The universal enveloping algebra of the Witt algebra is not noetherian

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.aim.2014.05.007

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Advances in Mathematics
THE UNIVERSAL ENVELOPING ALGEBRA OF THE WITT ALGEBRA IS NOT NOETHERIAN

SUSAN J. SIERRA AND CHELSEA WALTON

Abstract. This work is prompted by the long standing question of whether it is possible for the universal enveloping algebra of an infinite dimensional Lie algebra to be noetherian. To address this problem, we answer a 23-year-old question of Carolyn Dean and Lance Small; namely, we prove that the universal enveloping algebra of the Witt (or centerless Virasoro) algebra is not noetherian. To show this, we prove our main result: the universal enveloping algebra of the positive part of the Witt algebra is not noetherian. We employ algebro-geometric techniques from the first author’s classification of (noncommutative) birationally commutative projective surfaces.

As a consequence of our main result, we also show that the enveloping algebras of many other (infinite dimensional) Lie algebras are not noetherian. These Lie algebras include the Virasoro algebra and all infinite dimensional \(\mathbb{Z} \)-graded simple Lie algebras of polynomial growth.

0. Introduction

To begin, we take \(k \) to be a field of characteristic 0 and we let an unadorned \(\otimes \) mean \(\otimes_k \). (If \(X \) is a scheme, and \(\mathcal{A}, \mathcal{B} \) are quasicoherent sheaves on \(X \), we write \(\mathcal{A} \otimes_X \mathcal{B} \) rather than \(\mathcal{A} \otimes_{\mathcal{O}_X} \mathcal{B} \).) We are motivated by the well-known question of whether it is possible for the universal enveloping algebra of an infinite dimensional Lie algebra to be noetherian (cf. [GW04, page xix]). It is generally thought that the answer to this question should be “no,” and we state this as a conjecture:

Conjecture 0.1. A Lie algebra \(L \) is finite dimensional if and only if the universal enveloping algebra \(U(L) \) is noetherian.

One direction holds easily. Namely, the universal enveloping algebra of a finite dimensional Lie algebra is noetherian; see [MR01, Corollary 1.7.4]. To address the converse, many have considered the universal enveloping algebra of the infinite dimensional Lie algebra \(W \) below.

Definition 0.2. \([W, U(W)]\) The Witt (or centerless Virasoro) algebra \(W \) is defined to be the Lie algebra \(W \) with basis \(\{e_n\}_{n \in \mathbb{Z}} \) and Lie bracket \([e_n, e_m] = (m - n)e_{n+m} \). We take \(U(W) \) to be the universal enveloping algebra of \(W \), which is \(\mathbb{Z} \)-graded with \(\deg(e_n) = n \).

Note that \(W \) is realized as the Lie algebra of derivations of \(k[x, x^{-1}] \), where \(e_n = x^{n+1} \frac{d}{dx} \). If \(k = \mathbb{C} \), then \(W \) is also the complexification of the Lie algebra of polynomial vector fields on the circle. Here, \(e_n = -i \exp(in\theta) \frac{d}{d\theta} \), where \(\theta \) is the angular parameter.

It is well known that \(U(W) \) is a domain, has infinite global dimension, and has sub-exponential growth [DS90, Section 3]. On the other hand, regarding Conjecture 0.1 we have:

Question 0.3. (C. Dean and L. Small, 1990) Is \(U(W) \) noetherian?

We consider the following subalgebra of \(U(W) \), which aids in answering Question 0.3 above.

2010 Mathematics Subject Classification. 14A22, 16S30, 16S38, 17B68.

Key words and phrases. birationally commutative algebra, centerless Virasoro algebra, infinite dimensional Lie algebra, non-noetherian, universal enveloping algebra, Witt algebra.
Definition 0.4. \([W_+, U(W_+)]\) The \textit{positive (part of the) Witt algebra} is defined to be the Lie subalgebra \(W_+\) of \(W\) generated by \(\{e_n\}_{n \geq 1}\). The universal enveloping algebra \(U(W_+)\) is then the following subalgebra of \(U(W)\):

\[
U(W_+) = \frac{k\langle e_n \mid n \geq 1 \rangle}{\langle [e_n, e_m] = (m-n)e_{n+m} \rangle},
\]

which is \(N\)-graded with \(\deg e_n = n\).

It is a general fact that if \(L'\) is a Lie subalgebra of \(L\) and \(U(L)\) is noetherian, then \(U(L')\) is noetherian; see Lemma 0.7. Because of this, many have asked whether \(U(W_+)\) is noetherian. We show that it is not, thus answering Question 0.3 as follows.

Theorem 0.5. The universal enveloping algebra of the positive Witt algebra \(U(W_+)\) is neither right or left noetherian. As a consequence, the universal enveloping algebra of the full Witt algebra \(U(W)\) is neither right or left noetherian. Thus, Conjecture 0.1 holds for both \(W\) and \(W_+\).

The first step in the proof of the theorem is to produce a homomorphic image of \(U(W_+)\) that is \textit{birationally commutative}: that is, an explicit algebra homomorphism \(\rho : U(W_+) \to K[t, \tau]\), where \(K\) is a field and \(\tau \in \text{Aut}_k(K)\). We then show, using the techniques of [Sie11a], that \(\rho(U(W_+)) =: R\) is not noetherian.

The homomorphism \(\rho\) was constructed using the truncated point schemes of \(U(W_+)\): roughly speaking, the geometric objects parameterizing graded \(U(W_+)\)-modules with Hilbert series \(1 + s + \cdots + s^n\). However, the point schemes are not needed for the proof of Theorem 0.5. We will return to the study of these point schemes in future work.

As a consequence of Theorem 0.5 we also show that many other infinite dimensional Lie algebras satisfy Conjecture 0.1 (See Section 5 for definitions.)

Corollary 0.6. Let \(L\) be one of the following infinite dimensional Lie algebras:

(a) \ the Virasoro algebra \(V\); or
(b) \ an infinite dimensional \(\mathbb{Z}\)-graded simple Lie algebra of polynomial growth.

Then the universal enveloping algebra \(U(L)\) is not noetherian. Moreover, all central factors of \(U(V)\) are non-noetherian.

Preliminary results and lemmas pertaining to the ring \(R\) and its associated geometry are provided in Sections 1 and 2 respectively. We prove Theorem 0.5 in Section 3. In Section 4, we show that the Gelfand-Kirillov dimension of \(R\) is 3, which is of independent interest. We prove Corollary 0.6 in Section 5.

1. Preliminaries

The bulk of this paper is devoted to showing that \(U(W_+)\) is not noetherian. In this section, we calculate explicitly the defining relations of \(U(W_+)\) and construct a useful ring homomorphism \(\rho\) from \(U(W_+)\) to the ring \(K[t, \tau]\) defined in Notation 1.4.

First, let us produce a second presentation of \(U(W_+)\) as follows.

Lemma 1.1. Recall Definition 0.7. We have the following isomorphism:

\[
U(W_+) \cong \frac{k\langle e_1, e_2 \rangle}{\langle e_1, [e_1, e_2] + 6e_2, [e_2, e_1], [e_1, [e_1, e_2]] + 6[e_2, [e_2, e_1]], [e_1, [e_1, [e_1, e_2]]] + 40[e_2, [e_2, [e_2, e_1]]] \rangle}.
\]

Proof. The Lie algebra \(W_+\) is generated by \(e_1\) and \(e_2\). The proof of [Unf95] Theorem 8.3.1 shows that \(W_+\) has one relation in degree 5 and one in degree 7. Thus \(U(W_+)\) is generated by \(e_1\) and \(e_2\) and has one relation in degree 5 and one in degree 7.

Using the relation \([e_n, e_m] = (m-n)e_{n+m}\), consider the following computations:

\[
[e_1, [e_1, e_2]] = [e_1, [e_1, e_3]] = 2[e_1, e_4] = 6e_5,
\]
Thus, we have the following two equations:

\[(1.2) \quad e_1^3 e_2 - 3e_1^2 e_2 e_1 + 3e_1 e_2 e_1^2 - e_2 e_1^3 + 6(e_2^2 e_1 - 2e_2 e_1 e_2 + e_1 e_2^2) = 0;\]

\[(1.3) \quad e_1^3 e_2 - 5e_1^4 e_2 e_1 + 10e_1^3 e_2 e_1^2 - 10e_1^2 e_2 e_1^3 + 5e_1 e_2 e_1^4 - e_2 e_1^5 + 40(e_1^3 e_2 e_1 - 3e_2^2 e_1 e_2 + 3e_2 e_1 e_2^2 - e_1 e_2^3) = 0.\]

A routine computation verifies that the left-hand side of (1.3) does not lie in the two-sided ideal generated by the left-hand side of (1.2). Thus, these are the degree 5 and degree 7 relations that we seek.

We will use geometric arguments to analyze \(U(W_+)\). Let us establish some notation.

