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1 Motivation for this Special Feature14

In an era of rapid change, ecologists are increasingly asked to provide answers to big, urgent15

questions of global concern (Solé and Levin, 2022; Yates et al., 2018; Sutherland et al., 2013).16

Concurrently, technological advances allow ecological data to be collected at increasingly17

higher resolutions (e.g. temporal and/or spatial scales), leading to both new types of data and18

larger datasets becoming available (Farley et al., 2018). These data provide the opportunity19

to investigate new, and even previously unanswerable, questions, e.g. from those concerning20

animal movements (Nathan et al., 2022) to those addressing conservation and sustainability21

issues (Runting et al., 2022). Increasingly realistic models need to be developed and fitted to22

these data (Fer et al., 2018), pushing the boundaries of the type and intricacy of questions23

that can be explored (Niu et al., 2020). However, big data and big models can lead to24

big troubles, across multiple aspects, from storing and processing the data to the fitting of25

complex models to data and interpreting the output.26
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Close collaborations between ecologists, statisticians, mathematical modellers, computer27

scientists and other disciplines offer exciting ways forward to solve these problems, leading28

to mutually beneficial advancements. For example, computer scientists may aid in the effi-29

cient storage/extraction of data and development of new algorithms; statisticians may help30

and guide ecologists in the analysis of data, fitting complex models to the data via efficient31

computational algorithms and propagating or quantifying uncertainties throughout the pro-32

cess; mathematicians can ensure models are constructed in the most suitable fashion for33

the specific questions asked and demonstrate suitable properties (such as, realistic territorial34

ranges; or population predictions); and ecologists can guide mathematical scientists on the35

biological characteristics of the systems studied and ecological interpretation of the corre-36

sponding results, thus informing future models and influencing policy decisions. The need37

to answer important ecological questions is unprecedented, due to declines in biodiversity38

and ecosystem services which will impact our ability to meet Sustainable Development Goals39

(Reyers and Selig, 2020), and it is through interdisciplinary collaborations that the biggest40

steps forward will be able to be made.41

Data analysis challenges arise across the full data analytic pipeline, including processing42

and visualising the data, developing ecologically-relevant and interpretable models to fit to43

the data, adapting the associated algorithms to fit the models to the data efficiently and44

obtaining meaningful interpretations of the output. In practice, there are often many trade-45

offs between these different aspects due to the challenges that arise during the data analysis46

pipeline. For example, within the initial processing of the data, decisions may need to be47

made regarding cleaning the data (e.g. to remove recorded data errors) or the summarised48

form of the processed data to report (e.g. the temporal and/or spatial scale). This itself can49

be challenging and there will often be uncertainty within the process, leading to potential new50

errors being introduced. The decisions made will typically impact the model fitted to these51

data. For example, for motion-sensor camera trap data, there may be a trade-off between52

the level of initial data processing (i.e. the level of advanced tools that may be used for53

uniquely identifying individuals via, say machine learning techniques) and associated models54

that may be fitted to incorporate the amount of uncertainty in the pre-processed data (e.g.55

from assuming no error in the matches; to incorporating matching uncertainty; to allowing56
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for both marked and unmarked individuals). Alternatively, complex models often require57

computationally intensive algorithms for them to be fitted to the data, which may not scale58

as datasets increase in size. This may lead to the consideration of a simpler model that can59

be more easily fitted, thus reducing the level of fine-detail that may be extracted from the60

data; or adaptations to the model-fitting process such as using some form of approximate61

model-fitting approach that aims to be robust to the approximations used, but potentially62

could lead to biased parameter estimates.63

This Special Feature provides a combination of review papers and scientific articles that64

address one or more of the challenges of modern day analyses of large and/or complex65

ecological data. Echoing the challenges facing the discipline we present these in the natural66

statistical cycle, starting with the challenges of new types of data, to the limitations of67

statistical models and associated algorithms (and computer packages) used to fit the models68

to the data to the interpretation and presentation of the corresponding model outputs.69

2 Broad themes70

We consider each of the themes identified in turn relating to (i) data; (ii) statistical models71

and model-fitting; and (iii) visualisation and interpretation. However we also emphasise that72

these are very closely interlinked and although we have used these coarse “pigeon holes”73

there are many overlapping aspects and challenges.74

2.1 Data75

Ecology, like environmental sciences and other branches of biology, has entered into an era76

of big data, with enormous possibilities for a better understanding of environmental state77

