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Abstract15

Previous work on iterated learning, a standard language learning paradigm where a sequence of16

learners learns a language from a previous learner, has found that if learners use a form of17

Bayesian inference, then the distribution of languages in a population will come to reflect the18

prior distribution assumed by the learners (Griffiths and Kalish 2007). We expand these results to19

allow for more complex population structures, and demonstrate that for learners on undirected20

graphs the distribution of languages will also reflect the prior distribution. We then use techniques21

borrowed from statistical physics to obtain deeper insight into language evolution, finding that22

although population structure will not influence the probability that an individual speaks a given23

language, it will influence how likely neighbors are to speak the same language. These analyses24

lift a restrictive assumption of iterated learning, and suggest that experimental and mathematical25

findings using iterated learning may apply to a wider range of settings.26
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Adding population structure to models of language evolution by iterated learning27

Language changes; English today is slightly different from a hundred years ago, and radically28

different from a thousand years ago. An important cause of language change is the variation that29

occurs during the language learning process (see, e.g., DeGraff, 2001). One of the major tools30

that has been used to study the impact of language learning on the structure of languages is the31

iterated learning model (Kirby, 2001). In iterated learning, a set of simulated learners each learn32

language from the utterances of other learners and then produce utterances themselves that are33

provided to other learners. Repeating this process, the learners reshape the language. Simple34

learning algorithms can lead to significant changes, increasing the regularity of languages (Kirby,35

2001; Smith, Kirby, & Brighton, 2003; Brighton, 2002) and expressing or even emphasizing the36

biases of learners (Griffiths & Kalish, 2007; Kirby, Dowman, & Griffiths, 2007).37

The simplest iterated learning model – the case that submits most easily to mathematical38

analysis – is the transmission chain, in which each learner learns from the previous learner and39

generates utterances for the next. However, more complex models are possible. Exploring these40

models is important in two ways. First, it lets us establish the generality of results obtained for41

transmission chains, which represent the majority of previous analyses. Second, it allows us to42

explore phenomena that only emerge in more complex models. For example, speakers of the43

same language tend to cluster together spatially – something that is hard to explain using44

transmission chains.45

In this paper, we explore how more complex population structures influence the outcome of46

iterated learning. We begin by introducing a formal framework for analyzing iterated learning in47

which learning is modeled as Bayesian inference. We then build on previous analyses of48

transmission chains by Griffiths and Kalish (2007), showing that similar analytic results can be49

obtained with populations where the relationships between learners can be expressed as a50

heterogeneous graph. We verify these results using simulations with two-dimensional lattices,51

small-world graphs (Watts & Strogatz, 1998) and scale-free graphs (Barabasi & Albert, 1999),52

population structures that mimic some of the properties of real populations. These simulations53
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show that neighbors in a graph are more likely to share the same language than is expected by54

chance. To quantify this effect we utilize techniques developed for voter models (Sood, Antal, &55

Redner, 2008; Castellano, 2012) and show that although the graphical structure of a population56

does not change how likely a individual learner speaks a certain language, it does impact how57

likely it is that neighbors will be able to communicate.58

Iterated Bayesian learning59

In the simplest iterated learning model, a population is assumed to be a series of parallel60

transmission chains. At each step in the chain, a learner learns a language from a single teacher61

and then transmits a language to a single student. The dynamics of this process depend on the62

learning algorithm that is used by the students.63

One way to specify a learning algorithm is to assume that learners use a form of Bayesian64

inference (Griffiths & Kalish, 2007). Adopting a language then becomes a statistical inference65

task where the inductive biases of learners – those factors other than the data that lead them to66

favor one language over another – are expressed as a prior probability distribution over languages.67

Under this assumption, learners choose to speak a language, L, based on hearing linguistic data,68

D. We assume that the probability of speaking L is the same as the posterior probability of the69

language, calculated using Bayes’ rule,70

p(L|D) =
p(D|L)p(L)

p(D)
, (1)

where p(L) is the prior probability of the language, which may not be equal across languages.71