Notation 1.4. \([X, \tau, f, f_i, P, \mathbb{k}(X)[t; \tau]]\) We denote \(\mathbb{P}^n\) simply by \(\mathbb{P}^n\). Let coordinates on \(\mathbb{P}^3\) be \(w, x, y, z\). Let \(X = V(xz - y^2) \subset \mathbb{P}^1\) be the projective cone over \(\mathbb{P}^1\); this is a rational surface whose singular locus is the vertex \(P = [1:0:0:0]\). Define an automorphism \(\tau\) of \(X\) by
\[
\tau([w : x : y : z]) = [w - 2x + 2z : z : -y - 2z : x + 4y + 4z].
\]

Note that on \(X\) we have \(z(x + 4y + 4z) - (-y - 2z)^2 = xz - y^2 = 0\), so \(\tau\) is well-defined. Since the matrix defining \(\tau\) is invertible, \(\tau\) is an automorphism. The automorphism \(\tau\) acts on \(\mathbb{k}(X)\) by pullback; by abuse of notation, we denote this pullback action by \(\tau\) as well, so that \(g^\tau = \tau^* g = g \circ \tau\) for \(g \in \mathbb{k}(X)\). We will work in the ring \(\mathbb{k}(X)[t; \tau]\), where \(tg = g^\tau t\) for all \(g \in \mathbb{k}(X)\).

Let
\[
f = \frac{w + 12x + 22y + 8z}{12x + 6y},
\]
considered as a rational function in \(\mathbb{k}(X)\); equivalently, \(f : X \longrightarrow \mathbb{P}^1\) is a rational map. For \(i \in \mathbb{Z}\), let \(f_i\) denote \(f^{i*} = f \circ \tau^i\).

In the next result, we construct a homomorphism \(\rho\) from \(U(W_+)\) to \(\mathbb{k}(X)[t; \tau]\).

Proposition 1.5. There is a graded algebra homomorphism \(\rho : U(W_+) \rightarrow \mathbb{k}(X)[t; \tau]\) defined by \(\rho (e_1) = t\) and \(\rho (e_2) = ft^2\).

Proof. By Lemma 1.1 we must show that \(t\) and \(ft^2\) satisfy the equations (1.2), (1.3). We first observe that \(\rho\) maps the monomial \(e_1^i e_2 e_1^j\) to \(t^i ft^{i+j+2}\). Similarly, we have
\[
e_1^3 e_2 e_1^2 = \rho (f_0 f_3 t^5), \quad e_2 e_1^2 = \rho (f_0 f_3 t^5), \quad e_1 e_2^2 = \rho (f_1 f_3 t^5),
\]
\[
e_1^3 e_1 = \rho (f_0 f_2 f_4 t^7), \quad e_2 e_1 = \rho (f_0 f_2 f_4 t^7), \quad e_2 e_2 = \rho (f_0 f_3 f_5 t^7), \quad e_1 e_3 = \rho (f_1 f_3 f_5 t^7).
\]

To verify the relations (1.2), (1.3), we must therefore check that the following equations hold:
\[
f_3 - 3f_2 + 3f_1 - f_0 + 6(f_0 f_2 - 2f_0 f_3 + f_1 f_3) = 0;
\]
\[
f_5 - 5f_4 + 10f_3 - 10f_2 + 5f_1 - f_0 + 40(f_0 f_2 f_4 - 3f_0 f_2 f_5 + 3f_0 f_3 f_5 - f_1 f_3 f_5) = 0.
\]

This is a straightforward computation, although it is best done by computer. See Routine A.1 in the appendix for the Macaulay2 calculations.

Consider the following notation.

Notation 1.6. \([R]\) Let \(R\) denote the image of \(U(W_+)\) under the map \(\rho\) of Proposition 1.5.

We will show that \(U(W_+)\) is not noetherian by showing that \(R\) is not noetherian.

To end the section, we give two useful technical results.

Lemma 1.7. Let \(L\) be a Lie algebra, and let \(L'\) be a Lie subalgebra. If \(U(L)\) is noetherian, then \(U(L')\) is also noetherian.
Proof. Any enveloping algebra is isomorphic to its opposite ring, by [Dix96] Proposition 2.2.17. Thus, the noetherian property for enveloping algebras is left-right symmetric, and it suffices to show that if $U(L)$ is noetherian, then $U(L')$ is left noetherian. Let $\{e_i\}_{i \in I}$ be a basis of L', where $I \supseteq I'$. Fix an ordering on I so that if $i \in I'$ and $j \notin I'$, then $j < i$. It follows from the Poincaré-Birkhoff-Witt theorem that $U(L)$ has a basis $\{e^n_{\alpha_1}e^{n_2}_{\beta_2} \cdots e^n_{\alpha_m}\}$ for $\alpha_i \in \mathbb{Z}_{\geq 1}$ and $k_i \in I$ with $k_1 < \cdots < k_m$, and similarly for $U(L')$. Thus, it is clear that $U(L)$ is a free right $U(L')$-module with basis $\{e^\beta_{j_1}e^\beta_{j_2} \cdots e^\beta_{j_l}\}$, $\beta_i \in \mathbb{Z}_{\geq 1}$, $j_i < \cdots < j_l \in I \setminus I'$ over $U(L')$. This implies that $U(L)$ is right faithfully flat over $U(L')$. Now by [GW04] Exercise 17T, if $U(L)$ is left noetherian, then $U(L')$ is also left noetherian. \hfill \square

Lemma 1.8. [AZ04] Proposition 5.10(1) If $S = \bigoplus_{n \in \mathbb{N}} S_n$ is a right (left) noetherian \mathbb{N}-graded k-algebra, and N is a positive integer, then the Veronese subalgebra $S^{\langle N \rangle} = \bigoplus_{n \in \mathbb{N}} S_{Nn}$ is right (left) noetherian. \hfill \square

2. Geometry on X

In this section, we give some geometric results about X, about the automorphism τ (from Notation 1.4) and about certain sheaves on X. We will use the following notation throughout.

Notation 2.1. $[\pi, \sigma]$ Consider the rational map $\pi : X \dashrightarrow \mathbb{P}^1$ defined by

$$[w : x : y : z] \mapsto \left\{ \begin{array}{ll}
[x : y] & \text{if } x \neq 0 \\
[y : z] & \text{if } z \neq 0.
\end{array} \right.$$

If both x and z are nonzero, then $y^2 = xz$ is nonzero, and we have that $[x : y] = [xz : yz] = [y^2 : yz] = [y : z]$. So, π is well-defined. Also, $x = z = 0$ intersects X at $P = \{1 : 0 : 0 : 0\}$, so the domain of definition of π is $X \setminus P$. Let $\sigma : \mathbb{P}_P^2 \to \mathbb{P}_P^2$ be given by $[u : v] \mapsto [v : -u - 2v]$. Since rational maps between irreducible projective varieties are equal if they agree on an open set, we have that $\pi \tau = \sigma \pi$. (Here, we have equality on the open set: $z \neq 0$.)

Notation 2.2. $[p_i, L_i, D]$ For $i \in \mathbb{Z}$, let $p_i = \sigma^{-1}([1 : -2])$. Note that $\sigma^{-1}([a : b]) = [-b - 2a : a]$. Let $L_i = \pi^{-1}(p_i)$. Each L_i is a line through the vertex P of X; for example, $L_0 = V(2x + y, 2y + z) \subset X$, and $L_1 = V(x, y)$. We also have $\tau^{-1}(L_i) = L_{i+1}$.

As is well-known, the lines L_i are Weil divisors on X but are not locally principal at P (note that X is normal, so it makes sense to talk about Weil divisors). The divisor class group of the local ring \mathcal{O}_X, P is $\mathbb{Z}/2\mathbb{Z}$, so any sum $L_i + L_j$ is locally principal. (See [Har77] Examples II.6.5.2 and II.6.11.3.)

Let D denote the divisor $V(w + 12x + 22y + 8z) \cap X$ on X.

We will need to consider the locally principal Weil divisors $\text{div}(g)$ for rational functions $g \in \mathbb{k}(X)$. We begin by computing $\text{div}(f)$ for f in Notation 1.4. Note that $V(2x + y) \cap X$ is a degree 2 curve in \mathbb{P}^3 that contains L_0 and L_1. Thus, $V(2x + y) \cap X = L_0 \cup L_1$ and we have proven the following result.

