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Self-tuning Bistable Parametric Feedback Oscillator:
Near-optimal Amplitude Maximization without Model Inform ation

David J. Braun, 1, ‡ Andrius Sutas,2 and Sethu Vijayakumar2

1Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
2The University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom

Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition,
are capable of large amplitude oscillation useful in diverse application; signal ampli�cation, com-
munication, analogue computation. However, due to amplitu de saturation caused by non-linearity,
lack of robustness to model-uncertainty and limited sensit ivity to parameter modulation, these
oscillators require �ne-tuning and strong modulation to ge nerate robust large amplitude oscilla-
tion. Here we present a principle to self-tuning parametric feedback excitation that alleviates the
above mentioned limitations. This is achieved using a minim alistic control implementation that
performs i) self-tuning { slow parameter adaptation { and ii ) feedback pumping { fast parameter
modulation, without sophisticated signal processing from past observations. The proposed approach
provides near-optimal amplitude maximization without req uiring model-based control computation,
previously perceived inevitable to implement optimal cont rol principles in practical application. Ex-
perimental implementation of the theory shows that the osci llator self-tunes itself near to the onset
of dynamic bifurcation to achieve extreme sensitivity to sm all resonant parametric perturbations.
As a result, it achieves large amplitude oscillations by capitalizing on the e�ect of non-linearity,
despite substantial model uncertainties and strong unforeseen external perturbations. We envision
the present �nding to provide an e�ective and robust approac h to parametric excitation, when it
comes to real-world application.

Parametric excitation is a way to set oscillators in mo-
tion by modulating their physical parameters. There is a
characteristic instability e�ect { known as principal para-
metric resonance { where oscillations are achieved by pa-
rameter modulation that has twice the natural frequency
of the oscillator [1, 2]; a phenomena quite di�erent from
the one associated with resonance by direct excitation.

The �rst well documented example of a parametrically
excited system is theO Botafumeiro, a censer suspended
by a long rope in the Cathedral of Santiago de Com-
postela in north-west region of Spain, which dates back to
the 14th century [3]. This giant variable length pendulum
was set into motion by a squat of priests who pulled the
rope to cyclically decrease and increase its length at the
lowest and highest points of the oscillation until they get
the censer to the vaults. The principle of parametric exci-
tation was found useful in di�erent physical domains and
various applications [4]; mechanical domain signal am-
pli�cation [5], particle traps enabling atomic level mea-
surements [6], signal ampli�ers revealing quantum infor-
mation [7], nanoelectromechanical oscillators challenging
current standard quartz-crystal clocks in timing applica-
tions [8], optical calculators performing di�cult mathe-
matical calculations [9], as well as networks of electrome-
chanical oscillators promising energy e�cient analogue
computation [10, 11].

An ideal parametrically excited oscillator is operated in
the linear regime using time dependent parameter modu-
lation. The model of such oscillator is given by Mathieu's
equation [12] which predicts an in�nite sequence of insta-
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bility regions [13] de�ned by the amplitude and frequency
of the excitation [14]. According to the theory, the pres-
ence of weak dissipation may not limit the amplitude of
the motion [15], while addition of parasitic non-linearity
leads to �nite amplitude oscillations. This re
ects, more
closely, the real world observation [16].

The e�ect of amplitude saturation { inherent to non-
linear vibrations, the sensitivity to model uncertainty {
inevitably present in real-world applications, and the lim-
ited sensitivity to small parametric perturbations { ap-
parent on most typical monostable oscillators [17], have
been long perceived to limit technological promises of
actuation principles that employ system parameter mod-
ulation.

In this paper we present a principle toself-tuning feed-
back parameter modulationthat is immune to the above
mentioned limitations. Instead of the classical time de-
pendent parametric excitation, or more recent time-delay
feedback based control implementations [8, 18{20], we
combine minimalistic statistical information with opti-
mal state feedback control perturbations to realizeself-
tuning { slow autonomous parameter adaptation { and
feedback pumping{ fast state-dependent parameter mod-
ulation { without model information, delicate control
computation or sophisticated signal processing from past
observations.