Griffiths and Kalish (2007) showed that for transmission chains the probability that a72

learner speaks a language, L, after a large number of generations is the same as the prior73

probability of the language, p(L). Formally, the stationary distribution of the resulting stochastic74

process is the prior distribution over languages. This result is interesting because it suggests that75

the variation observed in modern languages can be directly connected to the inductive biases of76

human language learners. Kirby et al. (2007) expanded on this result, showing that variations on77
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Bayesian learning in which learners are more likely to choose languages with higher posterior78

probabilities can exaggerate the impact of the prior on the stationary distribution, allowing weak79

inductive biases to have a strong effect on the structure of the languages produced by iterated80

learning.81

However, this simplest iterated learning model may not accurately represent real82

populations. To explore the generality of these results, Smith (2009) relaxed the assumption of83

learning from a single teacher and examined populations of learners who learned a single84

language from multiple teachers. Using simulations, Smith showed that the language such85

learners acquire is highly dependent on the initial distribution of languages in a population, and86

more weakly influenced by prior probabilities. Burkett and Griffiths (2010) pursued these results87

further, and found that if learners could learn multiple languages from multiple teachers, the88

distribution of languages in the population over a number of generations will still mirror the prior89

probability of each language. Convergence to a stable equilibrium that is not the prior distribution90

can also occur if fitness is added into the model (Kalish, 2007).91

In the remainder of the paper, we relax a different assumption and consider learners in a92

structured population who each learn from a single teacher. The goal of this model is to examine93

whether the structure of a population will affect the long-term distribution of languages in the94

population.95

Introducing population structure96

A natural way to capture population structure in cultural evolution is to analyze97

evolutionary dynamics on graphs, where each node is an agent and edges indicate connections98

between those agents (e.g., Nowak, 2006). In this section, we analyze iterated Bayesian learning99

on heterogeneous graphs.100

Bayesian language learning on graphs101

Represent a population as a set of N learners arranged on a graph. Each learner speaks one102

of two languages, L0 or L1. Population dynamics are included using a birth-death process: at each103
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time step, a random learner is replaced by a novice learner, the novice learner randomly selects a104

neighbor, hears an utterance from them, and selects a language based on that utterance. This105

birth-death process is an abstraction of the biological and cultural processes that shape when and106

how a learner learns a new language. Although a “birth” may represent an actual birth of a new107

learner, it might also represent an individual who has chosen to change the language they speak.108

Under a Bayesian learning algorithm, learners adopt a language based on a linguistic109

utterance, D, by selecting a language proportional to the posterior probability of each language,110

p(L
i

|D) =
p(D|L

i

)p(L
i

)

p(D|L0)p(L0)+ p(D|L1)p(L1)
. (2)

We assume that each utterance is consistent with either L0 or L1, and when asked to speak, a111

teacher correctly produces an utterance consistent with their language with probability 1� e,112

where e represents an error rate in production. If an utterance, D, is consistent with a language, L

i

,113

then p(d|L
i

) = 1� e. Innate linguistic preferences are included through the prior probability of114

each language, p(L
i

).115

Stationary distribution of languages116

In this section, we demonstrate that when learning from a single teacher on heterogeneous117

graphs, the probability that a specific learner speaks a language after many generations is the118

same as the prior probability of that language. This extends the result that Griffiths and Kalish119

(2007) proved for transmission chains to more complex population structures.120

An intuition for this result can be obtained by re-imagining the transmission of languages121

across a graph as a set of chains. In each update, we consider updating the value of a single122

learner by having that learner learn from a teacher. If we look back in time, that teacher learned123

their language from someone else, so consider the teacher’s teacher. We can then construct a chain124

of teacher-learner pairs from any individual back to one of the individuals in the initial population.125

