
 

 

 
 
 

Edinburgh Research Explorer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Data Analysis and Robust Modelling of the Impact of Renewable
Generation on Long Term Security of Supply and Demand

Citation for published version:
Troffaes, M, Williams, E & Dent, C 2015, Data Analysis and Robust Modelling of the Impact of Renewable
Generation on Long Term Security of Supply and Demand. in 2015 IEEE Power & Energy Society General
Meeting. Institute of Electrical and Electronics Engineers (IEEE), Denver, Colorado, US.
https://doi.org/10.1109/PESGM.2015.7286070

Digital Object Identifier (DOI):
10.1109/PESGM.2015.7286070

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2015 IEEE Power &amp; Energy Society General Meeting

Publisher Rights Statement:
 c 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Jan. 2022

https://doi.org/10.1109/PESGM.2015.7286070
https://doi.org/10.1109/PESGM.2015.7286070
https://www.research.ed.ac.uk/en/publications/c9502889-4c9e-452e-b51c-7c3dda449e83


Data Analysis and Robust Modelling of the Impact
of Renewable Generation on Long Term Security of

Supply and Demand
Matthias C. M. Troffaes

Dept. of Mathematical Sciences
Durham University, UK

Email: matthias.troffaes@gmail.com

Edward Williams
Dept. of Mathematical Sciences

Durham University, UK
Email: e.h.williams@durham.ac.uk

Chris Dent
School of Engineering & Computing Sciences

Durham University, UK
Email: chris.dent@durham.ac.uk

Abstract�This paper studies rigorous statistical techniques
for modelling long term reliability of demand and supply of
electrical power given uncertain variability in the generation
and availability of wind power and conventional generation. In
doing so, we take care to validate statistical assumptions, using
historical observations, as well as our intuition about the actual
underlying real-world statistical process. Where assumptions
could not be easily validated, we say so explicitly. In particular,
we aim to improve existing statistical models through sensitivity
analysis of ill-known parameters: we propose models for wind
power and conventional generation, estimate their parameters
from historical wind power data and conventional availability
data, and �nally combine them with historical demand data
to build a full robust joint time-dependent model of energy
not served. Bounds on some useful indices from this model
are then calculated, such as expected energy not served, and
expected number of continuous outage periods�the latter cannot
be estimated from a purely time collapsed model because time
collapsed models necessarily do not model correlations across
time. We compare our careful model with a naive model that
ignores deviations from normality, and �nd that this results in
substantial differences: in this speci�c study, the naive model
overestimates the risk roughly by a factor 2. This justi�es the
care and caution by which model assumptions must be veri�ed,
and the effort that must be taken to adapt the model accordingly.

I. INTRODUCTION

The inclusion of variable generation within power system
adequacy risk calculations is currently a key topic in power
system planning methodology. A vital component of this is an
appropriate statistical wind resource model. Some outputs of
interest, such as for example the expected energy not served
(which is the expected total energy shortage in a future time
window), can be calculated using a time collapsed model in
which time correlations in variable generation are not modelled
explicitly [1]. However, other outputs of interest, such as for
instance the expected number of periods of shortfall, require
a full time series model of the variable generation. Examples
of statistical approaches to this may be found in [2], [3], [4].

This paper makes two contributions in the use of time series
wind models within power system adequacy calculations. First,
although standard ARMA processes have Gaussian marginal
distributions, it is not standard practice in the power system

literature to transform wind speed data or wind power data so
that it has a Gaussian marginal before estimating parameters of
an ARMA wind speed or wind power model�although there
are some exceptions [5], [6]. We will demonstrate that ensuring
the conditions for an ARMA process are correctly satis�ed
can make a substantial difference to model outputs. Secondly,
as we shall see, the parameters of the ARMA process can
vary substantially when �tted to data from different years. We
demonstrate that these differences can lead to quite different
results, and propose a method for sensitivity analysis, based
on imprecise probability [7], [8].