Similar to most typical parametric feedback excitation
schemes, this approach leads to a self-sustained oscilla-
tor [21] capable of large amplitude oscillations. However,
unlike alternatives means to parameter modulation, it
1) exploits the extreme sensitivity of bistable oscillators
near to the onset of their dynamic bifurcation [22] and
2) uses optimal feedback control perturbations [23]. In
turn, the propose approach leads to near-optimal para-
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metric excitation without sophisticated model-based con-
trol computation previously perceived inevitable to im-
plement optimal control principles in practical applica-
tion. We present the �rst experimental demonstration of
this principle, which is shown to provide unprecedentedly
robust amplitude maximization despite weak parametric
excitation, substantial model variation and strong un-
foreseen external perturbations.

I. OPTIMAL PARAMETRIC EXCITATION

A minimalistic model of a nonlinear parametric oscil-
lator is given by:

•q � 
 _q � kq � k3q3 � 0 (1)

where q denotes the displacement of the oscillator,

characterizes viscous dissipation,k is the sti�ness of the
oscillator while the last term, where k3 A 0, represents
Du�ng-type nonlinearity [24]. The sti�ness of the oscil-
lator can be decomposed to:

k � ko � kp ˆ t• (2)

where the �rst term is the static sti�ness while the sec-
ond term is the dynamic sti�ness. When the parameter
of the oscillator is not subject to modulation kp ˆ t• � 0,
the oscillator can be monostableko A 0 (characterized
with single-well static potential) or bistable ko @0 (char-
acterized with double-well static potential).

The oscillator (1) can be set into motion by sti�ness
modulation i.e., by changing kp ˆ t• > � kp min ; kp max � . For
a linear oscillator this can be done using e.g., square-wave
modulation [25], which has twice the frequency of the os-
cillator, and which has an amplitude that exceeds the
threshold kp max � kp min A �

º
ko
 de�ned by the static

sti�ness and the coe�cient of viscous dissipation. This
kind of limitation is fundamental to the principle of para-
metric excitation. It indicates that, in order to generate
oscillations, the energy injected through parameter mod-
ulation must exceed, or be equal to, the energy lost due
to dissipation.

Figure 1a shows a typical long term behavior of a non-
linear oscillator (1) under optimal dynamic sti�ness mod-
ulation kp � kopt

p ˆ t• > � kp min ; kp max � and di�erent static
sti�ness ko settings. The implemented time dependent
modulation maximizes the amplitude of the oscillator at
every oscillation. This modulation is the most e�ective
among all modulations subject to the same sti�ness range
limitation. Despite this, we observe that when the oscilla-
tor operates in the monostable regime its amplitude and
sensitivity to parameter modulation is limited compared
to that observed just before the onset of the dynamic bi-
furcation (gray area). Further to this, the implemented
time dependent excitation lacks robustness and the ca-
pacity of adaptation vital for robust practical implemen-
tation. This is why the bene�t o�ered by model-based
optimization diminishes when it comes to real-world im-
plementation.
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FIG. 1: a) Model based optimal parametric excitation. The
stationary amplitude A of the oscillator is shown with gray
lines. SAS � SAB Sdenotes the state of the oscillator before the
onset of bifurcation (shaded gray area). The model parame-
ters are given by: ko > �� 12; 5� , kopt

p ˆ t• > �� 0:2; 0:2� , 
 � 0:1
and k3 � 1. b) Model free feedback controller used to tune the
oscillator { �qN denotes the N � 2 period moving average po-
sition, �AN is the corresponding average amplitude, � k � 0:1
is the sti�ness increment per motion cycle while � q � 0:1 and
� A � 0:01 denote the two switching thresholds respectively
[26]. c) Model free optimal feedback controller used to im-
plement fast parameter modulation. The black dots in sub-
plot (a) represent the operation points of the oscillator af ter
self-tuning. The black line denotes the mean amplitude of th e
tuned oscillator. The yellow area indicates the 99% con�den ce
interval of the tuned static sti�ness. These results were ob -
tained by 100 simulations of (1) using random initializatio n.
We note that in the statically monostable regime ( k0 A 0)
the oscillator could not be always set into motion under the
constraint imposed on the amplitude of the fast parameter
modulation i.e., kopt

p ˆ t• > �� 0:2; 0:2� . Despite this, the oscil-
lator displays large amplitude motion after it self-tunes i tself
near to the onset of dynamic bifurcation (yellow area).