This chain is akin to a transmission chain. The probability that the learner at the end of a chain126

speaks a language should thus converge to the prior distribution as the chain gets longer.127
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To make this intuition more precise, we introduce the notion of a Markov process: a process128

where the probability of future states depends only on the current state. The birth-death process129

we describe above is a Markov process: each update only depends on the current languages that130

the learners have adopted, not on the languages spoken by deceased learners. This process is also131

ergodic: because of the noise in transmission, each learner has a small chance of adopting a132

different language than their teacher, preventing a certain assignment of languages to learners in133

the population becoming fixed.134

The Markov property allows us to examine the long-term dynamics of language change in135

this population. Given a population of N learners, let the binary vector s represent that state of136

learners in the population (the language that each learner speaks). Because this process is137

Markov, the probability of a future state s

t

just depends on the current state, s

t�1. This process138

allows us to define a probability distribution on future outcomes, p

t

, where p

t

(s) is the probability139

of s after t time steps. Because this process is ergodic, there exists a stationary distribution, p,140

over future states defined by p

t

(s)! p(s) as t ! •. To find the probability that a specific learner,141

i, adopts a language, L1 (or alternatively L0) we marginalize over the language spoken by i in state142

s by the likelihood of s in the stationary distribution,143

v

i

= Â
s

d
L1(si

)p(s). (3)

d
L1(si

) is an indicator function that is 1 if s

i

speaks language L1 and 0 otherwise.144

To find this value, we note that the stationary distribution is characterized by its invariance145

to future time steps; if p

t

(s) = p(s) then p

t+1(s) = p(s). Since v depends only on p, then v is also146

invariant to future time steps. Given the transition dynamics described above, we find that147

v

i

= p(L1) for all i satisfies this requirement, and is unique in this regard. The probability that a148

given learner speaks L1 at the stationary distribution is the same as the prior distribution. A149

complete proof is provided in the Supplementary Materials.150
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Simulations on heterogeneous graphs151

In order to verify the analytic predictions above, we used agent-based simulations to find152

the stationary distribution of a population on a series of graphs. We found that, on average, the153

population converged to the prior distribution on each graph.154

In each simulation, learners in the population had the option of learning two languages.155

Each population consisted of 100 learners on an undirected graph. We considered learners living156

on a complete, small world1 and scale free graphs2, as well as two-dimensional lattices. These157

graphs were chosen as types of graphs that are thought to mimic some of the properties of real158

world populations (Barabasi & Albert, 1999; Watts & Strogatz, 1998).159

At the beginning of each simulation, learners randomly adopted one of the two languages160

with equal probability. At each time step, a learner was randomly selected from the population161

and replaced by a new learner. The new learner randomly sampled a linguistic utterance from one162

of its neighbors and adopted a language using the Bayesian learning algorithm described above.163

The production error rate was e = .05. Each generation consisted of 100 time steps, enough so164

that on average each individual is replaced once.165

To examine how the prior distribution changed the long term behavior of the population, we166

varied the prior on L1 in .1 increments between .5 and .9. We found that in most simulations the167

population reached its stationary distribution in 50 generations. We averaged the proportion of168

learners who spoke each language after 50 generations across 1000 simulations. The results are169

given in Fig. 1(a). We found that the stationary distribution for each social structure was the same170

as the prior distribution.171

These simulations verify our analytic predictions. However, we also found that for172

non-complete graphs neighbors were more likely to share a language than predicted by chance.173

To visualize this phenomenon we ran a series of simulations on a two-dimensional lattice. Fig.174

1(b-d) shows a sample result, showing that the population contained a number of large clusters of175

1Created through reattachment of a neighbor graph (for more details see Watts & Strogatz, 1998). The reattachment
probability was .1.