Lemma 2.3. Recall Notations 1.4 and 2.2. We have that $\text{div}(f) = D - L_0 - L_1$. As a consequence, $\text{div}(f_i) = \tau^{-1}(D) - L_i - L_{i+1}$. \hfill \square

As is standard, we identify locally principal Weil divisors on X with Cartier divisors; cf. [Har77] Remark II.6.11.2. By [Har77] Proposition II.6.13, for any scheme V there is a natural bijection between Cartier divisors and invertible subsheaves of the sheaf \mathcal{K}_V of total rings of quotients of V. Applied to X, this bijection pairs a locally principal Weil divisor Z with the invertible sheaf $\mathcal{O}_X(Z)$. The sheaf $\mathcal{O}_X(Z)$ is defined as follows. Let $\{U_j\}$ be an open affine cover of X so that each $Z \cap U_j$ is principal, defined by some $z_j \in \mathcal{K}_X(U_j)$. Then $\mathcal{O}_X(Z)(U_j) = z_j^{-1}\mathcal{O}_X(U_j)$. That is, an element of $\mathcal{O}_X(Z)(U_j)$ is a rational function that has poles no worse than Z on U_j. A global section of $\mathcal{O}_X(Z)$ is a rational function g so that for each U_j, we have $g = a_jz_j^{-1}$ for some $a_j \in \mathcal{O}_X(U_j)$. Equivalently, we have $gz_j \in \mathcal{O}_X(U_j)$ for all j, or that $\text{div}(g) + Z$ is effective. Recall that we write this as $\text{div}(g) + Z \geq 0$.

Proof. We must show that \(L_n = \mathcal{O}_X(L_{n-1}) \) is the subscheme of \(V \). That is, let \(\mathcal{L}_n = \mathcal{O}_X(L_{n-1}) \otimes X (\tau^2)^* \mathcal{L} \otimes X \mathcal{L} \).

The graded vector space \(\bigoplus_{n \in \mathbb{N}} H^0(X, \mathcal{L}_n) \) has a natural multiplication, induced from the maps \(\mathcal{L}_n \otimes X (\tau^2)^* \mathcal{L}_m \cong \mathcal{L}_{n+m} \) and the maps

\[
H^0(X, \mathcal{L}_n) \otimes H^0(X, \mathcal{L}_m) \xrightarrow{1 \otimes (\tau^2)^*} H^0(X, (\tau^2)^* \mathcal{L}_m) \rightarrow H^0(X, \mathcal{L}_n \otimes X (\tau^2)^* \mathcal{L}_m).
\]

The resulting graded algebra is the twisted homogeneous coordinate ring \(B = B(X, \mathcal{L}, \tau^2) \) \cite{AvdH90}. Using an indeterminate \(t \) to keep track of the graded pieces of \(B \), we can write \(B \) as

\[
B = B(X, \mathcal{L}, \tau^2) = \bigoplus_{n \in \mathbb{N}} H^0(X, \mathcal{L}_n) \cdot t^{2n}.
\]

Thus, the inclusions \(\mathcal{L}_n \subset K_X \) induce a natural inclusion \(B \subset k(X)[t^2; \tau^2] \).

Our next result is that \(R^{(2)} \), the second Veronese of \(R \), is contained in \(B \).

Notation 2.4. \([V_n] \) For each \(n \in \mathbb{N} \), let \(V_n := R_n t^{-n} \subset k(X) \).

Lemma 2.6. Let \(B = B(X, \mathcal{L}, \tau^2) \), considered as a subalgebra of \(k(X)[t^2; \tau^2] \) as above. Then \(R^{(2)} \subset B \). That is, \(V_{2n} \subset H^0(X, \mathcal{L}_n) \) for all \(n \in \mathbb{N} \).

Proof. We must show that \(V_{2n} \subset H^0(X, \mathcal{L}_n) \), where the vector space \(H^0(X, \mathcal{L}_n) \) consists of all rational functions \(g \) so that \(\text{div}(g) + \mathbb{L}_n \geq 0 \) (by the comments before Notation 2.4).

Now, \(U(W_2)_{2n} \) is spanned by all words in \(e_1 \) and \(e_2 \) of degree \(2n \). In other words, \(U(W_2)_{2n} \) is spanned by \(\{e_i^0 e_1^j \cdots e_i^k | j_0, \ldots, j_k \geq 0, 2k + \sum_{a=0}^k j_a = 2n \} \). Therefore by Proposition 1.10, \(V_{2n} \) is spanned by

\[
\left\{ f_{j_0} f_{j_0 + j_1 + 2} \cdots f_{j_0 + \cdots + j_k + 2k - 2} | j_0, \ldots, j_k \geq 0, 2k + \sum_{a=0}^k j_a = 2n \right\} = \left\{ f_{i_1} f_{i_2} \cdots f_{i_k} | i_1 \geq 0, i_a \leq i_{a+1} - 2 \text{ for } 1 \leq a \leq k - 1, i_k \leq 2n - 2 \right\}.
\]

It suffices to show for any such rational function \(m = f_{i_1} f_{i_2} \cdots f_{i_k} \) that \(\text{div}(m) + \mathbb{L}_n \geq 0 \).

By Lemma 2.3, we have that

\[
\text{div}(m) = \tau^{-i_1}(D) + \cdots + \tau^{-i_k}(D) - (L_{i_1} + L_{i_1 + 1} + L_{i_2} + L_{i_2 + 1} + \cdots + L_{i_k} + L_{i_k + 1}).
\]

Whatever the choice of \(i_1, \ldots, i_k \), the conditions on the \(i_a \) ensure that

\[
L_{i_1} + L_{i_1 + 1} + L_{i_2} + L_{i_2 + 1} + \cdots + L_{i_k} + L_{i_k + 1} \leq \mathbb{L}_n,
\]

so \(\text{div}(m) + \mathbb{L}_n \geq 0 \) as required. \(\square \)

From now on, we consider \(R^{(2)} \subset B \) without comment.

We introduce some geometric notions attached to \(V_n \); c.f. \cite{Laz04}, Definition 1.1.8] for further details.

Definition 2.7. \([\mathcal{B}(V)] \) Let \(Y \) be a projective scheme, let \(\mathcal{M} \) be an invertible sheaf on \(Y \), and let \(V \subset H^0(Y, \mathcal{M}) \) be a nonzero subspace. Consider the natural evaluation map \(\text{ev} : H^0(Y, \mathcal{M}) \otimes \mathcal{O}_Y \rightarrow \mathcal{M} \). We have \(\text{ev}(V \otimes \mathcal{O}_Y) \subset \mathcal{M} \); there is thus an ideal sheaf \(\mathcal{I} \) on \(Y \) so that \(\text{ev}(V \otimes \mathcal{O}_Y) = \mathcal{I} \mathcal{M} \). The base locus of \(V \) is the subscheme of \(Y \) defined by \(\mathcal{I} \). It is denoted \(\mathcal{B}(V) \). If \(\text{ev}(V \otimes \mathcal{O}_Y) = \mathcal{N} \) for some sheaf \(\mathcal{N} \), we say that \(V \) generates \(\mathcal{N} \).
Remark 2.8. Suppose that $\mathcal{M} = \mathcal{O}_X(Z)$ for some effective locally principal Weil divisor Z on X. Let $g_1, \ldots, g_k \in \mathbb{k}(X)$ be a basis for $V \subseteq H^0(X, \mathcal{M})$. To compute $ev(V \otimes \mathcal{O}_X) = \mathcal{N} \subseteq \mathcal{M}$, we work locally. Write $\text{div}(g_i) + Z = A_i$, where A_i is effective and locally principal. On an affine open set $U_j \subseteq X$, the locally principal divisor A_j is defined by some $a_{ij} \in \mathcal{O}_X(U_j)$, and we have $g_i = a_{ij} z_j^{-1}$. Then

$$\mathcal{N}(U_j) = \sum_{i=1}^{k} g_i \mathcal{O}_X(U_j) = z_j^{-1} \left(\sum_{i=1}^{k} a_{ij} \mathcal{O}_X(U_j) \right) \subseteq z_j^{-1} \mathcal{O}_X(U_j) = \mathcal{O}_X(Z)(U_j).$$

Notice that the ideal (a_{ij}, \ldots, a_{kj}) of $\mathcal{O}_X(U_j)$ defines $A_1 \cap \cdots \cap A_k \cap U_j$. We see that $\mathcal{N} = \mathcal{I}\mathcal{M}$, where \mathcal{I} is the defining ideal of $A_1 \cap \cdots \cap A_k$, or that

$$(2.9) \quad \text{Bs}(|V|) = \bigcap_{g \in V} (\text{div}(g) + Z).$$

Our next task is to consider the base loci of the vector spaces $V_{2n} \subseteq H^0(X, \mathcal{L}_n)$.

Notation 2.10. $[C_r, C_s, r_i, s_i, \mathcal{O}(q)]$ We define curves

$$C_r = V(w + 4y + 2z) \cap X \quad \text{and} \quad C_s = V(w + 6x + 16y + 8z) \cap X.$$

Both C_r and C_s are contained in the smooth locus of X, since neither contains the vertex $P = [1 : 0 : 0 : 0]$. Let $r_0 = [0 : 1 : -2 : 4] = L_0 \cap C_r$ and let $s_1 = [8 : 0 : 0 : -1] = L_1 \cap C_s$. For $i \in \mathbb{N}$, let $r_i = \tau^{-i}(r_0) \in L_i$ and let $s_i = \tau^{-i+1}(s_1) \in L_i$.