II. NEAR-OPTIMAL ADAPTIVE FEEDBACK
PARAMETRIC EXCITATION

Ideally, we wish to realize e�ective amplitude maxi-
mization that is inherently robust under uncertainties in
model information and unforeseen external perturbations
inevitably present in real-world implementation. While
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using a model-based time dependent (feed-forward) con-
troller this does not seem to be viable, here we pro-
pose a minimalistic adaptive feedback controller that im-
plements self-tuning { long-term parameter adaptation
{ and near-optimal feedback pumping { short-term pa-
rameter modulation { without sophisticated model-based
control computation. The principles that underly this
controller are summarized in the following two observa-
tions:

1) The amplitude of the oscillator is maximized near to
the onset of dynamic bifurcation (Fig.1a gray area) where
it displays extreme sensitivity to resonant perturbations
[22]. Based on this observation, we aim to adaptively
change the sti�ness of the oscillatorko, in order to tune
the system near to the onset of its dynamic bifurcation
(Fig.1a yellow area). This is implemented using simple
statistical information { N -period mean position �qN and
mean amplitude �AN of the oscillator { using minimalistic
on-line computation and without model information, (see
Fig.1b):

ko � koˆ �qN ; �AN • : (3)

According to this implementation, adaptation is
achieved by �rst reducing sti�ness (Fig.1b state 1), in
order to induce o�-centered motion, and then increas-
ing sti�ness (Fig.1b state 2), until the emergence of cen-
tered large-amplitude oscillations (Figs.1a,b state 3, yel-
low area). There are three important features of this
tuning approach, �rst it is easy to implement { does not
require extensive computation, second it is model-free
{ does not require system parameter identi�cation and
third it is robust { relies on generic features of bi-stable
oscillators [27]. We now turn to the second observation.

2) In order to achieve amplitude maximization, the op-
timal parametric pump implements the following simple
actions: every time the system passes through its triv-
ial equilibrium sti�ness is reduced while every time the
oscillator reaches its maximum amplitude sti�ness is in-
creased [28] (Fig.1c):

kp ˆq; _q• >›
kpmax if q_q B0
kpmin if q_q A0: (4)

We have recently shown [23] that this feedback controller
delivers the same ampli�cation e�ect as the correspond-
ing model based optimal excitation which maximizes the
amplitude of the oscillator at every oscillation. Impor-
tantly, this holds not only for linear oscillators but for
large class of essentially non-linear oscillators, including
bistable oscillators. Further to this, this controller does
not require model information or control computation,
and similar to other feedback based excitation schemes
[8, 18{20, 29], it is inherently robust compared to time-
dependent parametric excitation. These features make
the above controller desirable when it comes to real-world
implementation.

When applied to a prototypical bistable oscillator (1),
the obtained composite controller:

k � koˆ �qN ; �AN • � kp ˆq; _q• (5)

adaptively tunes the system to the onset of its dynamic
bifurcation where it achieves large amplitude parametric
oscillations (see Fig.1). In general, however, application
of this controller on more complex oscillators appears to
be hindered by two fundamental limitations. This is be-
cause the sti�ness parameter associated with a real phys-
ical systems is, in general, not directly controllable [30],
but also because the above controller (5) requires sti�-
ness modulation in two fundamentally di�erent spatial
and temporal scales i.e., while the �rst term ko requires
large-range and slow cycle-to-cycle adaptation, the sec-
ond term kp is designated to small-range but fast sti�-
ness modulation. Due to these reasons, it is di�cult to
provide a generalization of the above controller that i)
remains e�ective in amplitude maximization, ii) remains
robust to model variations and iii) enables low energy
cost practical implementation.

III. GENERALIZATION AND PRACTICAL
IMPLEMENTATION

In this section we present a practical realization of a
novel self-tuning bistable parametric oscillator (Fig.2a-
c) which is not a�ected by the above mentioned limita-
tions. Using this oscillator, we aim to outline general
design features that enable e�ective implementation of
the proposed control scheme for parametric excitation.