(Runting et al., 2022). Data can be “big” due to different characteristics. The “Four Vs78

Framework” (see discussion in Farley et al. (2018) and references therein) discuss four distinct79

aspects: (1) volume: quantity of data (2) velocity: time-varying data; (3) variety: multiple80

data types with complex relationships; and (4) veracity: trustworthiness of the data. These81

different aspects often do not occur in isolation, leading to multiple intricate data challenges82
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when analysing ecological data. We highlight just some of the problems and approaches83

to address specific associated “V” challenges that authors of the papers within this Special84

Feature have encountered and discussed.85

Biologging sensor technologies have been at the forefront of creating large volumes of86

available data, frequently at a range of different scales. Thus, the analysis of biologging data87

is often pioneering within ecology in relation to big data, with the potential to rapidly trans-88

form our understanding of the ecology, particularly in their application to animal movements89

(Williams et al., 2020; Nathan et al., 2022). A key limitation of most current systems is how-90

ever the trade-off between collecting ultra-fine sub-second scale movement and behaviour91

data over shorter periods of time vs. more coarse but longer-term movement and space use92

data. Wild et al. (2022) take advantage of rapid developments in the field of the Internet93

of Things, (i.e. methods for attaching electronic sensor devices, connected to a network, to94

everyday objects) to overcome key limitations in current biologging data networking systems95

and present new Wi-Fi solutions, combined with smart embedded software, for big biologging96

data. The authors are able demonstrate orders of magnitude of improvement in data retrieval97

efficiency, which is the biggest limitation of animal biologging systems. In particular, Wild98

et al. (2022) discuss in detail challenges and solutions concerning software architecture, on-99

board processing of biologging sensor data, difficulties of time synchronisation, and the data100

transmission concept and the pros and cons of different Wi-Fi infrastructures.101

Advances in technology has also led to (perhaps less foreseen) forms of data gathering102

mechanisms gaining momentum, and associated build-up of large quantities of data, with103

the rise of citizen (or community) science initiatives. The resulting data from such initiatives104

are typically very varied in nature, often involving multiple data collection protocols with105

more limited/reduced structure than compared to traditional survey methods, including106

data arising from opportunistic events. Whilst analysing citizen science data from designed107

surveys requires carefully developed methods, difficulties increase markedly with data from108

semi-structured projects, e.g. without fixed data collection protocols or data collected by109

observers of any degree of observer knowledge. This leads to new challenges across the whole110

spectrum of the 4 “V”s. Whilst these challenges have some commonality in terms of similar111

issues to address and overcome, due to the large expanse of types of data collection techniques,112

4



the specific challenges and associated data analytic approaches will vary. Johnston et al.113

(2022) summarise four overarching categories of challenges: (i) observer behaviour, including,114

for example, spatial bias, observer or reporting differences, and false positive errors; (ii) data115

structures, relating to both measures of detectability and procedures for validation; (iii)116

statistical models, including the opportunities provided by data integration and multi-species117

models, but also sources of bias and computational limitations; and (iv) communication,118

motivated by the application of citizen science within biodiversity monitoring.119

The veracity of data within biodiversity also arises in less obvious ways, outside the120

sphere of data collection protocols “in the field”, most commonly considered as the reason121

for querying the trustworthiness of the data. In particular, there is a wealth of information122

contained with many ecological and biodiversity databases. However, to combine this in-123

formation, data must typically be uniquely associated with specific species and taxa. This124

in itself raises methodological challenges, due to, for example, dynamic species names, the125

discovery of new species, changing biological attributes etc. As a result, homonyms, syn-126

onyms, and errors may accumulate while for many taxa a general consensus on an accepted127

name and taxonomic and phylogenetic relationships may not have been reached so that128

taxonomy itself may resemble a confusingly intricate tangled bank. To address such issues129