2Created through preferential attachment (see Barabasi & Albert, 1999).
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language speakers where most of the learners spoke the same language. This suggests that even176

though the population may not converge on a single language, the distribution of languages in the177

population is not random; individuals are able to speak to their neighbors.178

Capturing correlations among learners179

One of the criticisms leveled at iterated learning models is that instead of ending up in a180

heterogeneous mix of languages at the stationary distribution, real-world populations tend to181

converge on a single language. Fig. 1(b-d) shows that iterated learning on a lattice converged to a182

mixture of languages characterized by local clusters where neighbors generally spoke the same183

language. This finding suggests that introducing population structure might let locally184

homogeneous populations of learners arise, while still allowing for an overall heterogeneous185

distribution of languages in the population. This would reduce concerns that at the stationary186

distribution learners may not be able to speak with their neighbors, and thereby potentially187

increasing the value that language gives the learner (Smith & Kirby, 2008). To investigate this188

behavior further we borrow tools from statistical physics developed to analyze a general class of189

dynamic models, which our Bayesian model is an specific example of, voter models.190

Voter models191

Voter models are a general framework for analyzing how beliefs diffuse across socially192

structured populations (Castellano, 2012), and are akin to Moran models, another model that has193

been used to capture the dynamics of language learners in spatially structured populations194

(Kalish, 2007). In the standard voter model, the nodes of a graph represent learners. Each learner195

adopts one of two states. At each time step, a single learner is randomly selected and replaced by196

a novice learner. The novice learner adopts a state based on the states of its neighbors. Two197

common learning strategies are selecting the state of the majority, or copying the state of a198

random neighbor. This process is directly analogous to the model we presented in the previous199

section, where the learners use a Bayesian learning rule to adopt a new state. Previous analyses of200
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voter models have demonstrated that population structure can have a substantial effect on both the201

convergence probabilities and convergence rates (Sood et al., 2008; Castellano, 2012).202

While most work on voter models has concentrated on deterministic learning rules (e.g.203

copy a neighbor without error), Schweitzer and Behera (2009) analyzed a probabilistic model.204

They showed that in this model, two beliefs could co-exist in a population. Given two states, 0205

and 1, the expected rate of change of the proportion of learners with state 1 at time t is given by206

the differential equation207

d

dt

x1(t) = Â
s
[w(1|0,s)x0,s(t)�w(0|1,s)x1,s(t)], (4)

where s denotes the neighborhood of a point, w(i|1� i,s) the probability of an node in state 1� i208

to adopt state i if the neighborhood of the node is s, and x

i,s the frequency of nodes in state i with209

neighborhood s.210

The iterated learning model analyzed in the previous section is a special case of this211

probabilistic voter model. In this case the states of learners represent the languages that those212

learners adopt, and the update rule w(i|1� i,s) can be computed using Equation 2. Our213

assumptions about the language learning process also lead us to two equivalences: since the214

probability of adopting a language does not depend on what state the node was in before, and215

since each learner must adopt a language, w(i|i�1,s) = w(i|s), and w(i|s)+w(1� i|s) = 1.216

Learning on heterogeneous graphs217

In this section we analyze Equation 4 when learners learn from a single teacher. For218

convenience, let 1�a denote the probability that a learner adopts language L0 after learning from219

a teacher who speaks L0. Let 1�b denote the probability that a learner adopts language L1 after220

learning from a teacher who speaks L1. a and b act as error rates in language transmission. Values221

for a and b corresponding to Bayesian learning are provided in the Supplementary Materials.222
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Applying this to Equation 4 gives that the rate of change of L1 learners is223

d

dt

x = a

M

Â
m=1

m

Â
k=0

xsm

k

(t)+(1�a�b)
M

Â
m=1

m

Â
k=0

k

m

xsm

k

(t)� x, (5)

where sm

k

denotes all nodes with m neighbors (up to a maximum degree of M), k of which have224

adopted language L1. After simplifying, the summation is225

d

dt

x = a+(1�a�b)E[ f ]� x, (6)

where E[ f ] is the frequency that nodes in a neighborhood have state 1. E[ f ] must be calculated on226

a graph by graph basis. For degree-regular graphs, in which every node has the same number of227

edges, E[ f ] = x. This means that for degree-regular graphs the stationary distribution of x is the228

same as what we found in the previous section,229

x =
a

a+b

. (7)

