of the accepted parameters from the previous generation.
With t denoting the ABC generation, the schedule was 0:75=(1 + 0:45 log t), which gives a
value of 0.5 at t = 3.

Unlike a purely quantile-based approach, the hybrid approach avoids sudden jumps to
small thresholds. We can thereby obtain posteriors for intermediate thresholds. These
are faster to obtain but still informative. The �nal posteriors from both approaches are,
however, very similar, as shown in Supplementary Figure 1.
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(b) Poisson
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(c) Gauss
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(d) Moving average

Supplementary Figure 1: Assessment of the hybrid approach to choose the acceptance thresholds
in classi�er ABC with a sequential Monte Carlo algorithm. The �nal posterior pdfs for the hybrid
approach (blue, circles) and a purely quantile-based approach (green, squares) are very similar. The
bene�t of the hybrid approach is that it yields more quickly useful intermediate solutions. The
results are for L1-regularized polynomial logistic regression.
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2. Measuring discrepancy via classi�cation

In Figure 2 in the main text, chance-level discriminability was attained at a point close to
the parameter �o which was used to generate X. We provide here two more such examples:
Supplementary Figure 2 shows the results for a Gaussian distribution with unknown mean
and variance, and Supplementary Figure 3 the results for the autoregressive conditional
heteroskedasticity (ARCH) time series model in Equation (S15) with unknown mean and
variance process coe�cients. Parameter �o is marked with a red cross.
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(a) QDA
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(b) L1-regularized logistic regression
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(c) L1-regularized SVM
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(d) Max-Rule

Supplementary Figure 2: Gaussian with unknown mean and variance. The contour plots show Jn
as a function of the two parameters for large sample sizes (n = 100;000). The different panels
depict results for different classi�cation methods. All obtain their minimal classi�cation accuracy,
chance-level discriminability 0.5, close to �o.
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(b) L1-regularized logistic regression
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(c) L1-regularized SVM
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(d) Max-Rule

Supplementary Figure 3: ARCH(1) model in Equation (S15) with unknown mean and variance
process coef�cients �1 and �2. The results are for n = 10;000 and visualized as in Supplementary
Figure 2.
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3. Classical inference via classi�cation

In Figure 3 in the main text, we plotted the mean squared estimation error E[jj�̂n � �ojj2]
for the examples in Figure 2 against the sample size n for L1-regularized logistic regression.
Supplementary Figure 4 shows the corresponding results for linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), L1-regularized polynomial support vector
machine (SVM) classi�cation, and the max-rule. As for the results in the main text, the
decay is linear on the log-log scale which suggests convergence in quadratic mean, hence
convergence in probability, and thus consistency of �̂n.
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(b) QDA
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(c) L1-regularized SVM
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(d) Max-Rule

Supplementary Figure 4: The mean squared estimation error for the examples in Figure 2 in the
main text as a function of the sample size n (solid lines, circles). The mean was computed as an
average over 100 outcomes. The dashed lines depict the mean � 2 standard errors. For QDA, the
Bernoulli case is not reported because, sometimes, data with degenerate covariance matrices were
generated, which the standard QDA algorithm used was not able to handle. For LDA, the moving
average case was omitted since LDA cannot approximate its Bayes classi�cation rule as discussed
in the main text. The linear trend on the log-log scale suggests convergence in quadratic mean, and
hence consistency of the estimator �̂n.
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4. Bayesian inference via classi�cation

This section contains further results for classi�er ABC on data with known properties,
supplementing Section 4 of the main text.

4.1 The inferred posterior distributions for all classi�cation methods used

We report the posterior distributions for all classi�cation methods used in the paper in
Supplementary Figure 5 to Supplementary Figure 10. The results are organized according
to the modality of the data.

The results are for n = 50 and 10,000 ABC samples with a sequential Monte Carlo
implementation of ABC. For the univariate cases, empirical pdfs of the ABC samples are
shown together with the reference posterior pdf (red solid) and the prior pdf used (red
dashed). For the bivariate cases, the ABC samples are shown as a scatter plot and the
reference posterior is visualized using contour plots (red solid line). The priors are either
shown as contour plots (with red dashed lines) or, if uniform, by hatching their domain.
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Supplementary Figure 5: Binary data: Inferred posterior distribution of the success probability of a
Bernoulli random variable.
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(a) Prior and posterior
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(b) Zoom

Supplementary Figure 6: Count data: Inferred posterior distribution of the mean of a Poisson ran-
dom variable.
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Supplementary Figure 7: Continuous data: Inferred posterior distribution of the mean of a Gaussian
random variable with known variance.
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(a) QDA

(b) L1-regularized logistic regression (c) L1-regularized SVM

Supplementary Figure 8: Continuous data: Inferred posterior distribution of the mean and variance
of a Gaussian random variable.