Grenié et al. (2022) provide an extensive review of the tools, databases and best practices130

for harmonising taxon names in biodiversity studies. In particular, they categorise the “wild131

world” of existing publicly available taxonomic databases and resources, along the axes of132

taxonomic breadth and spatial scope, and discuss the associated strengths and caveats of133

each database. In addition, on the practical computation side, they review the existing com-134

putational tools provided in different R packages for taxonomic harmonisation, and, perhaps135

rather fittingly, provide a “taxonomy” of the R packages, classifying them according to their136

associated functions.137

2.2 Models and model fitting138

A vast array of different statistical models have been developed and fitted to ecological data139

in the last decade or so (Royle et al., 2014; McCrea and Morgan, 2015; Kery and Royle,140

2016; Guisan et al., 2017; Hooten et al., 2017; MacKenzie et al., 2018; Schaub and Kéry,141
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2021), often with limited critical review of the characteristics and associated disadvantages142

and challenges of each. The advancement in models and associated model-fitting tools reflect143

the changing quantity of the data (as highlighted above), quality of the data (e.g. increased144

spatial/temporal resolution), emerging forms of data from new technologies (e.g. earth ob-145

servation and/or drone data, eDNA) and advanced computational techniques (and associated146

computational power). Thus, summary overviews of these emerging and advancing areas are147

important and timely for ecologists and statisticians to be able to understand what can, and148

often importantly, what cannot (or should not), be done and also provide tools for fitting149

such models to different data. These models encompass all areas of ecology from population150

and community ecology to landscape and ecosystem ecology. Interrogation of the associated151

modelling ideas motivates further advances in addressing the challenges and model develop-152

ment to account for additional data complexities or efficient model-fitting tools, for example.153

We briefly summarise here some of the types of models and associated challenges that arise154

across a range of different types of models, and data, within this Special Feature.155

Developing, or adapting, general statistical models that can be applied to different forms156

of data can be very efficient scientifically. Such approaches also often permit the use of157

readily available software packages, for example, NIMBLE (de Valpine et al., 2017), R-INLA158

Lindgren and Rue (2015) and inlabru (Bachl et al., 2019) as well as specific application159

focused packages, such as MARK/RMARK (for capture-recapture models; (Laake, 2013);160

momentuHMM (for hidden Markov models applied to movement data; (McClintock and161

Michelot, 2018)) and Distance (for distance sampling; (Thomas et al., 2010)). Areas which162

have accessible software are witnessing substantial statistical development, enhanced by the163

flexibility of the computational tools provided. For example, R-INLA and inlabru have been164

used by both Laxton et al. (2022) and Torney et al. (2022), whilst Newman et al. (2022)165

discusses the relative merits of available software tools for fitting models. However, Barros166

et al. (2022) take one step further from the issue of readily accessible computer packages,167

suggesting that model fitting is not the primary challenge, rather that the models being used168

by ecologists need to be considered as predictive models, which can be used transparently169

and easily adapted following updated data sets or statistical methodology. Their proposal of170

the PERFICT workflow provides a framework by which these important challenges can be171
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aligned.172

Understanding the relationship between such general statistical models and specific eco-173

logical models can be challenging, as well as structuring the data into the required general174

form. Two particular “umbrella” models that have been applied extensively within ecolog-175

ical models are the closely related hidden Markov models (HMMs) and state-space models176

(SSM). Both of these types of models are widely used in ecological settings in the presence177

of longitudinal data (McClintock et al., 2021; Auger-Methe et al., 2021). One attraction of178

these models within the ecological applications, is that they both directly separate out the179

distinct ecological and/or sampling processes. This often simplifies the model specification,180

permitting the consideration of the separate components independently. A common distinc-181

tion between these models relates to whether the latent processes are defined to be discrete-182

valued (for HMMs) or continuous-valued (SSMs); although we note that this distinction is183

not universally used. Specific ecological areas where these models have been extensively ap-184

plied, include, but are far from limited to, for example, fisheries stock assessment (Aeberhard185

et al., 2018); population dynamics (Newman et al., 2014); animal movement (Langrock et al.,186

2012; Hooten et al., 2017; Patterson et al., 2017); and capture-recapture-type surveys (King,187