We demonstrate through simulations that this is also the stationary distribution for non-degree230

regular graphs like small world or scale free graphs.231

In the Supplementary Materials, we demonstrate that in our formulation of Bayesian232

learners a

a+b

= p(L1). More generally however, for a given transmission process, the stationary233

distribution of languages will simply depend on the relative error rates, a and b. Other models of234

language transmission, potentially including other Bayesian models of language learning, may235

produce different error rates for a and b and alter the stationary distribution of languages in the236

population. This replicates the result obtained using a Markov Process, demonstrating that the237

prior distribution of the languages will be the stationary distribution of languages in the238

population. Using the tools developed here, we can push further on this result and examine what239

the average number of pairs of same-language speaking nodes are.240
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Predicted correlations between pairs of learners241

We define x1,1 to be the frequency of edges where both learners speak language L1, and242

develop a differential equation to express how the frequency of pairs changes over time. If the243

graph is degree-regular, with each node having degree m, this equation is244

d

dt

x1,1 = (1� x)
m

Â
k=0

kw(1|0,sm

k

)xsm

k

,0 � x

m

Â
k=0

kw(0|1,sm

k

)xsm

k

,1. (8)

By adding in the assumption that learners randomly copy a single teacher, and accurately copy245

state 0 with probability 1�a and state 1 with probability 1�b, the differential equation can be246

reduced to247

d

dt

x1,1 = m(ax� x1,1)+
1�a�b

k

E[ f 2], (9)

where E[ f 2] is the squared expectation of the frequency of neighbors that have state 1. As with248

E[ f ], this quantity depends on the actual structure of the graph.249

We can estimate x1,1 by using a pair approximation. This approximation places a lower250

bound on the probability that two nodes share the same state, by assuming that the states of251

neighbors are uncorrelated. In this approximation we assume that if a central node speaks L1, then252

the probability that a given neighbor speaks L1 can be expressed by x1,1
x

, and the probability that253

the neighbor speaks L0 can be expressed by x1,0
x

. We track the pair probabilities using x1,1, x1,0,254

x0,1, and x0,0
3. Using this estimate we can solve Equation 8 to get the equilibrium value of x1,1 on255

degree regular graphs. The details of the solution are provided in the Supplementary Materials.256

Let d = 1�a�b. If d is close to 1, we find that we can aproximate the equilibrium value of the257

correlation between nodes by258

x1,1 ⇡ x

2 +
m

m�1
x(1� x)

2d

� 1
2

x(1� x). (10)

From this equation, we have that the average degree of a node affects the correlation between259

3For the full technical details of pair approximation see (e.g. Schweitzer & Behera, 2009).
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nodes; on graphs where nodes have an average low degree, nodes will be more likely to share the260

same state. This effect disappears as the number of neighbors grows. For certain graphical261

structures, particularly those with a high clustering coefficient, a measure of how likely two262

neighbors of a central node are to themselves be neighbors, the correlation between nodes may be263

higher.264

To test the predictions made by the voter model, we ran a series of simulations on265

small-world, scale-free and complete graphs. Across all simulations the prior distribution was set266

to p(L1) = .6. Otherwise the simulations were identical to those presented earlier. In Fig. 2(a) we267

show the rate at which learners converge to the prior distribution. In Fig. 2(b), we show the268

equilibrium value of x1,1 + x0,0 for small-world, scale-free, and complete graphs. We found that269

neighbors in small-world networks and two-dimensional lattices, two networks with high270

clustering coefficients, a feature of real world networks (Newman & Park, 2003), were more271

likely to share languages than predicted by the model. This suggests that even though the272

graphical structure does not influence the stationary distribution of languages in a population as a273

whole, it may influence the local distribution of languages, leading to clusters of homogeneous274

language speakers. Depending on the relative error rates in learning and the prior distribution of275

languages these clusters may not be stable, and may change over time as learners in them adopt276

new languages. At any time point however, we should expect that learners are more likely to be277

able to speak with their neighbors than by chance alone.278

Conclusion279

In this paper we examined how population structure can interact with a learner’s inductive280

biases to influence which languages are produced by iterated learning. We proved that, under our281

model, the structure of the population plays little role in determining whether a given learner282

speaks a certain language. By introducing the voter model we were also able to examine how the283

number of neighbors who shared the same language changed over time, a factor that is important284

in assessing the value of language (Smith & Kirby, 2008). We found that the structure of the285
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population greatly impacted how likely pairs of learners were able to communicate with each286

other. These results extend the results of Griffiths and Kalish (2007) to heterogeneous graphs.287