14



(a) Prior and posterior (b) Zoom

Supplementary Figure 9: Time series: Inferred posterior distribution of the lag coef�cient of a zero
mean moving average model of order one.

(a) QDA

(b) L1-regularized logistic regression (c) L1-regularized SVM

Supplementary Figure 10: Time series: Inferred posterior distribution of the mean and variance
process coef�cients of a ARCH(1) model.
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4.2 Movies showing the evolution of the inferred posteriors

The sequential Monte Carlo algorithm which we used together with classi�er ABC is itera-
tively morphing a prior distribution into a posterior distribution. Table 1 contains links to
movies which show this process.

Data LDA QDA Logi regr SVM Max-Rule

Binary (Bernoulli) avi mp4 avi mp4 avi mp4 avi mp4

Count (Poisson) avi mp4 avi mp4 avi mp4 avi mp4 avi mp4

Continuous (Gauss, mean) avi mp4 avi mp4 avi mp4 avi mp4 avi mp4

Continuous (Gauss, mean & var) avi mp4 avi mp4 avi mp4 avi mp4

Time series (moving average) avi mp4 avi mp4 avi mp4 avi mp4

Time series (ARCH) avi mp4 avi mp4 avi mp4 avi mp4

Table 1: Links to movies showing the inference process of classi�er ABC with a sequential Monte
Carlo algorithm. Available online from the homepage of the �rst author.

4.3 Relative errors in posterior means and standard deviations

As a quantitative analysis, we computed the relative error in the mean and the standard
deviation of the inferred posterior distributions. The comparison is based on the mean and
standard deviation of the true posterior if available, or, if not, the posterior obtained by
deterministic numerical integration, see Supplementary material 1.2.

Supplementary Figure 11 shows the relative error for the max-rule as a function of
the iteration in the ABC algorithm. The error stabilizes within 4-5 iterations. For the
examples with independent data points, the errors in the posterior mean are within 5% after
stabilization. A larger error of 15% occurs for the time series data. The histograms and
scatter plots show, however, that the corresponding ABC samples are still very reasonable.

While the relative error for the mean is both positive or negative, for the standard devi-
ation, the error is positive only. This means that the inferred posteriors have a larger spread
than the reference posteriors, that is, the posterior variance is overestimated. Further, the
relative errors are generally larger for the standard deviations than for the means. This may
not be too surprising though: Also in the framework of maximum likelihood estimation, the
variance of the estimate of the variance is twice the variance of the estimate of the mean
for standard normal random variables.
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(a) Relative error in posterior mean (b) Relative error in posterior standard deviation

Supplementary Figure 11: Quantitative analysis of the inferred posterior distributions. The curves
show the relative error in the posterior mean and standard deviation for the Gauss, Bernoulli, Pois-
son, moving average, and ARCH examples. The results are for classi�cation with the max-rule.
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5. Application on real data

This section supplements Section 5 of the main text. Further results and analysis of our
application to infectious disease epidemiology are presented.

5.1 Evolution of inferred posterior distributions on simulated data

We inferred the individual-based epidemic model with a sequential Monte Carlo ABC with
Jn as discrepancy measure (classi�er ABC). Supplementary Figure 12 visualizes the evolu-
tion of the inferred posterior distribution over four generations. We show the results for
classi�er ABC with random subsets (blue, circles) and without (red, squares). For refer-
ence, the results with the method by Numminen et al (2013), which uses expert knowledge,
are shown in black (point markers). Figure 7 in the main text shows the fourth generation
results in greater detail.

Numminen et al (2013) presented posterior distributions for four generations. In both
the results reported here and the results by Numminen et al (2013), the mean of the
inferred posteriors seems to have stabilized after four generations. The spread of the inferred
posteriors, however, is still slightly shrinking. We thus ran the simulations for an additional
�fth iteration. The results are shown in Supplementary Figure 13. With the �fth iteration,
the posterior pdfs for classi�er ABC with random projections became more concentrated
and also more similar to the expert solution than the posteriors of classi�er ABC without
random projections. The smaller posterior variance is in line with the tighter Jn-diagrams
in Figure 6 in the main text.