The behavior of the oscillator is captured by a three-
degree-of-freedom model (Fig.2d):

•q � 
 _q � kˆq;x •q � 0 (6)

•x � � _x � � 2x � � 2u (7)

composed by a non-linear oscillator (6) coupled to atwo-
degree of freedomactuating subsystem (7). In this model
kˆq;x • denotes the state dependent sti�ness of the os-
cillator, x � � x1; x2� — is the displacement of the po-
sition controlled actuators, � � diag� � 1; � 2� quanti�es
the speed (closed-loop bandwidth) of the actuators while
u � � u1; u2� — > �u min ; u max � de�nes the control inputs.
The state dependent sti�ness of this device has additive
structure:

kˆq;x • � kI ˆq; x1• � kII ˆq; x2• � kIII ˆq• (8)

owning to the parallel coupling of the three compliant
subsystems (Fig.2a-d I-III). The �rst two terms in the
above relation are associated with the two leaf-spring
mechanisms (Fig.2a-d I-II). The sti�ness provided by
these mechanisms {kI ;II ˆq; x‡• Œˆ� ‡ � x‡max � x‡• � 3� 1 �
Oˆq2•� (where � ‡ de�nes the largest achievable sti�ness)
[31] { can be changed by controlling the e�ective length
of the leaf springs. In this way the two actuators are used
to changekI ;II from near-zero (x‡ � x‡ min , long spring)
to high positive values (x‡ � x‡ max , short spring). The
additional extension spring mechanism is shown in Fig.2d
III. This mechanism is pre-extended in order to pull the
oscillator away from its equilibrium con�guration ( q � 0).
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FIG. 2: Tunable parametric feedback oscillator. a-c) Oscil lator: (I) leaf-spring mechanism dedicated to tuning, (II) leaf-
spring mechanism dedicated to feedback pumping, (III) passive positive feedback mechanism, (IV) oscillating output l ink. d)
Schematic representation of the oscillator. e) Behavior of the oscillator under f) quasi-static sti�ness tuning and h) parametric
feedback pumping. B1;2 denote dynamic bifurcations as the sti�ness of the oscillat or is decreased. g,i) Average electrical power
drained by the slow sti�ness tuning and the fast sti�ness pum ping motors [computed using 2:5s and 0:25s moving average �lters
respectively].

This e�ect leads to the third term kIII ˆq• Œ � 1 � Oˆq2•
in (8). This term is negative.

The redundancy in actuation (i.e., two independent
inputs u > R2 are used to change the sti�nessk > R of
the oscillator), the inverse relation betweenkI ;II and the
positions of the actuators x , and the instability of the
static equilibrium position caused by the negative sti�-
ness element in the oscillatorkIII @0, are the three design
feature that make this oscillator: wide range tunable {
tunable over monostable to strongly non-linear bistable
regimes (shown in Fig.2a and Fig.4) { and well suited to
low power cost sti�ness modulation (see Fig.2g,i, Fig.3).

The model presented above (6){(8) will be subse-
quently used to explain the working principle of the os-
cillator. It is however important to note that this model
is not general enough to perform model-based optimiza-
tion, and as such, it has not been used to �nd the inputs
u to control the oscillator [32].

Using the actuators (7), we modify the internal geom-
etry of the device to implement redundant parametric
excitation. Speci�cally, we employ a slow actuator u1
to modulate the e�ective length of the �rst leaf spring
x1 (Fig.2a,d) to realize sti�ness adaptation (Fig.2f) and
a fast actuator u2 to change the e�ective length of the
second leaf springx2 (Fig.2a,d) and as such implement
sti�ness pumping i.e., fast modulation (Fig.2h). Unlike
in the minimalistic model (1), the sti�ness of this real
system (8) is not directly controllable, and as such our

previously derived composite controller (5) is not directly
applicable. In general, �nding the optimal control inputs
u to realize a desired sti�ness modulation, under realistic
actuation [i.e., (7) and (8)], requires model based com-
putation [30]. However, if the oscillator's restoring force
[i.e., (6); � kˆq;x •q] is strictly monotonic with respect to
the control inputs, one can formally replace the sti�ness
in (5) (Fig.1b,c) with the control inputs in (7) to de�ne
a more general control law for nonlinear parametric ex-
citation [23]:

u � � uoˆ �qN ; �AN • ; up ˆq; _q•� —>�u min ; u max � : (9)

The design condition enabling this model and computa-
tion free generalization is satis�ed on our device under
static condition { due to the monotonic sti�ness motor
position relation i.e., u � x , @k~@x1 A 0 and @k~@x2 A 0.
This is su�cient to implement near-optimal paramet-
ric excitation using real (bandwidth limited) actuators.
This holds not only for slow adaptation uo, but also for
switching-like parameter modulation up , provided the os-
cillator is slow compared to the actuator performing the
fast parameter modulation (i.e., the frequency of oscilla-
tions is an order of magnitude below the bandwidth of
the fast sti�ness modulating actuator [33]).