More generally, they support the generalizability of theoretical and empirical results produced by288

iterated learning beyond transmission chains. Based on our findings, a reasonable conjecture is289

that these results should hold in most, if not all, cases where learners learn from a single teacher.290

Further work needs to be done to explore how population structure may impact learners291

who learn from multiple teachers. Smith (2009) showed that in freely mixing populations, the292

distribution of learners in the population would not converge to the prior distribution. That result293

was replicated for a small number of population structures by Stadler (2009). In contrast, Burkett294

and Griffiths (2010) found that learners who learned multiple languages from multiple teachers295

also converged to the prior distribution on languages. Past work has shown that for even fairly296

simple learning rules, the dynamics of learners learning from multiple teachers in structured297

populations may be far more complex (e.g. Castellano, Muñoz, & Pastor-Satorras, 2009).298

The results in this paper shine some light on how simple iterated learning models can be299

extended to real populations. In particular they provide a way to reconcile the predictions of300

iterated learning models with the geographic distribution of real languages (e.g. Smith & Kirby,301

2008). In our simulations we found that there exist local clusters of speakers who share a302

language. This provides a way to interpret the stationary distribution of iterated learning models:303

we expect some proportion of speakers to learn each language, but we don’t expect those speakers304

to be scattered randomly throughout the population. Rather, speakers are preferentially assorted305

with other speakers of the same language, potentially creating local clusters of homogeneous306

language learners. We hope that further analyses of this kind can be used to bridge the gap307

between models we can analyze and models that actually capture the dynamics of language308

evolution in real populations.309
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Supplementary Materials: Mathematical details

Error rates in Bayesian learning

In this section we derive the probability that a novice learner will adopt language L0

given that their teacher holds language L0. Following the setup of Equation ?? we have

that if the learner hears an utterance, u, consistent with L0 the probability that they

adopt L0 is

p(L0|u) =
(1� ✏)p(L0)

(1� ✏)p(L0) + ✏p(L1)
. (S.1)

On the other hand if learners hear an utterance consistent with L1 the probability that

they adopt L0 is

p(L1|u) =
✏p(L0)

✏p(L0) + (1� ✏)p(L1)
. (S.2)

If their teacher speaks language L0 then the probability of creating an utterance

consistent with L0 is (1� ✏) and the probability of creating an utterance inconsistent with

L0 is ✏. This gives that the probability of adopting L0 from a teacher who speaks L0 is

(1� ✏)
(1� ✏)p(L0)

(1� ✏)p(L0) + ✏p(L1)
+ ✏

✏p(L0)

✏p(L0) + (1� ✏)p(L1)
. (S.3)

A similar equation can be developed for the probability of learning L1 from an L1

language speaker. These equations produce the error rates a and b used in the main text.

Proof of the stationary distribution

In this section we demonstrate that the probability that a given learner in our

model after many generations speaks a language is the same as the prior probability of

that language. Following the setup in the text, let s = {s1, s2, ..., sn} be a binary vector

representing a given assignment of beliefs to nodes. Assume that the graph is path

connected (Diestel, 2012). Consider a probability distribution over states at time t, p
t

. We

can examine the probability that the individual node i speaks language L1 by
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marginalizing over possible states,

v

t,i

=
X

s

�

L1(si)pt(s). (S.4)

where �

L1(si) is 1 if s
i

speaks L1 and 0 otherwise. The vector v
t

expresses the probability

that a given node speaks L1 at time t. Since v

t

is a linear combination of elements of p
t

,

at the stationary distribution of the Markov process, v
t

will converge to a value that is

invariant to future time steps. We label the value of v
t

at the stationary distribution, v.

We demonstrate below that v
i

= a

a+b

for all i by showing that it is invariant to changes in

the update, and is unique in this regard.