The analysis is based on the �Adjusted Gone Green� sce-
nario supplied by National Grid, in which the generating
unit capacities are slightly adjusted from the original �Gone
Green� scenario. The results are thus generally representative
of Great Britain calculations and are entirely suf�cient for
demonstrating methodology. The small data adjustments are
necessary in order to make clear that model outputs do not
precisely re�ect any future scenario for the Great Britain
system developed by National Grid.

Sections II and III discuss, respectively, the wind power
model and the conventional generation model. Various risk
indices are derived from these models in section IV. We re�ect
on the results and future work in section V.

II. MODELLING WIND POWER

The available wind power data covers seven twenty week
winters. The aim of our model is to characterize the statistical
properties of the wind power time series in an arbitrary year.

A simple and often effective approach to time series mod-
elling is to use an ARMA process [9]. ARMA processes have
a normal marginal distribution, but obviously our wind power
will not be normally distributed.

The top left plot in �g. 1 con�rms that the data is not
normally distributed; there are fewer values in the tail of the
distribution than there would be in a normal distribution. Also,
if other years are to be simulated from the model, there are
certain constraints with which simulated data has to abide; no
output can be below 0 or above 10120 which is the maximum
wind power output of the scenario on which the data is based.



Fig. 1. Normal quantile-quantile plots for the wind data.

In reality we can set this interval to be smaller than [0; 10120]
as it is highly improbable to observe an output at extremes.

Various approaches to dealing with non-normality in wind
power data are discussed in the literature; see for instance [5],
[6]. A simple solution is to take a logit transform:

logit(x) = log
�

t(x)
1�t(x)

�
where t(x) = x��

��� : (1)

Here, [�; �] represents the range of possible values of y.
Chosing � = 0 and � = 10120 according to the physical

constraints of the system does not entirely �x departures from
normality. By visual inspection of quantile-quantile plots, � =
120 and � = 8900 were selected. The quantile-quantile plot
for this choice is depicted in the top right of �g. 1; clearly there
is signi�cant improvement. It is important to realize that our
model thereby excludes extreme wind power events outside
[120; 8900]. Note that the actual bounds of full 7 years of wind
power data are [142:306; 8810:187], so observations outside
the range [120; 8900] were never actually observed in the data.

It is instructive to inspect also the quantile-quantile plots
for individual years. The most problematic years are 2005 and
2010, depicted in the bottom of �g. 1, with the actual quantiles
deviating from the theoretical quantiles in the upper tail for
2010 and the lower tail for 2005. These observations may
suggest that the bounds are not entirely static, and perhaps
some random effect on � and � could be included. For
simplicity, however, we will stick with constant bounds.

We propose the following model:

logit(X(y; t)) = Z1(y) + Z2(y; t) (2)

where y is the year, t is the time within the year, Z1(y)
captures a yearly effect, and Z2(y; t) is an ARMA process
with zero mean. Because

E(logit(X(y; t))jy) = E(Z1(y)jy) + 0 = Z1(y) (3)

TABLE I
ESTIMATED REALIZATIONS OF Z1(y), WITH CONFIDENCE LIMITS AT THE

95% CONFIDENCE LEVEL.

y 2005 2006 2007 2008 2009 2010 2011
ẑ1(y) �0:62 0:22 0:03 �0:56 �0:66 �0:84 �0:17
error �0:33 �0:56 �0:42 �0:38 �0:45 �0:32 �0:61

we can estimate Z1(y) from the yearly sample mean of
logit(X(y; t)). As we only have 7 years of observations, we
can only estimate 7 realizations of Z1(y). The exact values
thus estimated are listed in table I, along with con�dence
limits, where the autocorrelation was taken into account (for
example, see [10, Sec. 3.1]). It can be seen that there is a
signi�cant difference between each yearly effect. However,
most of the con�dence intervals for ẑ1(y) overlap with each
other, making it dif�cult to draw any strong conclusions.