For $q \in X$, let $\mathcal{O}(q)$ denote the orbit $\{\tau^n(q) \mid n \in \mathbb{Z}\}$.

Lemma 2.11. Recall Notations [2A], [2.1], [2A] and [2.10]. Then we have the following statements.

(a) There is a scheme-theoretic equality: $\text{Bs}(|V_2|) = \{r_0, s_1\}$.

(b) The τ-orbits of r_0 and s_1 are distinct and infinite. In particular, both r_0 and s_1 map under π to points of infinite σ-order on \mathbb{P}^1. Moreover, neither $\mathcal{O}(r_0)$ nor $\mathcal{O}(s_1)$ is Zariski-dense.

Proof. (a) The elements $t^2 = \rho(e_1^2)$ and $ft^2 = \rho(e_2)$ are a basis for R_2, so the base locus of V_2 is the intersection of $\text{div}(1) + \mathbb{L}_1 = \mathbb{L}_1$ and $\text{div}(f) + \mathbb{L}_1 = D$ by Lemma 2.3 and Remark 2.8. By direct computation, we have that $L_1 \cap D = [8 : 0 : 0 : -1] = s_1$ and $L_0 \cap D = [0 : 1 : -2 : 4] = r_0$. Thus $L_1 \cap D = \{r_0, s_1\}$, set-theoretically.

Since $L_1 \cap D = V(xz - y^2) \cap V(2x + y) \cap V(w + 12x + 22y + 8z)$ is finite, by Bézout’s Theorem [Ful98, Proposition 8.4], the scheme-theoretic intersection of L_1 and D consists of two points. Thus the scheme-theoretic intersection $L_1 \cap D$ is $\{r_0, s_1\}$.

(b) One can easily check that the curves C_r and C_s are τ-invariant. Thus, $\mathcal{O}(r_0) \subseteq C_r$ and $\mathcal{O}(s_1) \subseteq C_s$, and so neither orbit is dense.

Consider the automorphism σ of \mathbb{P}^1 from Notation [2A]. The matrix $\begin{pmatrix} 0 & 1 \\ -1 & -2 \end{pmatrix}$ for σ has a unique eigenvector, $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$. That is, $[-1 : 1]$ is the unique fixed point of σ. Since we are in characteristic 0, all other points of \mathbb{P}^1 have infinite σ-orbits. As neither r_0 nor s_1 maps to $[-1 : 1]$ under π, both r_0 and s_1 have infinite order under τ.

Finally, we verify that $\mathcal{O}(r_0)$ and $\mathcal{O}(s_1)$ are distinct. Any point $\mathcal{O}(r_0) \cap \mathcal{O}(s_1)$ lies in $C_r \cap C_s$. One can verify that $C_r \cap C_s = [2 : 1 : -1 : 1]$ (set-theoretically). Two orbits either do not meet or are equal; it is impossible for $\mathcal{O}(r_0) \cap \mathcal{O}(s_1)$ to equal $\{2 : 1 : -1 : 1\}$. Thus, $\mathcal{O}(r_0) \cap \mathcal{O}(s_1) = \emptyset$.

Lemma 2.12. For any $n \in \mathbb{N}_{\geq 1}$, there is a scheme-theoretic equality $\text{Bs}(|V_{2n}|) = \{r_0, s_{2n-1}\}$. In particular, $V_{2n} \subseteq H^0(X, \mathcal{I}_{r_0,s_{2n-1},\mathcal{L}_n})$.
Proof. For \(n = 1 \), this is Lemma 2.11(a). Fix \(n \geq 2 \) and let \(Y = \text{Bs}(|V_{2n}|) \).

We first show that \(\{ r_0, s_{2n-1} \} \subseteq Y \). Recall from the proof of Lemma 2.6 that \(V_{2n} \) is spanned by monomials of the form \(\{ f_1 f_2 \cdots f_k \mid i_1 \geq 0, i_2 \leq i_{a+1} - 2 \} \) for \(1 \leq a \leq k \), \(i_k \leq 2n-2 \). Let \(m = f_1 f_2 \cdots f_k \) be such a monomial. As in the proof of Lemma 2.6, we have that \(\text{div}(m) + L_m = \tau^{-i_1}(D) + \cdots + \tau^{-i_k}(D) - (L_{i_1} + L_{i_2+1} + \cdots + L_{i_k} + L_{i_k+1}) + \mathbb{L}_n \).

It follows that if \(i_1 \geq 1 \), then \(\text{div}(m) + L_m \preceq L_0 \). If \(i_1 = 0 \) then \(\text{div}(m) + L_m \preceq D \). In either case, \(2.13 \) contains the point \(r_0 = L_0 \cap D \). Likewise, if \(i_k < 2n-2 \) then \(\text{div}(m) + L_m \preceq L_{2n-1} \); otherwise, \(\text{div}(m) + L_m \preceq (2n-2)\tau(D) \). In either case, \(2.13 \) contains \(s_{2n-1} = L_{2n-1} \cap \tau^{-2n-2}(D) \).

We now show that \(Y \subseteq \{ r_0, s_{2n-1} \} \). First, recall (2.9) and note that \(\text{div}(u) = \text{div}(1) + \mathbb{L}_n \).

\[
Y \subseteq \text{div}(f_0 f_2 \cdots f_{2n-2}) + \mathbb{L}_n = D + \tau^{-2}(D) + \cdots + \tau^{-2n-2}(D) \subseteq X - P.
\]

Thus, it suffices to consider the intersection of \(Y \) with \(L_i - P \) for each \(0 \leq i \leq 2n - 1 \). If \(0 \leq i \leq 2n - 2 \), consider

\[
(2.14) \quad \text{div}(f_i) + L_m = L_0 + \cdots + L_{i-1} + \tau^{-i}(D) + L_{i+2} + \cdots + L_{2n-1}.
\]

The proof of Lemma 2.11(a) shows that the scheme-theoretic intersection of (2.14) with \(L_i - P \) is \(\{ r_i = \tau^{-i}r_0 \} \), and with \(L_{i+1} - P \) is \(\{ s_{i+1} = \tau^{-i}s_1 \} \). Now for \(0 \leq i \leq 2n - 3 \), consider

\[
\text{div}(f_{i+1}) + L_m = L_0 + \cdots + L_i + \tau^{-i+1}(D) + L_{i+3} + \cdots + L_{2n-1}.
\]

This meets \(L_{i+1} - P \) only at \(r_{i+1} \), and \(L_{i+2} - P \) only at \(s_{i+2} \). Again, these intersections are scheme-theoretic. Thus if \(1 \leq j \leq 2n - 2 \), then \(Y \cap L_j \subseteq \{ r_j \} \cap \{ s_j \} \); this intersection is empty by Lemma 2.11(b). Further, we have that \(Y \cap L_0 \subseteq \{ r_0 \} \) and \(Y \cap L_{2n-1} \subseteq \{ s_{2n-1} \} \). Thus, \(Y = \{ r_0, s_{2n-1} \} \) with the reduced induced scheme structure.

It is well-known in the study of subalgebras of twisted homogeneous coordinate rings [Rog04, Sie10, Sie11b] that when such algebras are defined using points whose orbits are not dense, they tend not to be noetherian. Since Lemma 2.11 implies that neither \(r_0 \) or \(s_1 \) has a dense orbit, it would be extremely surprising for \(R \), or therefore for \(U(W_+) \), to be noetherian.

3. Proof of Theorem 0.5

In this section, we apply the geometric results of the previous section to study the ring \(R = \rho(U(W_+)) \) of Notation 1.6. The aim is to prove Theorem 0.5 that \(U(W_+) \) is not noetherian, by showing that \(R \) is not noetherian. Now, \(R \) is a subalgebra of \(k[X]/(u; \tau) \); it is thus birationally commutative, and we will see in Section 4 that \(R \) has Gelfand-Kirillov (GK) dimension three. The aim is then achieved by applying techniques from the classification of birationally commutative graded domains of GK dimension 3 as presented in [Sie10, Sie11a]. We give a self-contained presentation here, however, instead of quoting results from those papers.

To show that \(R \) is not left noetherian, we show that there is a left module-finite \(R^{(2)} \)-algebra \(T \) that is not left noetherian.

Notation 3.1. \([Y, \mathcal{M}_n, \mathfrak{r}, T_n, T, U_n, \alpha]\) Consider the non-reduced curve \(Y = 2C_\tau = V((u + 4y + 2z)^2) \cap X \). Note that \(Y \cong \mathbb{P}^1_{k[u]} \), where \(k[u] = k[u]/(u^2) \) denotes the dual numbers. We have \(k(Y) \cong k(s)[u] \cong k(s)[u]/(u^2) \).