We first demonstrate its stability. Let 1� a be the error rate in learning L0 from an

L0 speaker, and let 1� b be the rate of learning L1 from a L1 speaker. Let v
t,i

= a

a+b

. We

have that

v

t+1,i =
X

s

�

L1(si)pt+1(s). (S.5)

The state of the node s

i

is given by marginalizing over all of the possible actions that

could have happened in the transition between t ! t+ 1. With probability n�1
n

the node

was not changed, and so the value was not changed, v
t+1,i = v

t,i

. With probability 1
n

the

value of the node changes. If it changes, then its new value depends on the value of its m

neighbors indexed by {a1, ...am} at time t:

v

t+1,i =
X

s

1

m

mX

j=0

[(1� b)�
L1(st,aj )pt(s) (S.6)

+ a(1� �

L1(st,aj ))pt(s)],

We also have
P

s

�

L1(st,aj ))pt(s) = v

aj ,t and
P

s

p

t

(s) = 1. Under the assumption that
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v

i

= a

a+b

, this produces

v

t+1,i =
1

m

mX

j=0

(1� b)v
aj ,t + a(1� v

aj ,t) (S.7)

= (1� b)
a

a+ b

+ a

b

a+ b

(S.8)

=
a

a+ b

= v

t,i

. (S.9)

Even if the node is updated, v
t

does not, on average change; our choice for v is invariant

to future time changes.

Moreover v is unique in this regard. Suppose there existed another distribution w

t

.

If w
i

= w

j

for all j, i then Equation S.7 simplifies to

w

i

= (1� b)w
i

+ a(w
i

) (S.10)

which only has a single fixed point, w
i

= v

i

. Suppose instead that there exists w
i

6= w

j

,

then Equation S.7 gives us that after an update

w

i

= (1� b)
X

w

aj

m

+ a

X 1� w

aj

m

(S.11)

where the sum is over the m neighbors of w
i

, indexed by a

j

. Choose the largest value of

w

i

such that for one of its neighbors, w
aj < w

i

(such a neighbor exists since the graph is

path connected). Suppose w

i

>

a

a+b

. We have that w
i

>

P
wai
m

. Let

f(x) = (1� b)x+ a(1� x), either f(x) < a

a+b

or f(x) < x. In either case, after the update,

f(
P

wai
m

) < w

i

, implying that w is not invariant to updates. If w
i

<

a

a+b

consider instead

the smallest value of w
i

such that for one of its neighbors, w
aj > w

i

, and demonstrate that

it must increase after the update.

This demonstrates that v is both invariant under updates and is unique; v
i

represents the probability that each node is in state i at the stationary distribution. This

gives that the likelihood that any individual learner speaks L1 is a

a+b

.
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We now demonstrate that a

a+b

= p(L1) for Bayesian learners. From Equation S.3 a

is given by

✏

(1� ✏)p(L1)

(1� ✏)p(L0) + ✏p(L1)
+ (1� ✏)

✏p(L1)

✏p(L0) + (1� ✏)p(L1)
.

and b is given by

(1� ✏)
✏p(L0)

(1� ✏)p(L0) + ✏p(L1)
+ ✏

(1� ✏)p(L0)

✏p(L0) + (1� ✏)p(L1)
.

We have that, b = p(L1)
p(L0)

a. Since there are only two languages in the population we can set

p(L0) + p(L1) = 1. This gives that b = 1�p(L1)
p(L1)

a. Applying this to Equation ?? gives

a

a+ b

=
a

a+ 1�p(L1)
p(L1)

a

=
1

1 + 1
p(L1)

� 1
= p(L1). (S.12)

Learning on heterogeneous graphs

In this section we derive Equation ?? from Equation ??. Equation ?? gives that

d

dt

x1(t) =
X

�

[w(1|0,�)x0,�(t)� w(0|1,�)x1,�(t)].

Denote �

m

k

to be the set of all neighborhoods with |�m

k

| = m and k nodes with state 1.