Because the entire process is reasonably normal, we judge
it not unreasonable to assume that the Z1(y) are iid samples
from a normal distribution:

Z1(y) � N(�; �2) (4)

where we can estimate � and �2 by

�̂ = 1
7
P7
y=1 ẑ1(y) = �0:371 (5)

�̂2 = 1
6
P7
y=1(ẑ1(y)� �̂)2 = 0:3972 (6)

The error on �̂, at the 95% level, is:

1:96� s.e.(�̂) = 1:96
� �̂2

7|{z}
0:022

+
1
72

P7
y=1 var(ẑ1(y))

| {z }
0:008

�0:5
(7)

= 0:34 (8)

The errors in ẑ1(y) are the least contribution to the total
error. Ignoring the errors in ẑ1(y), a naive but simple 95%
con�dence interval for �̂2 is:

�
6�̂2=�2

0:975; 6�̂
2=�2

0:025
�

=
�
0:2562; 0:8742� (9)

where �2
� are the � quantiles of the chi-square distribution

with six degrees of freedom.
When simulating a random year, we may simply draw

the yearly effect from N(�̂; �̂2). Alternatively, a more con-
servative analysis could simply take the lowest value for
Z1(y) within the con�dence intervals of table I, that is,
z1 = �0:84 � 0:32 = �1:16. This could be appropriate if
one would like to drop the assumption that the Z1(y) are iid
realisations from a normal distribution.

As said before, we will assume that Z2 is an ARMA process
with zero mean. More speci�cally, we assume that

Z2(y; �)jy � AR(�(y); �(y)) (10)

where �(y) are the coef�cients of the AR process and �(y) is
the standard deviation of the residual noise�these parameters
may vary across years. An estimate for Z2(y; t) is

ẑ2(y; t) = logit(x(y; t))� ẑ1(y): (11)



Fig. 2. Top: partial autocorrelation diagram for Z2(y; t), for y = 2008.
Bottom: full autocorrelation diagram and normal quantile-quantile plot for
the residuals of the �tted AR(5) model for Z2(y; t), for y = 2008.

To judge the stationarity of Z2(y; t), and to pick an appro-
priate order for the AR process, we investigate the partial
autocorrelation diagram of the data, depicted for y = 2008
in �g. 2. Other years follow a very similar pattern. Larger
autocorrelations are limited, thus a stationarity assumption
seems reasonable. The partial autocorrelation become close
to zero at a lag of 4 or 5, which would suggest an AR model
of order 4 or 5. Therefore, we used an AR model of order 5.

To check the model �t, the full autocorrelation diagram and
normal quantile-quantile plot of the residual of the �tted model
are also plotted in �g. 2, again for y = 2008. There are no
large peaks left, so the model is adequate as the residuals do
not have any signi�cant correlation. The largest peak occurs
at lag 24, which corresponds to a day. This suggests that there
might be a daily cycle that has not been taken into account.
Because the peak is quite small, no further attempt to remove
it was made in this study.

To �nalise the model, we need to �t the AR model co-
ef�cients. Naively, we could join all of the years together
after we have transformed each year and set its mean to 0,
hoping that all years are similar enough, and hoping that the
discontinuity across years has little impact on our estimates.
More cautiously, we could �t an AR model to each of the
years separately. As can be seen from table II, the coef�cients
vary signi�cantly across years. The errors on these estimates
are consistently approximately equal to

1:96� s.e.(�̂(y)) � (0:03; 0:09; 0:11; 0:09; 0:03) (12)

across all years y. Clearly, the variation of the estimated �(y)
across years is far larger than the errors on the estimates. To
proceed cautiously, we merely assume that at least one of the

TABLE II
FITTED AR COEFFICIENTS FOR EACH YEAR.

y �̂1(y) �̂2(y) �̂3(y) �̂4(y) �̂5(y) �̂(y)
2005 2.54 �2:54 1.48 �0:64 0.16 0.04
2006 2.56 �2:65 1.63 �0:7 0.16 0.06
2007 2.49 �2:45 1.38 �0:55 0.12 0.06
2008 2.41 �2:25 1.17 �0:44 0.09 0.06
2009 2.56 �2:58 1.46 �0:58 0.14 0.04
2010 2.53 �2:51 1.39 �0:54 0.12 0.04
2011 2.22 �1:73 0.68 �0:27 0.09 0.06

1 0

pi

1� pi
qi

1� qi

Fig. 3. Two-state Markov chain for conventional capacity.

years is representative for a future year, however we do not
know which of the years. In particular, we do not assume that
the Z2(y; �) processes are fully exchangeable across years y.
For inference, we will simply do a sensitivity analysis on the
coef�cients from each observed year, and bound the resulting
probabilities and expectations [7], [8].