Since \(C_\tau \) is \(\tau \)-invariant, \(Y \) is also \(\tau \)-invariant; let \(\mathfrak{r} = \tau|_Y \). Let \(\mathcal{M} = L \otimes_X \mathcal{O}_Y \) and let \(\mathcal{M}_n = L_n \otimes_X \mathcal{O}_Y \). For \(n \geq 1 \), let \(T_n = T_n \mathcal{M}_n \); let \(T_0 = \mathcal{O}_Y \). Let

\[
T = \bigoplus_{n \geq 0} H^0(Y, T_n)t^{2n} \subseteq B(Y, \mathcal{M}, \mathfrak{r}^2) \subseteq k(Y)[t^2; \mathfrak{r}^2].
\]

Note that \(T \) is a subalgebra of (in fact, an idealizer in) the twisted homogeneous coordinate ring \(B(Y, \mathcal{M}, \mathfrak{r}^2) \).
Let $n \geq 1$. From the surjection $\mathcal{L}_n \to \mathcal{M}_n$ we obtain a map
\[
\alpha_n : H^0(X, \mathcal{L}_n) \to H^0(Y, \mathcal{M}_n).
\]
Consider the exact sequence: $0 \to \mathcal{I}_{r_0, s_{2n-1}} \mathcal{L}_n \to \mathcal{L}_n \to \mathcal{O}_{r_0} \oplus \mathcal{O}_{s_{2n-1}} \to 0$. Since $s_{2n-1} \notin C_r$, when we restrict to Y we obtain the exact sequence
\[
\mathcal{I}_{r_0, s_{2n-1}} \mathcal{L}_n \otimes_X \mathcal{O}_Y \to \mathcal{M}_n \delta \to \mathcal{O}_{r_0} \to 0.
\]
Thus there are natural surjections
\[
(3.2) \quad \mathcal{I}_{r_0, s_{2n-1}} \mathcal{L}_n \to \mathcal{I}_{r_0, s_{2n-1}} \mathcal{L}_n \otimes_X \mathcal{O}_Y \to \ker \delta = \mathcal{T}_n.
\]
Taking global sections, and recalling from Lemma 2.12 that $V_{2n} \subseteq H^0(X, \mathcal{I}_{r_0, s_{2n-1}} \mathcal{L}_n)$, we see that α_n maps $V_{2n} \subseteq H^0(X, \mathcal{L}_n)$ to $H^0(Y, \mathcal{T}_n)$. Let $U_n = \alpha_n(V_{2n})$.

We define a map $\alpha : R^{(2)} \to T$ by mapping $R_{2n} = V_{2n}t^{2n} \to U_n t^{2n} \subseteq T$ via α_n, and extending linearly.

Lemma 3.3. The map α defined above is an algebra homomorphism, and thus T is an $R^{(2)}$-bimodule.

Proof. Since $R \subseteq k(X)[t; \tau]$, the multiplication $R_n \otimes R_m \to R_{n+m}$ is given by $1 \otimes \tau^n$. Since $\tau = \tau|_Y$, the diagram
\[
\begin{array}{ccc}
R_{2n} \otimes R_{2m} & \xrightarrow{1 \otimes \tau^{2n}} & R_{2n+2m} \\
\alpha \otimes \alpha \downarrow & & \downarrow \alpha \\
T_n \otimes T_m & \xrightarrow{1 \otimes \tau^{2n}} & T_{n+m}
\end{array}
\]
commutes. Since T is a subalgebra of $k(Y)[t^2; \tau^2]$, the bottom row of the diagram gives the multiplication on T. Thus, α is an algebra homomorphism, and T immediately obtains an induced $R^{(2)}$-bimodule structure. \(\square\)

For the next two proofs, let $\mathcal{F}^\tau = (\tau^*)^* \mathcal{F}$ for a quasicoherent sheaf \mathcal{F} on X.

The proof of the following result is adapted from the proof of [Sie11a Lemma 7.4].

Theorem 3.4. The algebra T is a finitely generated left $R^{(2)}$-module.

Proof. For $n, m \geq 1$, consider the natural maps
\[
\mathcal{T}_n \otimes_Y \mathcal{T}_m^{2n} \xrightarrow{q_1} \mathcal{T}_n \otimes_Y \mathcal{M}_m^{2n} \xrightarrow{q_2} \mathcal{M}_n \otimes_Y \mathcal{M}_m^{2n}.
\]
The kernel of q_1 is $\text{Tor}_1^Y(\mathcal{T}_n, \mathcal{O}_{r_{2n}})$. This is zero, since \mathcal{T}_n is locally free at $r_{2n} \neq r_0$, so q_1 is injective. Likewise, q_2 is injective because \mathcal{M}_m^{2n} is locally free. We see that $\mathcal{T}_n \otimes_Y \mathcal{T}_m^{2n} \cong \text{im}(q_2 q_1) = \mathcal{I}_{r_0, r_{2n}} \mathcal{M}_{n+m}$.

Let $i \geq 1$, and let
\[
ev_X : H^0(X, \mathcal{L}_i) \otimes \mathcal{O}_X \to \mathcal{L}_i, \quad ev_Y : H^0(Y, \mathcal{M}_i) \otimes \mathcal{O}_Y \to \mathcal{M}_i
\]
denote the two evaluation maps. Restricting ev_X to Y, we obtain a commutative diagram
\[
\begin{array}{ccc}
H^0(X, \mathcal{L}_i) \otimes \mathcal{O}_X & \xrightarrow{ev_X} & \mathcal{L}_i \\
\downarrow & & \downarrow \\
H^0(X, \mathcal{L}_i) \otimes \mathcal{O}_Y & \longrightarrow & \mathcal{M}_i,
\end{array}
\]
where the downward arrows are induced from the surjection $O_X \to O_Y$. The bottom map clearly factors through ev_Y, and we thus obtain a commutative diagram

$$
(3.5) \quad \begin{array}{c}
V_{2i} \otimes O_X \xrightarrow{ev_X} T_{r_0,s_{2i-1}} L_i \\
\downarrow \downarrow \\
U_i \otimes O_Y \xrightarrow{ev_Y} M_i.
\end{array}
$$

Here the left-hand arrow is the tensor product of α_i with $O_X \to O_Y$.

Consider the maps in (3.5). By Lemma 2.12, the top map is surjective, and the left-hand map is surjective by construction. We have seen in the discussion of (3.2) that the image of the right-hand map is T_i. This is thus also the image of the bottom map, and there is a surjection

$$
(3.6) \quad U_i \otimes O_Y \xrightarrow{ev_Y} T_i.
$$

In particular, T_i is globally generated.

Let $n \geq 1$. Tensoring (3.6) with $T_n^{r_{2i}}$, we obtain

$$
U_i \otimes T_n^{2i} \xrightarrow{\beta_{i,n}} T_i \otimes_Y T_n^{2i}.
$$

Claim 1: For all $i \geq 1$, there is some $d_i \in \mathbb{N}$ so that the induced map

$$
\nu_{i,n} : \alpha(R_{2i}) \otimes T_n = U_i \otimes T_n \xrightarrow{1 \otimes 2^{2i}} U_i \otimes H^0(Y, T_n^{r_{2i}}) \xrightarrow{H^0(\beta_{i,n})} H^0(Y, T_i \otimes_Y T_n^{2i}) \xrightarrow{2^{2i}}
$$

is surjective for all $n \geq d_i$.

Proof of Claim 1. Since r_{2i} gives an isomorphism between $T_n^{r_{2i}} = H^0(Y, T_n)$ and $H^0(Y, T_n^{2i})$, it suffices to show that $H^0(\beta_{i,n})$ is surjective for $n \gg 0$.

Considering (3.6), define K_i so that

$$
0 \longrightarrow K_i \longrightarrow U_i \otimes O_Y \xrightarrow{ev_Y} T_i \longrightarrow 0
$$

is exact. At every $q \in Y$, either T_i or T_n^{2i} is locally free, since $i \geq 1$. Thus $Tor_1^Y(T_i, T_n^{2i}) = 0$ and so

$$
0 \longrightarrow K_i \otimes_Y T_n^{2i} \longrightarrow U_i \otimes T_n^{2i} \xrightarrow{\beta_{i,n}} T_i \otimes_Y T_n^{2i} \longrightarrow 0
$$

is also exact. There is thus an exact sequence

$$
U_i \otimes H^0(Y, T_n^{2i}) \xrightarrow{H^0(\beta_{i,n})} H^0(Y, T_i \otimes_Y T_n^{2i}) \longrightarrow H^1(Y, K_i \otimes_Y T_n^{2i}),
$$

and it suffices to show that $H^1(Y, K_i \otimes_Y T_n^{2i}) = 0$ for $n \gg 0$.