2014; McCrea and Morgan, 2015). Glennie et al. (2022) and Newman et al. (2022) provide188

a methodological (and practical) review of HMMs and SSMs, respectively.189

In particular, Glennie et al. (2022) highlight the potential difficulties that may be en-190

countered when specifying HMMs for different systems, including issues which arise when191

model assumptions are not valid and the challenges of defining and fitting a suitable model in192

an HMM framework when the underlying hidden process increases in complexity. Providing193

descriptions of these general statistical models that can be applied to a variety of different194

forms of ecological data and associated discussion of issues to be aware of are a very useful195

resource for practitioners, particularly when describing the pitfalls that may arise. The rapid196

growth of the application of HMMs has also been aided by associated efficient model-fitting197

algorithms, due to the Markovian structure of the model (Zucchini et al., 2016).198

The practical issues of fitting general and flexible SSMs, assuming a continuous-valued199

ecological (latent) process, is highlighted and addressed by Newman et al. (2022). Impor-200

tantly, they discuss and contrast a wide-range of model-fitting techniques, dependent on the201
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underlying assumptions of the specified model. In particular, they describe model-fitting202

algorithms that can accommodate more complex modelling dynamics, such as nonlinear pro-203

cesses and/or non-Gaussian stochasticity. Such models are less familiar/used within the204

ecological community, most likely due to the associated model-fitting challenges, however205

such adaptations of SSMs have great potential for the modelling of ecological data. The206

important aspect of what software can be used to fit such complex model is also highlighted207

in the paper.208

The challenges of fitting models to data can concern both the associated algorithms209

required (as for SSMs), but also the increase in computational expense, particularly as the210

complexity of the model increases. With increasingly large datasets, for example, as routinely211

collected in bioacoustics or biologging studies (see (Wild et al., 2022)), many standard meth-212

ods break down and cannot be practically applied. There is hence a necessity to identify and213

develop suitable modifications to improve computational efficiency and scalability, adapting214

traditional (and developing new) methods to big data. Providing successful examples, and215

the associated strategies that were most successful, including for example, computational ef-216

ficiencies (Newman et al., 2022) and as demonstrated in King et al. (2022), as well as model217

simplifications that retain the signal within the data, are promising avenues forward. The218

challenges that arise regarding scalability due to large (and new) datasets are, however, also219

an opportunity for the development and use of machine learning algorithms. Off-the-shelf220

algorithms may however not be sufficient or be too limiting, as described by Wang et al.221

(2022), such that additional developments may be required for ecological applications. For222

example, it will generally be important to incorporate known ecological processes within the223

data analysis.224

There are numerous opportunities, risks and trade-offs in building structurally complex225

models to increase insight on the underlying ecological processes. For example, Laxton et al.226

(2022) use the very popular species distribution models (SDMs) to highlight the importance227

of increasing model complexity based on ecological theory. The authors showcase the use-228

fulness of a marked point process approach, which permits the inclusion of key population229

dynamic processes linked to ecological covariates (relating to landscape structure and the230

range of movements of the study species), and highlight the importance of maintaining an231
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understanding of the roles and effects of each model component, to ensure interpretability232

and useful ecological insight. Alternatively, Torney et al. (2022) show that, in relation to the233

study of movement behaviour, including complex mechanisms driving animal distributions234

into the statistical models can substantially increase model performance and predictive abil-235

ity. Further, they demonstrate that the relationship between model complexity and model236

performance is non-monotonic, highlighting the importance of robust procedures for checking237

models.238

2.3 Interpretability and Visualisation239

It is now possible to fit a wealth of complex models to data sets; however where does the line240

get drawn between fitting a model for complexity’s sake and because it is actually required241

for an understanding of the dynamics exhibited by the data? In many cases can a simple242

model actually be more useful/informative? Such questions are long standing in many areas,243

including ecology (Murtaugh, 2007). Statistical models continue to be developed to represent244

the underlying data generating ecological processes - but these will always be a simplification245

of reality - with more complex models aiming to extract meaningful and useful interpretable246

ecological insight. In general, there is a trade-off between the complexity of the model being247

fitted and the associated intricacy of the information that can be extracted (given suitable248

and available data). Further, statistical learning (or machine learning) techniques are rapidly249

increasing in their prominence and usage within ecology (Pichler and Hartig, 2022; Ho and250