Let M be the maximum degree of any node on the graph. Since the population is finite,

the sum is well defined. We can rewrite Equation ?? as

d

dt

x1(t) =

MX

m=1

mX

k=0

[w(1|�m

k

)x0,�m
k
(t)� w(0|�m

k

)x1,�m
k
(t)].

Since w(0|�) = 1� w(1|�), and x1,�m
k
(t) + x0,�m

k
(t) = x

�

m
k
(t) then

d

dt

x1(t) =

MX

m=1

mX

k=0

[w(1|�m

k

)x
�

m
k
(t)� x1,�m

k
(t)]

Note that
P

M

m=1

P
m

k=0 x1,�
m
k
(t) = x1(t), so we can break up the summation to obtain

d

dt

x1(t) =

MX

m=1

mX

k=0

w(1|�m

k

)x
�

m
k
(t)� x1(t). (S.13)
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For learning from a single teacher, where the probability in copying state 0 is 1 � a

and the probability of copying state 1 is 1 � b, let m denote the degree of a node in

question and k

m

the proportion of neighbors in state 1. Then

w(1|�m

k

) = (1 � b)
k

m

+ a

m� k

m

= a +
k

m

(1 � a� b)

Let x denote x1(t). Applying this to Equation S.13 gives,

d

dt

x =
MX

m=1

mX

k=0

[a +
k

m

(1 � a� b)]x
�

m
k

(t) � x.

Breaking up the summation gives that

d

dt

x = a

MX

m=1

mX

k=0

x

�

m
k

(t) + (1 � a� b)

MX

m=1

mX

k=0

k

m

x

�

m
k

(t) � x.

We have that
P

M

m=1

P
m

k=0 x�
m
k

(t) = 1 and
P

M

m=1

P
m

k=0
k

m

x

�

m
k

(t) = E[f ], where f is the

frequency of nodes in a neighborhood who have state 1. The equilibrium mean is then

given by the solution to

0 = a + (1 � a� b)E[f ] � x.

For degree regular graphs, let ⌘

i

denote the state of node i and N

i

the neighborhood of i

then

E[f ] =
1

N

NX

i=1

X

j2Ni

⌘

i

deg(j)
.

If all the nodes have the same degree then |N
i

| = deg(j) for all j 2 N

i

. This gives that

E[f ] = x, and the equilibrium expectation is

x =
a

a + b

. (S.14)

Approximating the correlations between nodes

In this section we estimate the correlations between the states of neighboring nodes

when the population is at the stationary distribution. From Equation ?? we are interested

in the fixed point of

d

dt

x1,1 = m(ax� x1,1) +
d

m

E[f2].
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We can break up the squared expectation term by looking at the squared expectation for

the neighborhoods of nodes in state 0, E[f2
0 ], and in state 1, E[f2

1 ].

For state 1, the number of nodes in the neighborhood that also have a state of 1 is

approximated by the pair approximation of having been drawn from a binomial

distribution, with parameter
x1,1

x

. This gives that the squared expectation can be found as

a di↵erence between the square of the expectation and the variance of a binomial

distribution. We have that

E[f2
1 ] = V ar(f2

1 ) + E[f1]2 =
m(m � 1)x2

1,1

x

+ mx1,1.

A similar equation can be derived for f0. Substituting this back into the previous

expression returns an equation, quadratic in x1,1. Let d = 1 � a � b then the equation is

d

dt

x1,1 = x

2
1,1

d(m � 1)

x(1 � x)
+ x1,1(�m � 2xd(m � 1)

1 � x

)

+
x

2
d(m � 1)

1 � x

+ dx + a(xm)

The zeroes of this equation can be found via application of the quadratic equation:

x1,1 = x

2 +
x � x

2

2(d � d/m)
+ g(x)

where g(x) is s

(x2 +
x � x

2

2(d � d/m)
)2 � a(x2 � x

3)

d � d/m

� x

2 � x

3

m � 1
+ x

3
.

We found that for our simulations g(x) can be reasonably approximated by 1
2x(1 � x).
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