5.2 Evolution of inferred posterior distributions on real data

The evolution of the posterior pdfs during the ABC algorithm is shown in Supplementary
Figure 14. Starting from uniform distributions, posterior distributions with well de�ned
modes emerged. Figure 8 in the main text shows the fourth generation results in greater
detail. While the posteriors of � and � are qualitatively similar for all three methods, the
posterior of � has a smaller mode for classi�er ABC with random subsets (blue, crosses)
than for classi�er ABC without random subsets (red, asterisks) or the expert solution (black,
plus markers). This behavior persists in the �fth generation as shown in Supplementary
Figure 15. Compared to the fourth generation results, the posteriors for classi�er ABC with
random subsets (blue, crosses) and the expert solution (black, plus markers) became in the
�fth generation more concentrated than the posterior for classi�er ABC without random
subsets (red, asterisks).

5.3 Further results on compensating missing expert statistics with classi�er ABC

Classi�er ABC, or more generally the discrepancy measure Jn, is able to incorporate expert
statistics, by letting them be features (covariates) in the classi�cation. On the one hand, this
allows for expert knowledge to be used in classi�er ABC. On the other hand, it allows one to
enhance expert statistics by data-driven choices. The latter is particularly important if only
a insu�cient set of summary statistics may be speci�ed. We show here that classi�er ABC
can counteract shortcomings caused by a suboptimal choice of expert statistics, thereby
making the inference more robust.
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We selected two (simple) expert statistics used by Numminen et al (2013), namely the
number of di�erent strains circulating and the proportion of individuals who are infected.
We then inferred the posteriors with this reduced set of summary statistics only, using
the method of Numminen et al (2013). Supplementary Figure 16 visualizes the resulting
posterior pdfs (curves in magenta with diamond markers). A comparison with the expert
solution with a full set of summary statistics (black curve, point markers) shows that the
posterior distributions of � and � are a�ected by the suboptimal choice of expert statistics.
We then included the two selected expert statistics as additional features in classi�er ABC.
Consequently, the posteriors of � and � recuperated, both when random features were
present (cyan curve with triangles) or not (red curve with hexagrams).
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Supplementary Figure 12: Simulated data: Evolution of the posterior pdfs (scaled histograms of
the samples). Black, points: ABC solution using expert knowledge, produced with code from Num-
minen et al (2013). Blue, circles: classi�er ABC with random subsets. Red, squares: classi�er ABC
without random subsets. Green vertical lines: location of the data generating parameter �o. The
results are for 1,000 ABC samples.
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(a) Posterior pdf for � (b) Posterior pdf for � (c) Posterior pdf for �

Supplementary Figure 13: Simulated data: Fifth generation results. The posterior pdfs are kernel
density estimates based on 1,000 ABC samples. We used matlab’s ksdensity.m with the default
settings, that is, a Gaussian kernel with an adaptively chosen bandwidth. Classi�er ABC with
random projections (blue, circles) yielded results which are more similar to the expert solution
(black, points) than classi�er ABC without random projections (red, squares).
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Supplementary Figure 14: Real data: Evolution of the posterior pdfs (scaled histograms of the sam-
ples). Black, plus markers: ABC solution using expert knowledge, produced with code from Num-
minen et al (2013). Blue, crosses: classi�er ABC with random subsets. Red, asterisks: classi�er
ABC without random subsets. The results are for 1,000 ABC samples.
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(a) Posterior pdf for � (b) Posterior pdf for � (c) Posterior pdf for �

Supplementary Figure 15: Real data: Fifth generation results. The posterior pdfs are kernel density
estimates based on 1,000 ABC samples. We used matlab’s ksdensity.m with the default settings, that
is, a Gaussian kernel with an adaptively chosen bandwidth. The posteriors for classi�er ABC with
random subsets (blue, crosses) and the expert solution (black, plus markers) are more concentrated
than the posterior for classi�er ABC without random subsets (red, asterisks).

(a) Posterior pdf for � (b) Posterior pdf for � (c) Posterior pdf for �

Supplementary Figure 16: Using expert statistics in classi�er ABC. The results are for simulated
data and show the fourth generation pdfs. Visualization is as in e.g. Supplementary Figure 15. ABC
with a reduced set of expert statistics affected the posteriors (black curve with points vs magenta
curve with diamonds as markers). Classi�er ABC was able to counteract the shortcomings caused by
the suboptimal choice of expert statistics (cyan curve with triangles and red curve with hexagrams).
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