Consider the inclusion $I_{L_0} M_n \subseteq T_n$; the factor is supported at r_0 since $L_0 \cap Y = \{r_0\}$ (set-theoretically). Since C_r is contained in the smooth locus of X, the Weil divisor L_0 on X is locally principal at every point of C_r. Thus $I_{L_0} M_n$ is locally free on Y, and using the identification of Y with \mathbb{P}^1 we see that $(I_{L_0} M_n)_{\gamma} \simeq O(2n-1)$. As $O(1)$ is ample on \mathbb{P}^1, we may choose $d_i \geq 1$ so that $H^1(Y, K_i \otimes Y (I_{L_0} M_n)^{2i}) = 0$ for all $n \geq d_i$.

Let $n \geq d_i$. Consider the natural map $\gamma : K_i \otimes_Y (I_{L_0} M_n)^{2i} \to K_i \otimes_Y T_n^{2i}$. The kernel and cokernel of γ are supported on r_0, and so there is an exact sequence

$$
0 \longrightarrow E \longrightarrow K_i \otimes_Y (I_{L_0} M_n)^{2i} \xrightarrow{\gamma} K_i \otimes_Y T_n^{2i} \longrightarrow F \longrightarrow 0,
$$

where E and F are 0-dimensional. Let G be the image of γ, which yields short exact sequences

$$
0 \to E \to K_i \otimes_Y (I_{L_0} M_n)^{2i} \to G \to 0 \quad \text{and} \quad 0 \to G \to K_i \otimes_Y T_n^{2i} \to F \to 0.
$$
From the first short exact sequence, we have an exact sequence in cohomology
\[
H^1(Y, K_i \otimes_Y (\mathcal{I}_{L_n}, \mathcal{M}_n)^{\tau^2}) \longrightarrow H^1(Y, G) \longrightarrow H^2(Y, E).
\]
By the choice of \(n \), and the fact that \(E \) has 0-dimensional support, we deduce that \(H^1(Y, G) = 0 \). Moreover, from the second short exact sequence, we have another exact sequence in cohomology
\[
H^1(Y, G) \longrightarrow H^1(Y, K_i \otimes_Y T_\tau^{\tau^2}) \longrightarrow H^1(Y, F).
\]
Since \(F \) has 0-dimensional support, \(H^1(Y, K_i \otimes_Y T_\tau^{\tau^2}) = 0 \), proving Claim 1.

Claim 2: Recall that \(d_i \in \mathbb{N} \) is the value so that the map \(\nu_{i,n} \) from Claim 1 is surjective for all \(n \geq d_i \). Let \(N = \max(d_1 + 1, d_2 + 2, 3) \). We claim that for \(n \geq N \), we have that
\[
T_n = R_2T_{n-1} + R_4T_{n-2}.
\]
Proof of Claim 2. By choice of \(n \) and Claim 1, we have a surjection
\[
\alpha(R_2) \otimes T_{n-1} \xrightarrow{\nu_{1,n-1}} H^0(Y, T_1 \otimes_Y T_\tau^{\tau^2} t^{2n}).
\]
The image of \(\nu_{1,n-1} \) is \(R_2T_{n-1} \subseteq T_n \), so we have \(R_2T_{n-1} = H^0(Y, T_1 \otimes_Y T_\tau^{\tau^2} t^{2n}) \). Likewise, we have \(R_4T_{n-2} = H^0(Y, T_2 \otimes_Y T_\tau^{\tau^2} t^{2n}) \).

Now, \(T_2 \) and \(T_{n-2} \) are globally generated by \(\mathbb{X} \). Thus \(T_2 \otimes_Y T_\tau^{\tau^2} = \mathcal{I}_{r_0, r_2} \mathcal{M}_n \) is also globally generated. In particular, there is a section that does not vanish at \(r_2 \). We thus have:
\[
(3.7) \quad H^0(Y, \mathcal{I}_{r_0, r_2} T_n) t^{2n} = R_2T_{n-1} \subseteq R_2T_{n-1} + R_4T_{n-2} \subseteq T_n.
\]
There is a short exact sequence \(0 \rightarrow \mathcal{I}_{r_0, r_2} \mathcal{M}_n \rightarrow \mathcal{I}_{r_0} \mathcal{M}_n \rightarrow \mathcal{O}_{r_2} \rightarrow 0 \), which yields the following exact sequence:
\[
0 \longrightarrow H^0(Y, T_1 \otimes_Y T_\tau^{\tau^2} t^{2n}) \longrightarrow H^0(Y, T_n) \longrightarrow H^0(Y, \mathcal{O}_{r_2}).
\]
Now, \(\dim_k \text{im}(\psi) \leq \dim_k H^0(Y, \mathcal{O}_{r_2}) = 1 \). Moreover, by (3.7) \(T_n \neq R_2T_{n-1}, \) so \(\phi \) is not an isomorphism. Hence
\[
\dim_k R_2T_{n-1} = \dim_k H^0(Y, T_1 \otimes_Y T_\tau^{\tau^2} t^{2n}) = \dim_k T_n - 1.
\]
Now by (3.7), we have that \(T_n = R_2T_{n-1} + R_4T_{n-2}, \) as claimed.

Claim 3: As a left \(R^{(2)} \)-module, \(T \) is finitely generated; in particular, \(T = R^{(2)}(T_{\leq N-1}) \), for \(N \) defined in Claim 2.

Proof of Claim 3. This follows from Claim 2 and induction. \(\square \)

Now, we establish our main theorem.

Proof of Theorem 3.5. We show that \(U(W_+) \) is not noetherian. Hence, \(U(W) \) is also not noetherian by Lemma 1.7.

By [Dix96 Proposition 2.2.17], it suffices to show that \(U(W_+) \) is not left noetherian. By Proposition 1.2 and Lemma 1.8, it suffices to show that \(R^{(2)} \) is not left noetherian. By Theorem 3.4, it suffices to show that \(T \) is not left noetherian.

Let \(\mathcal{J} \) be the ideal sheaf on \(Y \) that defines the reduced curve \(C_r \). Note that \(\mathcal{J} \subseteq \mathcal{I}_{r_0} \mathcal{O}_Y \). It is easy to see that \(\mathcal{J}^\tau = \mathcal{J} \).

Let \(J = \bigoplus_{n \geq 1} H^0(Y, J \mathcal{M}_n) t^{2n} \subseteq T \).

We claim that \(J \) is a non-finitely generated left ideal of \(T \).

If \(n, k \geq 1 \), then
\[
T_nJ_k \subseteq H^0(Y, (\mathcal{I}_{r_0}, \mathcal{M}_n) \cdot (J \mathcal{M}_k)^{\tau^2}) t^{2n+2k} = H^0(Y, \mathcal{I}_{r_0} (\mathcal{J}^\tau \mathcal{M}_n)^{\tau_{n+k}}) t^{2n+2k} \subseteq H^0(Y, J^{\tau_{2n}} \mathcal{M}_{n+k}) t^{2n+2k}.
\]
This is J_{n+k}, since $J^\tau = J$. Thus J is a left ideal of T. (In fact, J is a two-sided ideal, but we do not need the right ideal structure here.)

To see that J is not finitely generated, first observe that $\mathcal{J}\mathcal{M}_n$ is globally generated for all $n \geq 1$. In fact, if $b_1, \ldots, b_\ell \in H^0(Y, \mathcal{M}_n) \subseteq \k(Y) = k(s)[c]$ generate \mathcal{M}_n, then eb_1, \ldots, eb_ℓ generate $\mathcal{J}\mathcal{M}_n$. Also, we have $\mathcal{I}_r\mathcal{J} \not\subseteq \mathcal{J}$ since $\mathcal{J}/\mathcal{I}_r\mathcal{J} \cong \mathcal{J} \otimes \mathcal{O}_{\mathcal{O}_r} \not\cong 0$. As a consequence, $H^0(Y, \mathcal{I}_r\mathcal{J}\mathcal{M}_n) \not\subseteq H^0(Y, \mathcal{J}\mathcal{M}_n)$ for all $n \geq 1$. Since $T_\tau, J_k \subseteq H^0(Y, T_\tau, (\mathcal{J}\mathcal{M}_k)^{2^n+k}) = H^0(Y, \mathcal{I}_r\mathcal{J}\mathcal{M}_n+k)\mathcal{M}_n+k)$ for $n, k \geq 1$, we have $T(J_{\leq k}) \neq J$ for any $k \in \mathbb{N}$. Thus, τJ is not finitely generated and T is not left noetherian. □

4. The Gelfand-Kirillov Dimension of R

In this section, we show that the Gelfand-Kirillov (GK) dimension of the ring R (from Notation 1.6) is 3. This result is not needed for the proof of Theorem 1.3 but is interesting in its own right.

Recall the notation from Section 2. We begin by showing that the automorphism τ acts trivially on $\text{Pic}(X)$, the Picard group of X.

Lemma 4.1. We have $\text{Pic}(X) \cong \mathbb{Z}$. As a result, τ acts trivially on $\text{Pic}(X)$.