III. MODELLING CONVENTIONAL GENERATION

For each unit of conventional generation, we have its
capacity ci, and the fraction of time ai it is available. To model
the total conventional capacity in time, we assume that each
unit Wi follows a 2 state discrete time Markov chain, where
at each time point t the unit is either working (Wi(t) = 1) or
not working (Wi(t) = 0); see �g. 3. Time steps by the hour.
An hourly resolution provides suf�cient detail for our purpose.
Moreover, our wind power data is also by the hour.

Each unit i then has two parameters: pi and qi. The mean
time to repair is 1=qi. Due to lack of data, we assume identical
repair rates across all conventional generators. Because 50
hours mean time to repair is reasonably representative of
typical generation units [11, Table 1], we simply set qi = 1=50
for all units i�obviously this aspect of the model could be
improved in future work. The theoretical long term availability
is simply the limiting probability of Wi = 1, which is equal
to qi

pi+qi
. Consequently, the equality ai = qi

pi+qi
determines

pi, as ai and qi are known.
The total available capacity for conventional is then simply

X(t) =
Pk
i=1 ciWi(t): (13)

For simulating X(t), we bluntly simulate Wi(t) for each
conventional unit and then join these together using eq. (13).

IV. ENERGY NOT SERVED AND NUMBER OF SHORTFALLS

The energy not served is de�ned as

E :=
P3360
t=1 max f0; D(t)� C(t)�W (t)g (14)

where D(t), C(t), and W (t) are, respectively, the demand,
conventional generation, and wind generation at time t. The



Fig. 4. The energy not served E is the area under the curve which lies above
the horizontal axis. The number of shortfalls N is the number of such areas.

sum runs over 3360 hours, which is equal to the length of
each winter period in the data. The number of shortfalls, N ,
is de�ned as the number of times that the sequence (D(t) �
C(t)�W (t))t=1:::3360 changes sign from negative to positive.

Figure 4 demonstrates both concepts, for a shorter period
of 48 hours. Note that, to serve clarity, the plot is schematic
and does not represent results from our modelling. Anyway,
in this case, E = 29251 and N = 2.

Our main aim is to estimate the distributions of E and N ,
and thereby also various indices of system reliability, such
as the expectation of E, that is, the expected energy not
served, often abbreviated as EENS. Note that the distribution
of N cannot be estimated from a purely time collapsed
model because time collapsed models necessarily do not model
correlations across time. To do this estimation, we combine
the simulated wind and simulated conventional capacity along
with historic demand data. Demand simulation is not at-
tempted, as this requires complicated modelling of periodic
effects at many different time scales, which we have not yet
attempted to model. Instead, we simply use an actual demand
trace from 2010, which has the highest peak demand across
all years between 2005 and 2011. Figure 5 shows a short
simulation trace of wind and conventional, along with demand.

In a normal situation, we would perform n model runs,
where each model run simulates a full winter (3360 hours) of
wind generation and conventional capacity, thereby producing
a single realisation of E and N . However, as discussed in
section II, we �tted 7 distinct AR models for Z2(y; �), namely
one for each winter in the data. To allow us to perform a
sensitivity analysis against the AR model parameters, every
model run simulated wind for each of these AR models,
thereby producing 7 distinct realisations of E and N . To
ensure consistent sampling errors, the random seed of each
of the 7 wind simulations was forced to the same value�of
course this seed varied randomly between simulation runs.

We then use these samples of E and N to produce lower and
upper expectations, or more sophisticatedly, lower and upper
histograms. Our actual simulations used n = 100 000, and the
total time to complete these runs was 114.21 hours, with most
time spent on simulation of conventional capacity.

The top left of �g. 6 shows 7 overlayed histograms�

Fig. 5. A trace of wind generation (bottom curve), historic demand (middle
curve), and conventional capacity (top curve).