There are three important features that set this
redundantly-actuated self-tuning bistable parametric feed-
back oscillator apart from more conventionally actuated
monostable oscillators:

Y First, instead of utilizing one actuation mechanism
to realize fast parameter modulation in large sti�ness
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FIG. 3: Power drained for sti�ness modulation. a) Position
of the oscillator [ q � 0 (rad) indicates non-de
ected con�gura-
tion while q � 1 (rad) indicates the maximally de
ected con-
�guration during the experiments]. b) Motion of the sti�nes s
tuning actuator x1 (solid black lines) and the corresponding
square-wave input motor command u1 { chirp signal with fre-
quency � 0:01; 0:08� Hz (dashed gray lines). c) Average power
drained by the sti�ness tuning actuator (computed using a
2:5s moving average �lter). The plot shows no essential dif-
ference between the electrical motor power in the case when
the oscillator was not de
ected compared to the case when
it was maximally de
ected from its equilibrium con�gura-
tion. This can be clearly seen in the gray areas on the left.
d) Motion of the sti�ness pumping actuator x2 (solid black
lines) given the square wave input command u2 { chirp signal
with frequency � 0:06; 0:2� Hz. e) Average power drained by
the sti�ness pumping actuator (computed using a 0 :25s mov-
ing average �lter). The plot shows small variation between
the motor power in the case when the oscillator was not de-

ected compared to the case when it was maximally de
ected
from its equilibrium con�guration. In both power plots ther e
is a consistent up shift of the baseline motor power due to the
increased frequency of the excitation.

range, the proposed device employs two actuated com-
pliant mechanisms; one to enable slow temporal modula-
tion in large sti�ness range, while another to realize fast
temporal modulation in small sti�ness range. This re-
dundancy in the actuation, directly allows the oscillator
to exploit the physical di�erences inherent to the tun-
ing and pumping controllers respectively. In particular,
this enables low power practical implementation of the
proposed composite controller (9), see Fig.2g,i and Fig.3.

Y Second, in our device, sti�ness modulation is real-
ized with variable-length leaf-spring mechanisms which
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FIG. 4: Equilibrium angle of the oscillator as a function of
its static sti�ness setting. The gray (black) lines denote t he
equilibrium positions of the oscillator under quasi-stati c for-
ward (and backward) sweep of the sti�ness. During these
experiments three di�erent weights i.e. m � ˜ 0; 5; 10• kg were
attached to the oscillator. The error bars on this plot denot e
two standard deviations. We observe that when the sti�ness
is tuned to its minimum value ( x1 � x1min ) the trivial equi-
librium of the system is unstable, the oscillator is bi-stab le.
When the sti�ness is tuned to its maximum value ( x1 � x1max )
the trivial equilibrium is stable, the oscillator is mono-s table.
In the mono-stable case, the oscillator has non-zero static
de
ection. This is due to symmetry breaking terms in real
world implementation. The bifurcation phenomenon seen in
this plot is enabled by the positive feedback (negative sti� -
ness) extension spring mechanism in our device (Fig.2c,d III).

largely decouple the external load from the sti�ness ad-
justing actuators. By doing so, the actuators do not need
to work heavily against the load when changing sti�ness,
and at the same time they require little power to main-
tain sti�ness [31]. This actuation principle exempli�es a
practical means to realize parametric excitation with low
actuation power and energy cost, see Fig.2g,i and Fig.3.

Y Third, our device incorporates a negative sti�-
ness mechanism that extends its mono-stable operation
regime to strongly non-linear bi-stable regimes (Fig.2e
and Fig.4). Instead of realizing adaptable positive feed-
back using energetically expensive active control [e.g.,
by changing the length of the large extension springs
(Fig.2c III) with a strong actuator], our implementation
does not require any energy input to generate the posi-
tive feedback e�ect during the oscillations. Unlike time
dependent parametric excitation of mono-stable oscilla-
tors, this adaptive feedback controlled negative sti�ness
system enables self initialization (Fig.2e,f-B1) and large
amplitude resonant vibrations (Fig.2e,f-B2) using small
control perturbations (Fig.2e,h).