Proof. Let $\text{Cl}(X)$ denote the group of Weil divisors on X modulo the group of principal Weil divisors (cf. [Har77] page 131). Let $\text{CaCl}(X)$ denote the subgroup of $\text{Cl}(X)$ consisting of the classes of locally principal Weil divisors. Note that by [Har77] Exercise II.6.3, we have $\text{Cl}(X) \cong \text{Cl}(\mathbb{P}^1) \cong \mathbb{Z}$. It is an easy exercise (cf. [Har77] Exercise II.6.3) that $\text{Cl}(X)$ is a free abelian group on the generator L_0.

Now, L_0 is not locally principal, so $L_0 \not\in \text{CaCl}(X)$. On the other hand, the Weil divisor $2L_0$ is equal to $V(4x+4y+z) \cap X$ and is locally principal. That is, $\text{CaCl}(X)$ is generated by a hyperplane section of X and is index 2 in $\text{Cl}(X)$. In particular, $\text{Cl}(X) \cong \mathbb{Z}$.

By [Har77] Proposition II.6.15, the map $\text{CaCl}(X) \to \text{Pic}(X)$ given by $Z \mapsto \mathcal{O}_X(Z)$ is an isomorphism. Thus $\text{Pic}(X) \cong \mathbb{Z}$, and is generated by $\mathcal{O}_X(2L_0)$. It follows that τ acts trivially on $\text{Pic}(X)$; this can also be seen by direct computation. □

We now use results of Keeler that relate the GK-dimension of a twisted homogeneous coordinate ring to the numeric properties of the automorphism.

Proposition 4.2. The GK-dimension of $B = B(X, \mathcal{L}, \tau^2)$ is 3.

Proof. For any extension field $k \subseteq k'$, we have $\text{GKdim}_k B = \text{GKdim}_{k'}(B \otimes_k k')$, so it suffices to assume that k is algebraically closed.

As in [Kee00], let $A^1_{\text{Num}}(X)$ be the group of (Cartier) divisors on X modulo numerical equivalence. The action of τ on $\text{Pic}(X)$ induces a numeric action on $A^1_{\text{Num}}(X)$, which is trivial by Lemma 4.1. Thus τ^2 also has a trivial action on $A^1_{\text{Num}}(X)$.

Since \mathcal{L} is ample, by [Kee00] Theorem 1.2, \mathcal{L} is τ^2-ample. (We do not define the term here; informally, the twisted tensor powers \mathcal{L}_τ of \mathcal{L} have the same positivity properties as the ordinary tensor powers of an ample line bundle.) By [Kee00] Theorem 6.1(2)], therefore, $\text{GKdim} B = \dim X + 1 = 3$. □

Next, we see that $R^{(2)}$ is a big subalgebra of B. Informally, the rings $R^{(2)}$ and B are birational to each other. More formally, we show that the rational functions in V_n generate $k(X)$ as a field for $n \gg 0$.

Lemma 4.3. Recall Notations 1.2 and 2.6. For every $n \geq 4$, the rational functions in V_n generate $k(X)$ as a field.

Proof. For $n \geq 4$, we have $V_n \supseteq V_4 V_4^{n-4}$. Since $V_4 = k$, the latter is V_4. Thus, it suffices to show that V_4 generates $k(X)$ as a field. To do this, we compute:

\[
\begin{pmatrix}
8f_0f_2 + 4f_0 - 4f_2 \\
-4f_0f_1 - 4f_0f_2 - 6f_0 + 4f_1 + 2f_2
\end{pmatrix} = \frac{y}{z},
\begin{pmatrix}
f_0f_1 - f_0 - f_1 \\
-6f_0f_2 - 3f_0 - 4f_0f_1 + 5f_0f_2 - 3f_0 + 4f_1 - f_2
\end{pmatrix} = \frac{2x + 5y + 2z}{w}.
\]
See Routine A.2 in the appendix for Macaulay2 calculations confirming these computations.

We claim that these two rational functions generate \(k(X) \). To see this, define rational maps

\[
\alpha : X \longrightarrow \mathbb{P}^1 \times \mathbb{P}^1, \quad [w : x : y : z] \mapsto [y : z][2x + 5y + 2z : w],
\]

\[
\beta : \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow X, \quad [a : b] : [c : d] \mapsto [d(2a^2 + 5ab + 2b^2) : ca^2 : cab : cb^2].
\]

We have that

\[
\beta \alpha([w : x : y : z]) = [w(2y^2 + 5yz + 2z^2) : (2x + 5y + 2z)y^2 : (2x + 5y + 2z)yz : (2x + 5y + 2z)z^2] = [w(2xz + 5yz + 2z^2) : (2x + 5y + 2z)xz : (2x + 5y + 2z)yz : (2x + 5y + 2z)z^2],
\]

using the relation \(xz = y^2 \). If \(z(2x + 5y + 2z) \neq 0 \), this is \([w : x : y : z]\). Also, if \(cb(2a^2 + 5ab + 2b^2) \neq 0 \), then

\[
\alpha \beta([a : b] : [c : d]) = [cab : cb^2][2ca^2 + 5cab + 2cb^2 : d(2a^2 + 5ab + 2b^2)] = [a : b][c : d].
\]

Thus \(\beta = \alpha^{-1} \) on an open set, so the two are equal as rational maps. Therefore, it suffices to show that \(\beta^*(y/z) = a/b \) and \(\beta^*((2x + 5y + 2z)/w) = c/d \) generate \(k(\mathbb{P}^1 \times \mathbb{P}^1) \), which is obviously true. \(\square \)

We now use the following result of Rogalski.

Theorem 4.4. [Rog09, Theorem 1.1] Let \(K \) be a finitely generated field of transcendence degree 2 over an algebraically closed field \(k \), and let \(\phi \in \text{Aut}_k(K) \). Let \(S \subseteq K[t; \phi] \) be a locally finite \(\mathbb{N} \)-graded subalgebra so that for some \(n \in \mathbb{N} \) and \(u \in S_n \), the algebra \(k[S_nu^{-1}] \) has quotient field \(K \). Then, \(\text{GKdim} S \geq 3 \). \(\square \)

Corollary 4.5. The GK-dimension of \(R \) is 3.

Proof. As in the proof of Proposition 4.2, it suffices to assume that \(k \) is algebraically closed. Recall we have \(R \subseteq k(X)[t; \tau] \). By Lemma 4.3, \(k(X) \) is the quotient field of \(k[R_4t^{-4}] \). Since \(t^4 \in R_4 \), by Theorem 4.3 \(\text{GKdim} R \geq 3 \).

Since \(R \) is a domain, as \(R^{(2)} \)-modules \(R \) embeds into \(R^{(2)} \oplus R^{(2)} \). Thus \(\text{GKdim} R = \text{GKdim} R^{(2)} \). Since \(R^{(2)} \subseteq B \) by Lemma 2.6, we have \(\text{GKdim} R = \text{GKdim} R^{(2)} \leq \text{GKdim} B = 3 \) by Proposition 4.2 \(\square \)

5. Further Consequences

As a consequence of Theorem 4.5, we verify in this section that many other infinite dimensional Lie algebras satisfy Conjecture [11]. The first of these is a central extension of the Witt algebra.

Definition 5.1. The **Virasoro algebra** \(V \) is defined to be the Lie algebra \(V \) with basis \(\{e_n\}_{n \in \mathbb{Z}} \cup \{c\} \) and Lie bracket \([e_n, c] = 0, [e_n, e_m] = (m - n)e_{n+m} + \frac{c}{12}(m^3 - m)\delta_{n+m,0} \).

The Virasoro algebra is ubiquitous in modern physics, particularly in statistical mechanics and string theory. Most notably, its representations play a major role in 2-dimensional conformal field theory (CFT).

Proposition 5.2. The universal enveloping algebra \(U(V) \) of \(V \) is not noetherian.

Proof. Observe that the factor \(U(V)/(c) \) of \(U(V) \) is isomorphic to \(U(W) \). Then, apply Theorem 4.5 \(\square \)

Next, we show that central factors of \(U(V) \) also fail to be noetherian. Namely, let \(\lambda \in k \) and define \(U_{\lambda} := U(V)/(c - \lambda) \). The value \(\lambda \in k \) is known as the **central charge**, which has significance in CFT.

Corollary 5.3. The algebra \(U_{\lambda} \) is not noetherian for any \(\lambda \in k \).