Fig. 6. Estimated distributions of E j E > 0 and N j N � 1. The histograms
on the left show the model with logit and year effect for wind. The histograms
on the right show a naively �tted model without logit and without year effect.

one histogram for every choice of AR parameters�for E,
conditional on E > 0; the large peak at E = 0 (see
eq. (19) further) has been omitted to make for a clearer picture.
The largest simulated value for E was 43653:5, however
E � 10 000 is very rare (only a fraction 0:00412 of all model
runs), so this tail has been omitted from the histogram. The
top right of �g. 6 shows the results of a more naive model for
wind, without logit and without random year effect (or more
precisely, a constant year effect equal to the mean of the data).
In this case, this has led to a clear overestimation of the risk.



Similar histograms for N are depicted at the bottom of
�g. 6. Again, N = 0 is omitted for clarity. The largest
simulated value for N was 8, however N � 4 is very rare
(only a fraction 0:00148 of all model runs), so this tail has
been omitted. If there is a shortfall in a year, then it is likely
to have only happened once or twice. The chance of having a
shortfall more than twice in a single year, given that shortfall
occurs, is at most 0:054. Obviously, here too, a naive model
overestimates the risk quite substantially.

Lower and upper expected energy not served, that is, bounds
on the EENS, can be estimated from the simulation as follows:

P (E)=
7

min
y=1

1
n

nX

i=1

3360X

t=1

max f0; d(t)� ci(t)� wyi(t)g (15)

=299:63� 9:24 (16)

P (E)= 7max
y=1

1
n

nX

i=1

3360X

t=1

max f0; d(t)� ci(t)� wyi(t)g (17)

=389:91� 9:24 (18)

where the error is the worst case 95% con�dence interval
around the sample means, n = 100 000 is the number of
model runs, d(t) is historic demand at time t (for 2010), ci(t)
is conventional capacity at time t in model run i, and wyi(t) is
the wind power at time t in model run i with AR coef�cients
�̂(y). Bounds on the probability of E = 0 follow similarly:

P (E = 0)=0:813�0:002 P (E = 0)=0:848�0:002 (19)

For comparison, the naive model has:

P (E)=808:416�16:501 P (E = 0)=0:733�0:003 (20)

which con�rms our earlier observation about risk overestima-
tion. In particular, the naive model overestimates the expected
energy not served by a factor of more than 2.

The difference between AR coef�cients �̂(y) clearly has a
signi�cant impact, as do statistical assumptions such as nor-
mality, justifying the caution by which we �tted our models.

V. CONCLUSION

We modelled wind and conventional power to characterize
the distributions of typical quantities of interest, such as
energy not served, and number of shortfalls. Model param-
eters varied substantially when �tted to data from different
years. In our analysis, these differences lead to quite different
results, prompting a sensitivity analysis. We showed that a
naive model�ignoring non-normality and differences across
years�leads to substantial overestimation of the risk. Even
though the model in this study was quite limited, it does
highlight the importance of careful statistical modelling.

Various aspects of the model remain to be improved. The
distributions of energy not served and number of shortfalls
would be as in this paper only if a future winter had the same
demand pattern, if conventional capacity actually followed a
two state Markov chain, and if the wind was similar to wind
seen in at least one of the winters in our data. Therefore, we
have not made a strong ‘real world’ statement.

First, we used a simple historic trace for demand. Due
to complex periodic effects at different time scales (daily,
weekends, season) and dependence on climate and economy,
predictive modelling of demand is a non-obvious task [12].

Next, our model for conventional generation has quite a few
limitations. In particular, the Markovian assumption may be
violated, repair rates will not be equal across all conventional
generators, and repair and failure rates will also not be constant
throughout the day: generators fail more regularly during
startup and during ramping.

Finally, the logit transform, which was used to transform
our wind into a normally distributed process, implies that we
cannot simulate wind power output larger than the bounds on
the transformation, which were set quite closely to the max-
imum and minimum value observed from the data. Perhaps
these bounds should not be taken to be constant.
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