Goethals, 2022), with such techniques often demonstrating good predictive performance, but251

at the lack of ecologically interpretable parameters. Extracting interpretable and meaningful252

results/output from appropriate models fitted to real data, combined with intelligent visual-253

isations, is becoming increasingly important, not least within the wider scientific community254

and policy-makers, for example.255

One particular area of ecology in which increasing model complexity leads to further in-256

terpretability challenges is that of species’ distribution modelling. Traditionally, such models257

have been used to establish a correlation between a single species and the environment that258

it occupies in order to gain an understanding of habitat suitability, or to predict the impacts259

of environmental change. However, there has been increasing interest for these models to260
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go beyond a single species in isolation and to include interactions between species (Kissling261

et al., 2012; Pollock et al., 2014) and/or the underlying mechanisms (Buckley et al., 2010) in262

order to improve predictability of multi-species models. However, in increasing the complex-263

ity of the model, the associated interpretability of the model parameters can become more264

difficult. To address this issue Powell-Romero et al. (2022) use a feature-based approach265

to describing community structure within ensemble modelling approaches to improve the266

practical interpretability of multi-species models. Through the inclusion of simple features267

to describe communities, it is possible to obtain insight of not only which models outperform268

others, but also why this is the case. Further, within more complex dynamic SDMs, Laxton269

et al. (2022) argue that any increased complexity in the model needs to be grounded in eco-270

logical theory. This in turn permits greater interpretability since the different mechanisms or271

patterns of each component of the model can be identified leading to increased interpretable272

ecological insight.273

As models and data become more complex and high-dimensional, obtaining meaningful274

and useful visualisations of the data and/or model outputs for improved insight also be-275

comes more challenging. Traditional methods, such as dimension reduction and considering276

pair-wise correlations, may lead to more nuanced and/or intricate ecological insights to be277

masked, or even lead to biases in their presentation (McInerny et al., 2014; McInerny and278

Krzywinski, 2015). This is particularly challenging in more complex data/model structures,279

such as networks or graphs structures. For example, food web visualisation should allow us280

to gain an understanding of the structure of foodwebs, and provide insight into the detail281

of the complexity, however, current approaches tend to simplify the structure and there-282

fore cannot provide the insight needed. To address some of these challenges, Pawluczuk283

and Iskrzyński (2022) propose methods for visualising increasingly complex foodweb (and284

other network) structures by combining heatmaps, interactive and animated graphs. Alter-285

natively, Van Moorter et al. (2022) have developed the package ConScape (in Julia) which286

allows users to efficiently analyse and visualise landscape and habitat connectivity more sim-287

ply. Further issues arise when attempting to analyse objects that contain multiple distinct288

(non-independent) parts that make up the complete object (e.g. when analysing skeletons289

rather than individual bones). With this focus, Thomas et al. (2022) propose a method based290
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on regularised consensus principal components analysis to be able to summarise and compare291

shape variation in multi-part morphospaces. Importantly, they also provide an accompanying292

R package, to permit wider usage and impact within the large scientific community.293

3 Concluding comments and Future Outlook294

The opportunities for gaining an understanding of ecological systems from the range of differ-295

ent forms of available data (and new emerging data) are immense. However, to fully capitalise296

on these opportunities, addressing the associated challenges and achieving academic and so-297

cietal impact, a multi-disciplinary approach considering the whole data analytic pipeline is298

required. We discuss a number of important aspects that will contribute to advancing eco-299

logical knowledge and address important societal issues (though we note that this is far from300

an exhaustive list):301

Interdisciplinarity : Immersive interdisciplinarity in the ecological community’s research302

approach has the largest potential for achieving research step-changes within the discipline.303

The cross-fertilisation of knowledge from, for example, ecologists, engineers (designing data304

collection devices), statisticians (developing advanced modelling techniques to fully exploit305

the available data and designing survey sampling strategies) and computer scientists (offering306

expertise in machine learning and automation) provides the opportunity for the co-creation of307

new and exciting approaches to address challenging ecological problems. Close collaboration308

with mathematical ecologists allows a better realistic connection of models to ecological309

theory; equally important is the collaboration with ecologists at the model output stage, to310

build confidence that the results are biologically realistic.311

Data-centric methodological innovation: It is important to ensure that data analytic312

methods are being developed to make the most of the diverse and sizeable amounts of eco-313

logical data now being efficiently collected at increasing scale and quantity (Zipkin et al.,314