Proof. Let the Poincaré-Birkhoff-Witt basis for \(U(V) \) be

(5.4) \[
\{ e_{k_1}^{a_1} \cdots e_{k_n}^{a_n} | k_1 < \cdots < k_n \in \mathbb{Z}, \beta, \alpha_1, \ldots, \alpha_n \in \mathbb{Z}_{\geq 0} \}.
\]

Fix \(\lambda \in k \). Note that \(W_+ \) embeds in \(V \), and thus we may consider \(U(W_+) \) as a subalgebra of \(U(V) \). Linear independence of (5.4) implies that \(U(W_+) \cap (c - \lambda) = 0 \). Thus we obtain an induced inclusion \(U(W_+) \hookrightarrow U_{\lambda} \).
It is easy to see that U_{λ} has a basis of cosets of the form
\[\{e_{k_1}^{a_1} \cdots e_{k_n}^{a_n} + (c - \lambda)| \ k_1 < \cdots < k_n \in \mathbb{Z}, \ a_1, \ldots, a_n \in \mathbb{Z}_{\geq 1}\},\]
and so U_{λ} is a faithfully flat right $U(W_+)$-module. By [GW04, Exercise 17T], U_{λ} is not left noetherian. It is clear that U_{λ} is isomorphic to $(U_{-\lambda})^{op}$, and so also fails to be right noetherian. \qed

Finally, we show that all \mathbb{Z}-graded simple Lie algebras of polynomial growth satisfy Conjecture 0.1. Such Lie algebras were classified by Olivier Mathieu and we repeat his result below.

Theorem 5.5. [Mat92] If L is a \mathbb{Z}-graded simple Lie algebra with polynomially bounded growth, then L is one of the following:

(a) a finite dimensional simple Lie algebra \mathfrak{g}, or
(b) a loop algebra $\mathfrak{g} \otimes \mathbb{k}[t^\pm 1]$, where \mathfrak{g} is as above, or
(c) a Cartan type algebra \mathbb{W}_n, S_n, \mathbb{H}_{2m}, \mathbb{K}_{2m+1}, or
(d) the Witt algebra W.

To prove that Conjecture 0.1 holds for the Lie algebras above, we need the following result.

Lemma 5.6. If L is a Lie algebra that contains a Lie subalgebra L' that is either infinite dimensional abelian or isomorphic to W_+, then $U(L)$ is not noetherian.

Proof. This follows from Lemma 4.7, Theorem 0.5, and the fact that the universal enveloping algebra of an infinite dimensional abelian Lie algebra is not noetherian. \qed

Corollary 5.7. Conjecture 0.1 holds for \mathbb{Z}-graded simple Lie algebras with polynomially bounded growth.

Proof. As mentioned in the Introduction, Conjecture 0.1 holds for class (a). Since the loop algebras contain an infinite dimensional abelian Lie subalgebra, for instance $g \otimes \mathbb{k}[t]$ for any $g \in \mathfrak{g}$, the conjecture holds for class (b) by Lemma 5.6. By Theorem 0.5, class (d) satisfies the conjecture. It remains to verify the result for class (c).

To study class (c), we use the descriptions of the Cartan type algebras as presented in [LS01, Section 2.30]. Let $n \geq 1$, and let P_n denote the polynomial ring $\mathbb{k}[x_1, \ldots, x_n]$. Let D_1 denote $\frac{d}{dx_1}$.

The algebra \mathbb{W}_n is the Lie algebra of derivations of P_n, so equal to $P_nD_1 + \cdots + P_nD_n$. For $n > 1$, $\mathbb{W}_n \supsetneq \mathbb{W}_1$. The algebra $\mathbb{W}_1 = P_1D_1$ contains \mathbb{W}_+ as a Lie subalgebra, so the result follows from Lemma 5.6.

The special subalgebra S_n of \mathbb{W}_n is given by

\[S_n = \left\{ \sum_{j=1}^{n} p_j D_j \left| \sum_{j=1}^{n} D_j(p_j) = 0 \right. \right\} .\]

Observe that S_1 is the finite dimensional Lie algebra $\mathbb{k}D_1$, so $U(S_1)$ is noetherian, and hence S_1 satisfies Conjecture 0.1. Now for $n \geq 2$, S_n contains an infinite dimensional abelian Lie subalgebra: $\mathbb{k}[x_i]D_j$ for $i \neq j$. So, we are done by Lemma 5.6.

Let $n = 2m$. Every element of the Hamiltonian subalgebra \mathbb{H}_{2m} of \mathbb{W}_n can be represented as

\[D_H(p) = \sum_{j=1}^{n} \sigma(j) D_j(p) D_{j'}, \quad \text{for } p \in P_n.\]

Here,

\[j' = j + m \quad \text{and} \quad \sigma(j) = 1, \quad \text{if } 1 \leq j \leq m,
\]

\[j' = j - m \quad \text{and} \quad \sigma(j) = -1, \quad \text{if } m + 1 \leq j \leq 2m.\]

One can check that $\mathbb{k}[x_j]D_{j'}$ is an infinite dimensional abelian Lie subalgebra of \mathbb{H}_{2m}, so again, we are done by Lemma 5.6.
Lastly, let \(n = 2m + 1 \). Every element of the contact subalgebra \(K_{2m+1} \) of \(W_n \) can be represented as

\[
P_j = x_j D_{2m+1}(p) + \sigma(j) D_j(p) \quad \text{for } j \leq 2m,
\]

\[
P_{2m+1} = 2p - \sum_{j=1}^{2m} \sigma(j) x_j p_j.
\]

One can check that for each \(j \) with \(1 \leq j \leq m \), the infinite dimensional Lie algebra with basis

\[
\{ D_K(x^r_j) = r x^r_j D_j - (r - 2) x_j D_{2m+1} \}_{r \geq 2}
\]

is an abelian Lie subalgebra of \(K_{2m+1} \). Therefore, by Lemma 5.6, \(U(K_{2m+1}) \) is non-noetherian. \(\square \)

Corollary 0.6 follows from combining Proposition 5.2, Corollary 5.3, and Corollary 5.7.

6. Appendix: Macaulay2 Computations

We present the routines needed for the proofs of Proposition 1.5 and Lemma 4.3. Here, we use Macaulay2, version 1.4 [GS].

Routine A.1. For the proof of Proposition 1.5, we verify that the relations (1.2) and (1.3) hold for the image of \(e_1 \) and \(e_2 \) under the map \(\rho \). First, let us define the coordinate ring of the projective cone \(X = V(xz - y^2) \subseteq \mathbb{P}^3 \).

\[
i1 : K=QQ;
i2 : ringP3=K[x,y,z,w];
i3 : ringX=ringP3/(x*z-y^2);
i4 : use ringX;
\]

Define the maps \(\tau, f = f_0 \), and \(f_k = (\tau^*)^k f \) for \(k = 0, \ldots, 5 \).

\[
i5 : tau=((w,x,y,z)->(w-2*x+2*z,z,-y-2*z,x+4*y+4*z));
i6 : f0=((w,x,y,z)->(12*x+22*y+8*z+w)/(12*x+6*y));
i7 : f1=f0@@tau;
i8 : f2=f1@@tau;
i9 : f3=f2@@tau;
i10 : f4=f3@@tau;
i11 : f5=f4@@tau;
\]

Let us now verify that the relations (1.2) and (1.3) hold.

\[
i12 : Y0=f0(w,x,y,z);
i13 : Y1=f1(w,x,y,z);
i14 : Y2=f2(w,x,y,z);
i15 : Y3=f3(w,x,y,z);
i16 : Y4=f4(w,x,y,z);
i17 : Y5=f5(w,x,y,z);
i18 : Y3-3*Y2+3*Y1-Y0+6*Y0*Y2-12*Y0*Y3+6*Y1*Y3=0;
i19 : Y5-5*Y4+10*Y3-10*Y2+5*Y1-Y0+40*(Y0*Y2*Y4-3*Y0*Y2*Y5+3*Y0*Y3*Y5-Y1*Y3*Y5)=0;
\]

Routine A.2. For the proof of Lemma 4.3 we verify that \(f_0, f_1, f_2 \) generate the function field of \(X \).

\[
i20 : fun0=((a,b,c)->4*(2*a*c+a-c));
i21 : fun1=((a,b,c)->-4*a*b+4*a*c-6*a+4*b+2*c);\]

\[
o24 : frac(ringX);
i22 : fun2=((a,b,a-b));
i23 : fun3=((a,b,c)->-(6*a^2*c+3*a^2-2*a+4*a*b-5*a*c+3*a-4*b+c));
i24 : fun0(Y0,Y1,Y2)/fun1(Y0,Y1,Y2);
o25 = --
o26 = --
o27 = 12x+30y+12z
\]

\[
o28 = 6w;
o29 = frac(ringX);
\]
Acknowledgements

The authors are grateful to the referee for pointing out several typographical errors and for making suggestions that improved greatly the exposition of this manuscript. We thank Lance Small and Jason Bell for bringing this problem to our attention, thank Dan Rogalski for an extensive review of our manuscript, and thank Tom Lenagan for assistance with references. We also thank Jason Bell, Ken Brown, and Pavel Etingof for stimulating discussions after the first version of this manuscript appeared on the arXiv. Part of this work was completed while being hosted by the Mathematical Sciences Research Institute in Spring 2013. Sierra was supported by the Edinburgh Research Partnership in Engineering and Mathematics; Walton was supported by the National Science Foundation, grant #DMS-1102548.

References

Sierra: School of Mathematics, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
E-mail address: s.sierra@ed.ac.uk

Walton: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
E-mail address: notlaw@math.mit.edu