2021). However, the advancement of data collection technology continues at a rapid pace,315

and, necessarily the associated data analytic tools develop at a lagged timescale (there is316

no point in developing analytic tools for data that do not exist and/or cannot be collected).317

Again, an interdisciplinary outlook will help identifying novel data collection tools and meth-318
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ods not used yet in ecology.319

Robust data integration: There has been a natural development towards integrating data320

sets within a single model in recent years (Frost et al., 2023), spanning both multile data321

types of a single species (Isaac et al., 2020) and data from multiple species (Barraquand and322

Gimenez, 2019). This means that one of the biggest challenges facing statistical ecologists is323

to think about whether the types of data being combined in an analysis are indeed comparable324

– do they have differing quality, and will this affect the model performance? For example,325

will combining small structured datasets with large unstructured data, for example from the326

Global Biodiversity Information Facility (GBIF), help to limit the bias in the latter, or the327

context dependency in the former? (Isaac et al., 2020)328

“All models are wrong, but some are useful”: This phrase attributed to the statistician329

George Box continues to provide useful insight. In particular, we apply this reasoning to330

the idea that the ability of being able to fit complex statistical models to data (accessible331

through advances in associated software) does not mean that the models are appropriate (or332

useful) for the data. There is a need to consider the philosophy of “should we” fit a model333

to a given data set, and ask whether it is necessary and/or appropriate given the particular334

ecological question of interest and available data. Gain in knowledge should trump model335

complexity or methods sophistication per se.336

Machine learning and artificial intelligence: Such approaches are likely to have an im-337

portant role in the future direction of methods in the ecological domain (Pichler and Hartig,338

2022), particularly when prediction is a primary objective. However such methods should not339

simply be blindly applied to align with popular analytical trends - it is important that there340

is a methodological driver underpinning their usage. The interpretability of such models is341

more challenging due to the “black-box” nature of the algorithms and lack of ecological con-342

straints or input, for example. Considerable debate and uncertainty remains in the validity343

and best practices of these approaches particularly in relation to generalisability, conceptual344

simplicity, robustness and transparency. There is a need to increase research efforts into345

machine learning and artificial intelligence approaches so that their power can be appropri-346

ately harnessed for ecology and evolution. For example, novel understanding from carefully347

fitted and interpreted machine learning methods could be more often also used to guide the348
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development of new likelihood-based methods.349

Software: This is an increasingly prominent feature of statistical analyses. The type350

of software ranges from general statistical packages to which ecological models and data351

analyses can be conducted (such as inlabru (Bachl et al., 2019) or NIMBLE (de Valpine352

et al., 2017)), to specialised packages for very specific problems (Van Moorter et al., 2022).353

However, the variety of computer packages (and in different languages, such as R or Python354

or Julia) leads to additional challenges of identifying the most relevant and/or efficient for355

the given problem at hand. Clear guidance regarding the advantages and disadvantages of356

different approaches is a particularly useful resource, though often difficult as there may be357

many different data and question dependent decisions in practice.358

Communication: The importance of improved communication for addressing and solving359

the inherent challenges of citizen science data are highlighted in Johnston et al. (2022). In360

particular, the authors focus on the importance of disseminating new statistical methods361

beyond the limited circle of technical groups. This requires moving beyond code sharing,362

investing also in software development and teaching activities and resources. They also363

conclude that a ‘democratisation’ of data analysis may emulate the progress brought by the364

democratisation of data collection through citizen science and help make the most of these365

data, which has to be one of the most pressing issues facing statistical ecologists at this366

current time.367

368

The papers in this Special Feature only scratch the surface of the challenges present369

with large data and complex models, and propose some possible approaches for dealing370

with different issues and advance our ecological understanding. These areas of research will371

continue to provide a rich and diverse set of challenges for ecological researchers. However,372

it is through recognising the challenges, building interdisciplinary data analytic pipelines,373

and providing interpretable results, that will ensure the research produced by this cross374

disciplinary academic community will reach its full potential, leading to step-changes in our375

ecological understanding, and be a firm basis for informed policy decision-making.376
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